首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The response to N fertilization of a short-duration pigeonpea genotype, ICPL 87, was studied in the field to assess the scope for genetically improving symbiotic N2 fixation by pigeonpea. The field study was undertaken during 1985, 1986 and 1987 growing seasons on Vertisol and Alfisol at ICRISAT Center (peninsular India), Inceptisol at Gwalior (central India) and Entisol at Hisar (northern India) in as non-limiting environmental conditions as possible. Nitrogen fertilizer was applied to the soil at various growth stages to determine when N becomes most limiting. There was a significant response in grain yield to fertilizer N applied at flowering in Vertisol but not in Alfisol, Inceptisol or Entisol. This suggests that biological N2 fixation by short-duration pigeonpea was not adequate to meet N requirements of the crop grown in Vertisol but that it was probably adequate in the other three soil types. These results are discussed in relation to the nodulation and acetylene reductase activity of pigeonpea and also N mineralization potential of different soils. It can be concluded that there is a need for genetic improvement of N2 fixing ability of short-duration pigeonpea grown on heavy textured soils such as Vertisols.  相似文献   

2.
In a crop rotation trial, conducted from 1985 to 1988 at TU-Munich's research station in Roggenstein, the transfer of grain legume nitrogen was evaluated in crop rotations containing fababeans and dry peas as well as oats (reference crop) and winter wheat and winter barley as following crops. The results obtained can be summarized as follows: Dinitrogen fixation by fababeans ranged from 165 to 240 kg N ha1, whereas N2-fixation by peas amounted from 215 to 246 kg N ha?1. In all seasons the calculated N-balance where only grain was removed was positive, with a net gain being on average 106 (peas) and 84 (fababeans) kg N ha?1. After the harvest of peas 202 kg N ha?1 remained on the field on average over seasons (158 kg N ha?1 in the above ground biomass and 44 kg N ha?1 as NO3-N in 0–90 cm depth). As compared to peas, fababeans left 41 kg N ha?1 less due to smaller amounts of nitrogen in the straw. After oats very small amounts of residual nitrogen (33 kg N ha?1) were detected. After the harvest of grain legumes always a very high nitrogen mineralization was observed during autumn especially after peas due to a close C/N-relationship and higher amounts of nitrogen in the straw as compared to fababeans. In comparison with fababeans, N-mineralization after the cultivation of oats remained lower by more than 50%. During winter, seepage water regularly led to a considerable decrease of soil NO3-N content. The N-leaching losses were especially high after cultivation of peas (80 kg N ha ?1) and considerably lower after fababeans (50 kg N ha?1) and oats (20 kg N ha?1). As compared to oats, a higher NO3-N content in soil was determined at the beginning of the growing period after preceding grain legumes. Therefore, winter wheat yielded highest after preceding peas (68 dt ha?1) and fababeans (60 dt ha?1) and lowest after preceding oats (42 dt ha?1). The cultivation of grain legumes had no measurable effect on yield formation of the third crop winter barley in either of the growing seasons.  相似文献   

3.
Little is known about the effect of combined phosphorus and nitrogen (P‐N) fertilization on the N requirement of sunflower (Helianthus annus L.). This study was carried out to evaluate the effects of varying levels of P and N, as well as the interaction P × N, on the N uptake, yield and N apparent utilization efficiency under field conditions. Split‐plot design experiments were conducted in the mid‐western Pampas in Argentina. Four levels of N (0, 46, 92 and 138 kg N ha?1) and three levels of P (0, 12 and 40 kg P ha?1) were applied to two Typic Hapludolls over two growing seasons (1997–98 and 1998–99). N uptake and soil N‐NO3 contents were determined at the V7, R5 and R9 growth stages. The sunflower yield ranged from 2.5 to 5.0 Mg ha?1. The total N requirement was around 45 kg N Mg?1 grain, and this result suggests that it is not necessary to use different N requirements (parameter b) for fertilized crops when a yield response is expected. To achieve a 100 % yield maximum a N supply (soil plus fertilizer) of 181 kg N ha?1 at P40 was needed. However, at P0, the highest yield was about 80 % of the maximum yield with a N supply (soil plus fertilizer) of 164 kg N ha?1. P application increased the apparent use efficiency of the supplied N.  相似文献   

4.
Effects of tillage on the appropriate fertilizer N applications needed to achieve maximal grain yield are poorly denned. The study objective was determination of relative corn grain yield response to N application rate for four tillage practices: no-tillage (NT), ridge tillage (RT), fall chisel plowing (CP) and fall moldboard plowing (MP). Maize (Zea mays L.) grain yield and N accumulation were monitored over a 6 year period with the same tillage treatment and the same fertilizer N rate applied each year to each plot. Two hybrids, differing in relative maturity rating, were planted each year. Fertilizer N rates ranged from 10 to 190 kg ha?1 and consisted of 10 kg ha?1 of liquid starter N applied at planting with varying amounts of fall applied anhydrous ammonia. With only starter fertilizer, grain yields increased with tillage intensity in the order NT ≤ RT ≤ CP ≤ MP. With ≥ 55 kg total applied Nha?1, 6 year average grain yields were unaffected by tillage. Total N removed in grain annually with only starter fertilizer ranged from 25–85 kg ha?1 Maximal amounts of N removed, about 145 kg N ha?1, occurred with 100–145 kg applied N ha?1 for all tillage treatments under the more favorable climatic conditions. Several interactions affecting grain yield appear climatically sensitive with exception of tillage by fertilizer N interactions. Because of variability in climate, planting dates varied by almost 4 weeks. Relative yield loss due to planting delay were Fertilizer N (mean change ??124 –?275 kg ha?1 day?1) > Starter N only and MP (mean ?? 259 kg ha?1 day?1) > other tillages in general. Yield loss due to delayed planting ranged from 0.0–275 kg ha?1 day?1. Grain yield gains due to early spring soil temperatures were 16.0–21.8 kg ha?1 index-degree?1 with MP tillage and averaged 2.7– 16.7 kg ha?1 index-degree?1 more than those of other tillage-hybrid combinations.  相似文献   

5.
Field experiments with silage maize were conducted in 1987 and 1988 on a loess-derived Luvisol in southwest Germany. Four nitrogen fertilizer treatments were compared: application of preplanting NH4 N (plus a nitrification inhibitor, dicyandiamide as Didin) and preplanting NO3-N, split application of NO3-N (preplanting and side dressed 45 days after planting) and a control without nitrogen fertilizer in 1987 and with 64 kg N ha?1 as calcium ammonium nitrate in 1988. The total amounts of soil mineral nitrogen (Nmin+ fertilizer N) were 200 kg N ha?1 in 1987 and 240 kg N ha?1 in 1988. Suction cups and tensiometer were installed at five depths and samples were taken in regular intervals. Nitrate concentrations in the suction solution steeply increased at 15 cm and 45 cm soil depth 3-4 weeks after fertilizer application (1987 up to 160mgNl?1; 1988 up to 170mgN l?1) and steeply decreased up to 75 cm depth with the onset of intensive N uptake at shooting. Ammonium concentrations in the suction solution were very low (0-0.16 mg N l?1). Compared to preplanting NCyN application, preplanting NH4-N and split NO3-N application decreased nitrate concentrations in the suction solution in spring 1987. In 1988, however, nitrate concentrations in the suction solution of preplanting NH4-N and split NO3-N application plots did not fall below 50mgNl?1 at 15 cm depth during the growing season. Nitrate concentrations of split NO3-N application increased again in autumn 1988 and hence doubled the calculated N losses by leaching during the winter months compared to preplanting N applications. At shooting, plants of the preplanting NH4-N treatment had lower nitrate concentrations in leaf sheaths compared to plants of preplanting NO3-N application. Total N uptake of maize between shooting and early grain filling of preplanting NH4-N and split NO3 -N application tended to be higher compared to preplanting NO3-N application, reflecting the higher N availability in the soil later in the season. However, final dry matter yields and N uptake were not significantly affected by N form or time of N application. Since N losses by nitrate leaching between N application and onset of N uptake by plants were negligible on the experimental site, preplanting NH4-N application and split NO3-N application showed no agronomic advantages. High amounts of side dressed NO3-N may increase nitrate leaching during the winter months, especially in years with delayed rainfall after application.  相似文献   

6.
乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应   总被引:3,自引:0,他引:3  
以玉米品种"郑单958"为材料,在大田条件下,研究了乙烯利(0和180 g hm–2)和氮肥水平(0、75、150和225kg N hm–2)对夏玉米产量、氮素吸收和利用以及SPAD值的影响。结果表明,乙烯利处理显著降低了氮吸收量和吸收效率,但显著提高氮利用效率,其中乙烯利处理氮农学效率比对照提高了32.7%~34.6%,而且乙烯利处理对玉米产量及其产量构成因素没有显著影响;随着施氮量增加,夏玉米产量、产量构成因素和氮吸收量显著增加,而氮吸收效率、氮利用效率、氮偏生产力和氮农学效率随之降低,其中225 kg N hm–2处理氮吸收量比0 kg N hm–2处理提高了68.4%~91.8%,但225 kg N hm–2和150 kg N hm–2处理之间的氮吸收量差异不显著。乙烯利和氮肥对氮吸收量、氮吸收效率和氮农学效率具有互作效应。喷施乙烯利和增施氮肥均能提高灌浆期穗位叶SPAD值,但两者之间没有互作效应。通过相关性分析表明,夏玉米产量与吐丝期氮吸收量、收获期氮吸收量、灌浆期穗位叶SPAD值显著正相关。  相似文献   

7.
Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split‐split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha?1), and two maize hybrids (three‐way cross 310 and single cross 10) as the main‐plot, split‐plot, and split‐split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha?1 was not statistically different from that at 380 kg N ha?1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha?1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha?1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100‐grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha?1. In order to improve the WUE and grain yield for drip‐irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha?1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated.  相似文献   

8.
施氮量对稻麦干物质转运与氮肥利用的影响   总被引:18,自引:0,他引:18  
为探讨太湖地区稻麦轮作农田适宜施氮量及氮素对干物质转运与氮肥利用的影响,于2007—2009年间在中国科学院常熟农业生态实验站建立田间定位试验。设置4个氮肥处理水平,分别用N0、N1、N2和N3表示。水稻各处理的施氮量分别为0、125、225和325kghm-2;小麦相应处理施氮量分别为0、94、169和244kghm-2(为稻季相应处理施氮量的75%)。结果表明,水稻施氮量超过225kghm-2,小麦施氮量超过169kghm-2后,产量增加不显著。水稻、小麦开花期干物质积累量均随施氮量的增加而增加,但花前营养器官干物质转运对籽粒贡献率均随氮肥用量增加而降低;氮肥农学效率与氮肥生理效率均随氮肥用量增加而降低,且N2与N3处理之间差异不显著;边际产量均随施氮量增加而下降,N3处理边际效益水稻平均低于3.1kgkg-1,小麦平均低于2.4kgkg-1。综上所述,无论水稻还是小麦,N2处理既能保证较高物质转运率,又能保证较高的氮肥利用效率与经济效益。  相似文献   

9.
不同株高夏玉米品种的氮素吸收与利用特性   总被引:6,自引:0,他引:6  
范霞  张吉旺  任佰朝  李霞  赵斌  刘鹏  董树亭 《作物学报》2014,40(10):1830-1838
选用鲁单981 (LD981)、郑单958 (ZD958)和登海661 (DH661) 3个不同株高玉米品种, 在大田和栽培池条件下分别设67 500株 hm-2和82 500株 hm-2 2个种植密度, 0和180 kg hm-2 2个施氮量。大田试验的氮肥以开沟方式施入, 栽培池试验氮肥分别以5、20和40 cm深度分层施入, 利用15N同位素示踪技术研究不同株高夏玉米对氮素的吸收与利用特性。结果表明, 与67 500株 hm-2种植密度比较, 82 500株 hm-2种植密度夏玉米籽粒产量及氮素偏生产力显著提高。夏玉米吸收的氮素69.3%~77.3%来自土壤, 22.7%~30.7%来自肥料, 土壤氮和肥料氮收获指数分别为54.6%和57.5%。与67 500株 hm-2种植密度比较, 82 500株 hm-2种植密度矮秆品种DH661氮素积累来自肥料的比例显著降低, 中品种ZD958和高秆品种LD981没有显著变化; 中、高秆品种肥料氮收获指数显著降低, 矮秆品种增加。5 cm土层施氮对植株肥料氮积累量贡献率最大, 40 cm土层施氮对植株肥料氮的贡献率最小, 随着株高增加, 深层(40 cm)氮对植株肥料氮积累量的贡献率逐渐增加, 浅层(5 cm)氮对植株肥料氮积累量的贡献率逐渐降低。中、高秆品种对土壤深层40 cm施氮的氮肥回收率较高, 而矮秆品种对土壤浅层20 cm施氮的氮肥回收率较高; 20 cm和40 cm 15N在20~40 cm和40~60 cm土层残留量分别达到60%, 说明矮秆品种对20~40 cm土层氮素回收率较高, 中、高秆品种对40~60 cm土层氮素回收率较高。  相似文献   

10.
Five short-duration pigeonpea (Cajanus cajan (L.) Millsp.) genotypes were grown at three plant populations in three locations during the 1986 and 1988 rainy seasons, to determine the physiological basis of observed variations in yield. Significant differences were found in seed yield (Y), crop growth rate (C), and the durations of vegetative (Dv) and reproductive (Dr) growth, and partitioning (P). These were attributable to genotypes and their interactions with environments (except for C). Variation in C, Dr, and P together explained 78 % of the observed variation in Y due to different genotypes and environments. Crop growth rate alone contributed about 71 % of the variation in Y, and reached an optimum value of around 6.5 kg ha?1°Cd?1. Crop growth rates increased with the duration of the vegetative period and with plant population. However, a negative relationship between C and P resulted in plant population having little effect on seed yield. The maximum-yielding genotype, ICPH 8 had the highest C and an intermediate P.  相似文献   

11.
In this study, conducted from 1979 to 1986 in southern Spain, the objective was to analyze the effects of a possible interaction between soil-applied N and foliar S applied to barley (Hordeum vulgare L.) during tillering on grain yield and to identify the mechanism involved. From 1979 to 1982, we used rates of 20, 40, 60 and 80 kg a.i. N ha?1, together with 12.5 or 25 kg foliar a.i. S ha?1 during tillering. The results demonstrated that foliar S at both dosages acted as a partial (but not total) substitute for N, when the latter was applied at levels of 40 to 60 kg ha?1. These effects of S did not appear to result only from a nutritive mechanism, but rather from a hormonal mechanism through the increase in ethylene biosynthesis. Therefore, during 1983 to 1986, we used 40, 60 and 80 kg a. i. N ha?1, together with 12.5 a. i. S ha?1 and 0.55 kg a.i. ethrel (2-chloroethyl-phosphonic acid) ha?1. The results showed that the effects of S and ethrel on yield were practically the same. Assayed with 40 and 60 kg N ha?1, S and ethrel acted as partial (but not total) substitutes for N, exceeding the yield of the control without S or ethrel, and equalling the yield obtained with 20 kg more of N ha?1. The S or ethrel applied with 80 kg N ha?1 presented an additive effect with the N. The increases in yield using S or ethrel were in all cases due to the increased final number of spikes m?2, which was principally a consequence of the higher number of tillers formed but also a result of increased survival of tillers to form a viable spike. In addition, the positive effects of S on yield were greater the smaller the N dosage and the lower the annual yield. Finally, we present a possible mechanism of hormonal action, to explain how foliar S applied during tillering affects grain yield in barley.  相似文献   

12.
不同氮肥和密度对油菜机械收获损失率的影响   总被引:2,自引:0,他引:2  
以华油杂62为材料,采用机械直播的方式,设置不同氮肥和密度处理,在油菜籽粒含水量10.86%~13.17%时研究油菜机械收获各部分损失率及损失组成的差异。结果表明,机械收获总损失率在不同处理间存在差异,变幅在6.13%~7.82%之间。不同部分的损失占总损失比例差异较大,其中,自然脱落损失比例最小,各处理占总损失的比例在2.41%~3.90%之间;其次是割台损失,各处理占总损失的比例为17.99%~21.99%;清选和脱粒损失比例最大,占总损失的74.15%~79.52%,其中主要是夹带损失,占总损失的65.51%~69.05%,而未脱粒角果比例损失较小,占8.64%~10.47%。随着氮肥用量和密度的增加,产量增加;总损失率与产量、氮肥用量及密度的相关系数分别为0.970**、0.918**和0.358。本研究表明,在油菜机械化生产过程中首先要确定适宜的施氮量和种植密度以获得高产,在高产的基础上再降低收获损失率。  相似文献   

13.
The high protein content of soybean (Glycine max) seeds results in high nitrogen demand, causing a huge nitrogen uptake during plant growth. As a legume crop, soybean can fix atmospheric N through symbiotic associations with Bradyrhizobia and perform well in African nitrogen poor soils. This study aimed at establishing the ability of promiscuous soybean genotypes to fix nitrogen and devise the relationship between nodule scores and amount of nitrogen fixed. Twelve soybean genotypes were inoculated with Bradyrhizobium japonicum Strain USDA 110 (specific) and Bradyrhizobium sp. Strain USDA 3456 (native) and raised in pots in a greenhouse. At the R3.5 growth stage, nodules were scored and xylem sap was extracted, which xylem sap was used to carry out ureide, amino-N, and nitrates assays. The relative abundance of ureide was used to devise the proportion of nitrogen fixed by each genotype. The proportion of nitrogen derived from atmospheric N2 (Ndfa) ranged from 47.9 to 78.8% under USDA 3456 and from 36.7 to 78.7% under USDA 110. A strong correlation was found between nodule scores, especially nodules’ effectiveness, and Ndfa. The genotypes Wondersoya (78.8%), Maksoy 2N (78.4%), Namsoy 3 (78.3%), and Maksoy 3N (75.7%) had high nitrogen-fixing ability in response to USDA 3456. Promiscuous soybean genotypes can fix nitrogen equally under both native and specific Bradyrhizobium types. Nodules’ effectiveness can be a good predictor of biological nitrogen fixation. This study highlighted that crop improvement to boost soybean production in Africa should target promiscuous varieties for better yield with less inputs.  相似文献   

14.
The effects of Nitrogen (N) and Plant Growth Promoting Rhizobacteria (PGPR) on growth and development of sunflower (Helianthus annuus L. var. Hysun-33) grown in the greenhouse under a natural environment were studied. The N-use efficiency of a sunflower crop grown under three N rates (N1 = 0 kg ha?1, N2 = 120 kg ha?1, and N3 = 240 kg ha?1) and three PGPR levels (R1 = 0 kg ha?1, R2 = 30 kg ha?1, and R3 = 60 kg ha?1) were investigated. The maximum amount of N resulted in higher total dry matter production per plant and the effect was prominent from 34 days after sowing (DAS). Seed yields differed significantly among different sunflower crops especially at limiting N supply, with significant shifts according to the N level. N uptake was an important parameter for yield at all N rates. The 240 kg N ha?1 treatments provided the maximum yield, while the oil contents in these treatments of higher yield showed a lower oil content (%). Harvest index was also significantly correlated to yield across N rates; however, its importance depended much on environmental conditions as well. It can be inferred from the study that sunflower crop is well-supplied with respect to growth, development, yield and yield components, to enhance N efficiency and depends very much on the N supply. All the parameters gave maximum results with the increment of N while PGPR regimes had no prominent impact on the sunflower crop, the target environment, and the target yield level grown under a specified controlled glasshouse environment.  相似文献   

15.
氮素实时管理对冬小麦产量和氮素利用的影响   总被引:9,自引:0,他引:9  
为实现氮素效率和小麦产量的协同提高,以山东省泰安市和兖州市为试验地点,连续2年在4个田块上进行了基于土壤硝态氮测试的氮素实时管理试验。与农民习惯施肥相比,优化施氮处理提高产量0.87%~10.44%,平均5.82%;而氮肥用量减少38.61%~53.29%,平均46.70%;氮素吸收效率、氮素表观利用率和氮素农学效率分别增加36.67%~85.69%、58.49%~267.69%和34.16%~410.58%;氮肥偏生产力升高74.23%~124.87%;产/投比提高78.50%~112.09%。说明应用土壤硝态氮测试进行小麦氮肥实时实地管理达到了减少氮肥用量,提高氮素利用效率,增加产量和经济效益的目的。  相似文献   

16.
秸秆还田配施氮肥对东北春玉米光合性能和产量的影响   总被引:5,自引:0,他引:5  
秸秆还田配施氮肥是解决旱作农田"耕层变浅"、"土壤紧实"、"有效耕层土壤减少"问题的重要措施之一,在旱作农业生产中具有重要意义。为探明秸秆深翻还田配施氮肥对东北春玉米光合性能和产量的影响,本研究于2014—2015年在辽宁铁岭设置S0F0(秸秆0 kg hm~(–2)+纯NPK 0 kg hm~(–2))、SN0(秸秆9000 kg hm~(–2)+纯N 0 kg hm~(–2)+纯P 112.5 kg hm~(–2)+纯K 90 kg hm~(–2))、SN1(秸秆9000 kg hm~(–2)+纯N 112.5 kg hm~(–2)+纯P 112.5 kg hm~(–2)+纯K 90 kg hm~(–2))、S0N2(秸秆0 kg hm~(–2)+纯N 225 kg hm~(–2)+纯P 112.5 kg hm~(–2)+纯K 90 kg hm~(–2),当地传统种植方式,CK)、SN2(秸秆9000kg hm~(–2)+纯N 225 kg hm~(–2)+纯P 112.5 kg hm~(–2)+纯K 90 kg hm~(–2))、SN3(秸秆9000 kg hm~(–2)+纯N 337.5 kg hm~(–2)+纯P 112.5kg hm~(–2)+纯K 90 kg hm~(–2))6个处理开展了研究。结果表明,秸秆还田配施氮肥对春玉米籽粒产量和生物产量影响显著,秸秆还田9000 kg hm~(–2)和配施氮肥225 kg hm~(–2)处理的籽粒产量最高,比秸秆不还田和施氮量225 kg hm~(–2)处理(CK)2年平均增产6.33%,增产的主要原因是百粒重和行粒数的显著提高和秃尖的显著降低;玉米籽粒产量并未随着施氮量的增加而持续增加;相同施氮量条件下,秸秆还田比秸秆不还田2年平均群体生物产量增加2.95%。秸秆还田配施氮肥能够增加春玉米株高、茎粗、叶面积,提高叶绿素含量和光合作用,相同施氮量条件下,秸秆还田比秸秆不还田处理2年平均灌浆期叶面积增加2.71%,光合速率提高4.80%。综合分析认为,秸秆还田9000 kg hm~(–2)和配施氮肥225kg hm~(–2)是辽北棕壤区春玉米生产比较理想的还田和施肥模式,在该区域农业发展中具有一定的应用价值。  相似文献   

17.
提高氮肥利用效率是当前小麦生产中重要的研究方向之一。本研究以光明麦1号为试验品种,利用两年的田间试验结果,采用二次正交旋转组合设计建立回归模型,分析稻茬小麦的氮肥当季表观利用率(utilization rate of nitrogen fertilizer,NUR)受播期、密度、施氮量组合的调控效应。结果表明,对小麦NUR效应表现为氮肥播期密度。在试验条件下,实现高产和高NUR目标,三因素有多种组合模式,其中播期10月28日至11月2日+密度160~180万株hm–2+施氮量200 kg hm–2的组合,其产量为6800~7200 kg hm–2,NUR大于42.0%(最大值为44.8%),可靠度达到95%;播期10月21日至27日+密度120~150万株hm–2+施氮量190~225 kg hm–2组合,其产量为6200~7000 kg hm–2,NUR达41.0%以上;播期11月3日至11日+密度210~240万株hm–2+施氮量190~210 kg hm–2组合,其产量为5900~7250 kg hm–2,NUR达39.0%以上。  相似文献   

18.
为了缓解长江中下游双季稻区机插双季稻生育期不配套的矛盾,2014—2015年早晚两季均以常规早稻品种中嘉早17为材料,在大田栽培条件下研究机插密度(36.4、28.6、19.0穴m–2)与施氮量(0、110~140、176~189 kg N hm–2)对机插双季稻产量及氮肥利用率的影响。结果表明:采用"早晚兼用"机插双季稻栽培模式有利于早、晚2季周年高产,以"高密+高氮"处理产量最高,2年分别达到16.94 t hm–2和16.99 t hm–2,但与"高密+低氮"处理的产量差异不显著;氮肥利用率随氮肥用量增加而下降,随栽插密度增加而提高,以"高密+低氮"处理最高,2年4季分别为62.77%、55.75%、65.82%、64.37%,比"高密+高氮"处理分别提高12.11%、9.01%、8.49%、2.14%;"高密+低氮"处理与"低密+高氮"处理相比,群体干物质积累量及辐射利用率均有一定的优势。由此可见,在此模式下适当增加机插密度,减少氮肥用量,既可实现高产,又能显著提高氮素利用率。采用"早晚兼用"品种搭配模式,低氮、密植栽培可作为长江中下游双季稻区机插双季稻生产的关键技术。  相似文献   

19.
Defining a minimum set of phenotypic traits that can integrate ontogeny and structure of Brassica napus L. is required for breeding and selection of high yielding and adapted genotypes to the short growing season of the upper Midwest, USA. Forward phenomics was instrumental in striking a balance between accuracy, timing and speed of capturing multi-level, spatiotemporal data at different scales of integration. Quantitative and categorical data digitally recorded, measured or scored on whole canopies, single plants, single leaves, and single siliques; and on random mature seed samples of entries in a phenotyping nursery of B. napus were used to identify plant traits that can integrate the effects of time (ontogeny) and space (architecture) on oil%, and to develop a multilevel-multitrait protocol based on field and laboratory characterization of phenotypic and agronomic data while accounting for fixed and random sources of variation when interpreting components of phenotypic variance. Traits conferring tolerance to low temperatures during germination and early seedling growth included fast emergence, early vigor, early flowering combined with short duration of bolting-to-flowering, and early maturity. To approximate rapeseed yield potential in the upper Midwest, USA, genotypes with biomass?>?6.0 Mg ha?1, seed?>?3.5 Mg ha?1, oil?>?1.75 Mg ha?1 and protein yield?>?0.75 Mg ha?1 are envisioned. A subset of adaptive traits has been identified that can be combined in a selection index to develop a plant ideotype for B. napus.  相似文献   

20.
Field experiments were conducted at Cuttack, India, in 1992 and 1993 using two semi-tall (Panidhan and CR 580-5 of 180 days duration) and two tall (Amulya and CR 626-26-2-3 of 170 days duration), elongating and photosensitive rice varieties to study their response to foliage pruning at varying levels of nasally applied N fertilizer (0, 30, 60 and 90 kg N ha?1). Pruning at the collar level of the topmost leaf was done either once at 90 or 120 days of growth, or twice at both the stages. The crop was sown during the end of May in dry soil and subsequently grown under a semi-deepwater regime (0–80 cm water depth). The dry weight of pruned foliage was more in the tall than in the semi-tall varieties and it increased with an increase in the level of N fertilization and delay in pruning. Two prunings produced greater foliage yield than one pruning. Foliage pruning once at 90 days of growth had no effect on the grain yield of all varieties. However, pruning at 120 days of growth decreased the yield of Amulya and CR 626-26-2-3, particularly in 1992, possibly because of less time (25–30 days) available for the crop recovery before flowering. Further, pruning twice at 90 and 120 days of growth reduced the grain yield of all the varieties significantly due to a reduction in their panicle weight. Application of N fertilizer beyond 30 kg N ha?1 did not increase the grain yield under no pruning treatment, but the crop responded significantly up to 60 kg N ha?1 under one pruning and up to 90 kg N ha?1 under two prunings, despite its adverse effect on crop performance. The crop lodging in response to increased N application was delayed by about a fortnight due to foliage pruning but its beneficial effect was not reflected in the grain yield. The results indicated that the green leafy foliage of the tall elongating rice varieties could be harvested 40–50 days before flowering for feeding the cattle without impairing their productivity under semi-deepwater ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号