首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Similar to higher plants, microbial autotrophs possess photosynthetic systems that enable them to fix CO2. To measure the activity of microbial autotrophs in assimilating atmospheric CO2, five paddy soils were incubated with 14C-labeled CO2 for 45 days to determine the amount of 14C-labeled organic C being synthesized. The results showed that a significant amount of 14C-labeled CO2 incorporated into microbial biomass was soil specific, accounting for 0.37%–1.18% of soil organic carbon (14C-labeled organic C range: 81.6–156.9 mg C kg?1 of the soil after 45 days). Consequently, high amounts of C-labeled organic C were synthesized (the synthesis rates ranged from 86 to 166 mg C m?2 d?1). The amount of atmospheric 14CO2 incorporated into microbial biomass (14C-labeled microbial biomass) was significantly correlated with organic C components (14C-labeled organic C) in the soil (r = 0.80, p < 0.0001). Our results indicate that the microbial assimilation of atmospheric CO2 is an important process for the sequestration and cycling of terrestrial C. Our results showed that microbial assimilation of atmospheric CO2 has been underestimated by researchers globally, and that it should be accounted for in global terrestrial carbon cycle models.  相似文献   

2.
Some of the measures suggested for amelioration of drought effects include application of N fertilizer and plant growth regulators (PGRs). Since N2-fixing bacteria produce plant growth substances (PGRs), the effect of foliar application of an active strain of Klebsiella sp. (KUPOS) on IR-50 rice was examined using three foliar sprays applied at 10-day intervals. Irrigation once every 3 days was essential for plant growth. Application of KUPOS and 40 kg N ha-1 improved grain yield of acutely water stressed plants from 330 kg ha-1 to more than 1300 kg ha-1 along with an improvement in several growth variables and yield determinants. Indole acetic acid, kinetin and GA3, in a mixture of 10-4 M of each, were less effective than KUPOS in alleviating stress effects. The adverse effects of water stress on respiration and photosynthesis as indicated by CO2 exchange were also alleviated by these treatments. While uptake of K, Mg, Ca, Fe and Mo was increased, Na content decreased, accompanied by an increase in proline content. The order of effectiveness of the treatments was 40 kg N ha-1 >KUPOS>PGRs.  相似文献   

3.
Phosphorus (P) and zinc (Zn) are important determinants of plant productivity, particularly in the tropical grasslands of Brazil. Nutrient deficiency is one of the most important factors limiting plant productivity, decreasing photosynthesis efficiency and plant development. The present study investigates in Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. cv. ‘Marandu’: 1) the gas exchange measurements; 2) the total leaf area development; and 3) the dry matter production due to P and Zn nutrition. Plants of B. brizantha cv. ‘Marandu’ were grown in nutrient solution under five rates of P (0.1, 0.6, 1.1, 1.6, and 2.1 mmol L?1) and five rates of Zn (0.00, 0.75, 1.5, 2.25, and 3.00 μmol L?1), in a fractioned factorial. Plants were harvested two times. Phosphorus supply increased carbon dioxide (CO2) assimilation and stomatal conductance, and decreased intercellular CO2. The interaction P rates x Zn rates were significant for the total leaf area variables and shoot dry matter in the second growth period. The nutrition of P and Zn interfered in the B. brizantha productivity by changing the grass photosynthesis and leaf area.  相似文献   

4.
Abstract

The diurnal net photosynthesis of Ficus benjamina L., cultivar Cleo, was studied at different daylengths (12, 18 and 24 h day?1), photosynthetic photon flux densities (40 and 120 μmol m?2 s?1 PPFD) and CO2 concentrations (350 and 700 μmol mol?1). Net photosynthesis increased to a maximum after 5–6 and 6–7h of light at 12 and 18h day?1photoperiods, respectively, followed by a decrease towards the end of the photoperiod. At a photoperiod of 18 h day?1 similar diurnal curves were found at 350 and 700 μmol mol?1 CO2, and at 40 and 120 μmol m?2 s?1 PPFD. Five days after the photoperiod was changed from 18 to a 24h day?1the diurnal rhythm disappeared. Transpiration followed the same diurnal rhythm as that for photosynthesis. The water-use efficiency was enhanced by raising the CO2 concentration. A decrease in the CO2 concentration from 700 to 350 μmol mol?1after six days at high CO2 first significantly decreased the photosynthesis, but three days later it reached the same level as that at high CO2.  相似文献   

5.
An experiment was conducted to examine the effect of CO2 enrichment on the nitrate uptake, nitrate reduction activity, and translocation of assimilated-N from leaves at varying levels of nitrogen nutrition in soybean using 15N tracer technique. CO2 enrichment significantly increased the plant biomass, apparent leaf photosynthesis, sugar and starch contents of leaves, and reduced-N contents of the plant organs only when the plants were grown at high levels of nitrogen. A high supply of nitrogen enhanced plant growth and increased the reduced-N content of the plant organs, but its effect on the carbohydrate contents and photosynthetic rate were not significant. However, the combination of high CO2 and high nitrogen levels led to an additive effect on all these parameters. The nitrate reductase activity increased temporarily for a short period of time by CO2 enrichment and high nitrogen levels. 15N tracer studies indicated that the increase in the amount of reduced-N by CO2 enrichment was derived from nitrate-N and not from fixed-N of the plant. To examine the translocation of reduced-N from the leaf in more detail, another experiment was conducted by feeding the plants with 15NO3-N through a terminal leaflet of an upper trifoliated leaf under depodding and/or CO2 enrichment conditions. The export rate of 15N from the terminal leaflet to other plant parts decreased by depodding, but it increased by CO2 enrichment. CO2 enrichment increased the percentage of plant 15N in the stem and / or pods. Depodding increased the percentage of plant 15N in the leaf and stem. The results suggested that the increase in the leaf nitrate reduction activity by CO2 enrichment was due to the increase of the translocation of reduced-N from leaves through the strengthening of the sink activity of pods and / or stem for reduced-N.  相似文献   

6.
模拟降水和氮沉降对准噶尔盆地南缘梭梭光合生理的影响   总被引:1,自引:1,他引:0  
氮沉降和降水格局变化是目前全球气候变化背景备受关注的热点研究课题,也是荒漠生态系统的两个主要限制因子。因此,研究两者对荒漠植物的效应有助于深入了解荒漠生态系统对全球变化的响应。本文选择准噶尔盆地南缘荒漠地区的建群种梭梭(Haloxylon ammodendron)作为研究对象,设置自然降水(W0)与增加降水30%(W1)两个水分条件和自然氮沉降(N0)、增加氮素30 kg(N)·hm~(-2)·a~(-1)(N1)与增加氮素60kg(N)·hm~(-2)·a~(-1)(N2)3个施氮水平,连续处理2年,以探究降水、氮沉降及其交互作用对梭梭光合日变化及生理生态特征的影响。结果表明:降水、氮沉降及其交互作用对梭梭的净光合速率(Pn)日变化产生极显著正相关影响;同时根据梭梭Pn、胞间CO2浓度(Ci)及气孔限制值(Ls)的变化方向,推测梭梭光合"午休"主要由非气孔因素引起。此外,W0条件下,梭梭丙二醛(MDA)含量、抗氧化酶(POD、CAT、SOD)活性、可溶性蛋白(Pr)和可溶性糖(SS)含量均随施氮量增加而显著降低,脯氨酸(Pro)含量则呈先降低后增加的趋势;而W1条件下,梭梭MDA含量、抗氧化酶(POD、CAT、SOD)活性及渗透调节物质(Pro、Pr、SS)含量均随施氮量增加呈显著先增加后降低的趋势。两种水分条件下,除W1N1处理梭梭的Pro含量高于对照组外,其余处理均显著低于对照组;同时梭梭的MDA含量、抗氧化酶活性、Pr及SS含量也均显著低于对照组。综合分析结果表明:降水、增氮及其交互作用均有利于梭梭的生长,但其交互作用效应的强弱则取决于二者间的比例。  相似文献   

7.
Summary The response of the cotton plant to inoculation with six strains of Azospirillum brasilense was investigated under subtropical conditions in Egypt. Azospirilla populations and activities were increased as a result of root inoculation with liquid inoculum of Azospirillum sp. Highest C2H2 — reduction activities on roots were obtained with strains S631 and Sp Br 14 (means of 216.85 and 209.50 nmol C2H4g–1 root h–1 respectively) while strain M4 gave the lowest activity (mean of 100.8 nmol C2H4g–1 root h–1). Statistical analysis showed that Azospirillum strains 5631, Sp Br 14, E15 and SC22 significantly increased the plant dry weight and nitrogen uptake while inoculation with strains M4 and SE had no significant effect in that respect.  相似文献   

8.
We investigated the daily exchange of CO2 between undisturbed Larix gmelinii (Rupr.) Rupr. forest and the atmosphere at a remote Siberian site during July and August of 1993. Our goal was to measure and partition total CO2 exchanges into aboveground and belowground components by measuring forest and understory eddy and storage fluxes and then to determine the relationships between the environmental factors and these observations of ecosystem metabolism. Maximum net CO2 uptake of the forest ecosystem was extremely low compared to the forests elsewhere, reaching a peak of only ∼5 μmol m−2 s−1 late in the morning. Net ecosystem CO2 uptake increased with increasing photosynthetically active photon flux density (PPFD) and decreased as the atmospheric water vapor saturation deficit (D) increased. Daytime ecosystem CO2 uptake increased immediately after rain and declined sharply after about six days of drought. Ecosystem respiration at night averaged ∼2.4 μmol m−2 s−1 with about 40% of this coming from the forest floor (roots and heterotrophs). The relationship between the understory eddy flux and soil temperature at 5 cm followed an Arrhenius model, increasing exponentially with temperature (Q10∼2.3) so that on hot summer afternoons the ecosystem became a source of CO2. Tree canopy CO2 exchange was calculated as the difference between above and below canopy eddy flux. Canopy uptake saturated at ∼6 μmol CO2 m−2 s−1 for a PPFD above 500 μmol m−2 s−1 and decreased with increasing D. The optimal stomatal control model of Mäkelä et al. (1996) was used as a `big leaf' canopy model with parameter values determined by the non-linear least squares. The model accurately simulated the response of the forest to light, saturation deficit and drought. The precision of the model was such that the daily pattern of residuals between modeled and measured forest exchange reproduced the component storage flux. The model and independent leaf-level measurements suggest that the marginal water cost of plant C gain in Larix gmelinii is more similar to values from deciduous or desert species than other boreal forests. During the middle of the summer, the L. gmelinii forest ecosystem is generally a net sink for CO2, storing ∼0.75 g C m−2 d−1.  相似文献   

9.
The complete carbon budget and the turnover rate of assimilated carbon of ectomycorrhizal Scots pine seedlings growing on natural humus were determined in microcosm conditions. The main aim was to improve understanding of the partitioning of the assimilated carbohydrates within seedlings associated with multiple ectomycorrhizal fungi, and to discover carbon dynamics of the mycorrhizosphere.Plant photosynthesis and below-ground respiration were measured in order to obtain the actual carbon assimilation and respiration rates at the time of measurements. Soon after the photosynthesis and respiration rate measurements the seedlings were pulse-labeled with 14CO2 to follow carbon allocation to different plant, fungal and soil compartments and rhizosphere respiration. Long-term carbon allocation during the entire life span of the seedlings was estimated by measuring plant and mycorrhizal root-tip biomass. The ectomycorrhizal community was analyzed using morphotyping and ITS-sequencing.The 14C label was detected in rhizosphere respiration after 12 h and it peaked between 36 and 60 h after labeling. More than half of the assimilated carbon was allocated below-ground as biomass or respiration and higher mycorrhizal biomass increased the below-ground carbon turnover. The presence of Suillus variegatus affected the plant carbon balance in several ways. When S. variegatus was present, the below-ground respiration increased and this carbon loss was compensated by higher photosynthetic activity. Other fungal species did not differ between each other in their effects on carbon balance. Our findings indicate that some root-associated mycorrhizal fungal symbionts can significantly alter plant CO2 exchange, biomass distribution, and the allocation of recently photosynthesized plant-derived carbon.  相似文献   

10.
模拟干旱和盐碱胁迫对碱蓬、盐地碱蓬种子萌发的影响   总被引:5,自引:3,他引:2  
为研究干旱和盐碱胁迫对碱蓬(Suaeda glauca)、盐地碱蓬(Suaeda salsa)种子萌发的影响,比较碱蓬和盐地碱蓬逆境生理特性的异同,本研究利用PEG6000、NaCl和Na_2CO_3分别模拟干旱、盐和碱胁迫,配制相同渗透势的PEG6000、NaCl、Na_2CO_3处理液,以蒸馏水处理为对照,对碱蓬、盐地碱蓬种子的萌发与胚的生长进行比较研究。结果表明:1)低渗处理(-0.46 MPa)对碱蓬、盐地碱蓬种子的萌发无显著影响;高渗处理(-1.38MPa、-1.84 MPa)抑制碱蓬、盐地碱蓬种子的萌发。2)当溶液渗透势相等时,NaCl处理下碱蓬种子的萌发率显著大于PEG、Na_2CO_3处理;而等渗PEG、NaCl、Na_2CO_3处理对盐地碱蓬种子萌发率的影响无显著差异。3)PEG、NaCl、Na_2CO_3处理组碱蓬、盐地碱蓬种子的最终萌发率与对照无显著差异。4)在幼苗形成阶段,PEG、Na_2CO_3处理对碱蓬、盐地碱蓬胚的抑制作用显著大于等渗NaCl处理。5)碱蓬、盐地碱蓬胚的生长对NaCl、Na_2CO_3胁迫的响应存在差异。-0.92 MPa NaCl处理抑制碱蓬胚的生长,却对盐地碱蓬产生促进作用;-0.46 MPa Na_2CO_3处理对碱蓬胚的抑制作用小于盐地碱蓬。综合分析表明:碱蓬、盐地碱蓬均具有很强的抗盐性。在种子萌发阶段,碱蓬种子的抗旱、抗碱能力低于盐地碱蓬;在幼苗形成阶段,碱蓬胚的抗盐性小于盐地碱蓬,但对轻度碱胁迫的抗性高于盐地碱蓬。  相似文献   

11.
The dynamics of C partitioning with Lolium perenne and its associated rhizosphere was investigated in plant-soil microcosms using 14C pulse-chase labelling. The 14CO2 pulse was introduced into the shoot chamber and the plants allowed to assimilate the label for a fixed period. The microcosm design facilitated independent monitoring of shoot and root/soil respiration during the chase period. Partitioning between above- and below-ground pools was determined between 30 min and 168 h after the pulse, and the distribution was found to vary with the length of the chase period. Initially (30 min after the pulse), the 14C was predominantly (99%) in the shoot biomass and declined thereafter. The results indicate that translocation of recent photoassimilate is rapid, with 14C detected below ground within 30 min of pulse application. The translocation rate of 14C below ground was maximal (6.2% h-1) between 30 min and 3 h after the pulse, with greatest incorporation into the microbial biomass detected at 3 h. After 3 h, the microbial biomass 14C pool accounted for 74% of the total 14C rhizosphere pool. By 24 h, approximately 30% of 14C assimilate had been translocated below ground; thereafter 14C translocation was greatly reduced. Partitioning of recent assimilate changed with increasing CO2 concentration. The proportion of 14C translocated below ground almost doubled from 17.76% at the ambient atmospheric CO2 concentration (450 ppm) to 33.73% at 750 ppm CO2 concentration. More specifically, these changes occurred in the root biomass and the total rhizosphere pools, with two- and threefold 14C increases at an elevated CO2 concentration compared to ambient, respectively. The pulselabelling strategy developed in this study provided sufficient sensitivity to determine perturbations in C dynamics in L. perenne, in particular rhizosphere C pools, in response to an elevated atmospheric CO2 concentration.  相似文献   

12.
Leguminous plant Alhagi pseudoalhagi was subjected to 0 (control), 50, 100, and 200 mM NaCI treatments during a 30 d period to examine the mechanism of tolerance to salinity. Plant dry weight, net CO2 assimilation rate, leaf stomatal conductance, intercellular CO2 concentration, and solute concentration in leaves, stems, and roots were determined. Total plant weight in the 50 mM treatment was 170% of that of the control after 10 d of treatment. Total plant weight was lower in the 100 and 200 mM treatments than in the control. The leaf CO2 assimilation rate was approximately 150% of that of the control in the 50 mM treatment, but was not affected significantly by 100 mM of NaCI, while it was reduced to about 60% of that the control in the 200 mM treatment. Similarly stomatal conductance was consistent with the CO2 assimilation rate regardless of the treatments. Intercellular CO2 concentration was lower in the NaCI-treated plants than in the control. Changes in CO2 assimilation rate due to salinity stress could be mainly associated with stomatal conductance and the carboxylation activity. Although the leaf Na+ concentration increased to 900 mmol kg-1 dry weight in the 200 mM treatment compared to 20 mmol kg-1 in the control, the plants did not die and continued to grow at such a high leaf Na+ concentration. Uptake and transportation rates of Na+, Ca2+, Mg2+, and K+, and the accumulation of N were promoted by 50 mM NaCI. Na+ uptake rate continued to increase in response to external NaCI concentration. However, the uptake and transportation rates of Ca2+, Mg2+, and K+ behaved differently under 100 and 200 mM salt stress. The results suggest that A. pseudoalhagi is markedly tolerant to salinity due mainly to its photosynthetic activity rather than to other physiological characteristics.  相似文献   

13.
Composition and effects of additions of fibric (Oi) and hemic/sapric (Oe + Oa) layer extracts collected from a 20-year-old stand of radiata pine (Pinus radiata) on soil carbon dioxide (CO2) evolution were investigated in a 94-day aerobic incubation. The 13C nuclear magnetic resonance spectroscopy indicated that Oi layer extract contained greater concentrations of alkyl C while Oe + Oa layer extract was rich in carboxyl C. Extracts from Oi and Oe + Oa layers were added to a forest soil at two different polyphenol concentrations (43 and 85 μg g−1 soil) along with tannic acid (TA) and glucose solutions to evaluate effects on soil CO2 efflux. CO2 evolution was greater in amended soils than control (deionized water) indicating that water-soluble organic carbon (WSOC) was readily available to microbial degradation. However, addition of WSOC extracted from both Oi and Oe + Oa layers containing 85 μg polyphenols g−1 soil severely inhibited microbial activity. Soils amended with extracts containing lower concentrations of polyphenols (43 μg polyphenols g−1 soil), TA solutions, and glucose solutions released 2 to 22 times more CO2-C than added WSOC, indicating a strong positive priming effect. The differences in CO2 evolution rates were attributed to chemical composition of the forest floor extracts.  相似文献   

14.
N2 fixation, photosynthesis of whole plants and yield increases in soybeans inoculated with mixed cultures of Bradyrhizobium japonicum 110 and Pseudomonas fluorescens 20 or P. fluorescens 21 as well as Glomus mosseae were found in pot experiments in gray forest soil carried out in a growth chamber. The effects of pseudomonads and vesicular-arbuscular (VA) mycorrhizal fungus on these parameters were found to be the same. Dual inoculation of soybeans with mixed cultures of microorganisms stimulated nodulation, nitrogenase activity of nodules and enhanced the amount of biological nitrogen in plants as determined by the 15N dilution method in comparison to soybeans inoculated with nodule bacteria alone. An increased leaf area in dually infected soybeans was estimated to be the major factor increasing photosynthesis. P. fluorescens and G. mosseae stimulated plant growth, photosynthesis and nodulation probably due to the production of plant growth-promoting substances. Increasing phosphorus fertilizer rates within the range of 5–40 mg P 100 g-1 1:1 (v/v) soil: sand in a greenhouse experiment led to a subsequent improvement in nodulation, and an enhancement of N2 fixation and yield in soybeans dually inoculated with B. japonicum 110 and P. fluorescens 21. These indexes were considerably higher in P-treated plants inoculated with mixed bacterial culture than in plants inoculated with nodule bacteria alone.  相似文献   

15.
This study was done to evaluate the effects of increasing concentrations of CO2 (CC) on rapeseed. Pot experiments were done with three cultivars (Okapi, Zarfam and RGS003) of rapeseed (Brassica napus) for salinity tolerance. Four levels of salinity (0, 5, 10 and 15 dS m?1) were tested on the three cultivars at three CC (350, 700 and 1050 mmol L?1) at the greenhouse of Tarbiat Modares University, Iran, during the crop seasons of 2010 to 2011. Three CCs were considered as three environments and the other two treatments (salinity and cultivar) were tested within these environments in a complete block design arranged as a factorial. Results indicated that photosynthetic rates declined with increasing levels of salinity. Elevated CC significantly increased rates of photosynthesis. The highest CC reduced the impact of salinity on photosynthesis. Increased CC reduced the rate of transpiration, which had the effects of increasing rates of photosynthesis and water use efficiency (WUE); these effects increased vegetative growth and reduced the adverse effects of salinity. Increased CC and salinity reduced harvest index. WUE increased with CC increment, and decreased with salinity elevation.  相似文献   

16.
Biodegradation of metolachlor in a soil perfusion experiment   总被引:2,自引:0,他引:2  
Summary Degradation of the herbicide metachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] was studied in a soil perfusion system. After 28 days of perfusion, the 14CO2 evolved from a Virginia soil (soil A), which had been previously treated with metolachlor (Dual) for 5 years, accounted for 18.4% of the added 14C-metolachlor, while only 3.5% of the 14C was liberated as 14CO2 from a soil of the same field which had no history of Dual treatment (soil B). No 14CO2 was liberated from -irradiated soil A. After incubation, metolachlor constituted almost all the extractable 14C in sterile soil A, while about 20% of the added 14C extracted from non-sterile soil A consisted of products of metolachlor; 14.8% was identified as dechlorinated metolachlor. No mineralization occurred in actinomycete-inoculated sterile soil A, but 30% of the added 14C was recovered in the form of transformation products of metolachlor. Our results demonstrate clearly that microbial activity is responsible for the mineralization of metolachlor, and that degradation is enhanced in herbicide-acclimated soils.  相似文献   

17.
夏季休牧对高寒矮嵩草草甸温室气体排放的影响   总被引:2,自引:0,他引:2  
以高寒矮嵩草草甸为研究对象,利用密闭箱-气相色谱法,对夏季休牧8a的围栏草地(休牧草地)和全年放牧的草地(放牧草地)的温室气体排放通量、土壤特性和生物量进行了对比研究。结果表明:与放牧草地相比,休牧草地植被盖度较之高41%,单位面积生物量较之高53%。同时,土壤特性也有较大不同;休牧草地的植被-土壤系统CO2排放通量比放牧草地低20.7%,测定期间两者CO2排放通量以每天每公顷排放C的质量计分别为30.7和38.7 kg·(hm2·d)-1;试验期间高寒矮嵩草草甸植被-土壤系统是大气CH4的弱汇,休牧后草地土壤对CH4的吸收能力增强,休牧和放牧草地CH4的平均吸收强度分别为28.1和21.9 g·(hm2·d)-1;休牧草地土壤N2O排放通量比放牧草地低,两者排放通量分别为4.5和7.6 g·(hm2·d)-1。可见,夏季休牧措施降低了草地对大气中温室气体浓度增加的贡献。  相似文献   

18.
In the symbiosis between nodulated legume roots and arbuscular mycorrhizal (AM) fungi, the C and N economy can be influenced by the source of N-supply from either AM-derived NH4+ uptake or nodule-derived biological nitrogen fixation (BNF). This relationship was investigated in terms of NH4+ supply and BNF by the two symbionts. Nodulated Phaseolus vulgaris seedlings with and without AM, were hydroponically grown with either 0 N or 1 mM NH4+ supply. Plants were harvested at 30 days after emergence and measurements were taken for biomass, N2 fixation, photosynthesis, CO2 and O2 root respiration, calculated C and N economy. AM roots had higher NH4+ uptake and this was associated with the suppression of BNF and nodule growth. The higher NH4+ uptake in AM roots occurred with lower root maintenance respiration, compared to when N was derived from BNF. There was also an increase in the below-ground sink strength of NH4+ fed AM roots compared to NH4+ fed non-AM roots, as evidenced by the increases in root CO2 and O2 respiration and photosynthetic stimulation. These results indicate that although the AM root had higher total below-ground respiratory costs during NH4+ nutrition, there were lower respiratory C costs associated with N derived from AM symbionts in comparison to N from BNF.  相似文献   

19.
混种少花龙葵嫁接后代对镉胁迫枇杷幼苗光合生理的影响   总被引:1,自引:0,他引:1  
采用盆栽试验,将4种少花龙葵嫁接后代分别和枇杷(大五星枇杷和川早枇杷)幼苗混种于镉含量为10 mg/kg的污染土壤中,研究了混种对两种植物光合生理的影响。结果表明:混种后,枇杷幼苗相应的叶绿素a含量、叶绿素b含量、叶绿素总量、净光合速率、蒸腾速率、胞间CO2浓度、气孔导度及可溶性糖含量均高于单种,叶表面蒸汽压亏缺降低;少花龙葵嫁接后代相应的SPAD值和净光合速率、蒸腾速率、胞间CO2浓度、气孔导度均高于单种,其可溶性糖含量较单种有所降低,混种大五星枇杷的少花龙葵嫁接后代的叶表面蒸汽压亏缺高于其单种,但混种少花龙葵嫁接后代的川早枇杷叶表面蒸汽压亏缺低于其单种。因此,少花龙葵嫁接后代混种枇杷可提高两种植物的光合作用,进而可促进两种植物的生长。  相似文献   

20.
在陕北黄土丘陵沟壑区用LI-6400光合仪对中国沙棘、俄罗斯沙棘和俄罗斯沙棘&#215;中国沙棘光合特性及影响因子进行了测定。测定结果表明三者的光合速率、气孔导度、胞间CO2浓度、蒸腾速率日变化均为“双峰”曲线。中国沙棘光合“午休”现象较轻,日光合速率和午后光合速率、气孔导度、胞间CO2浓度、蒸腾速率极显著(P〈0.01)高于俄罗斯沙棘和俄罗斯沙棘&#215;中国沙棘。中国沙棘光合作用最适气孔导度、大气CO2浓度、空气相对湿度比俄罗斯沙棘小,最适胞间CO2浓度、蒸腾速率、气温、光合有效辐射比俄罗斯沙棘高。中国沙棘在最适气孔导度、胞间CO2浓度、蒸腾速率和大气CO2浓度下的光合速率比俄罗斯沙棘高;在最适气温、空气相对湿度、光合有效辐射下的光合速率比俄罗斯沙棘低。俄罗斯沙棘&#215;中国沙棘光合“午休”现象比中国沙棘强,比俄罗斯沙棘弱,午后光合速率与俄罗斯沙棘相近;俄罗斯沙棘&#215;中国沙棘最适气孔导度、大气CO2浓度高于中国沙棘和俄罗斯沙棘,最适胞间CO2浓度低于中国沙棘和俄罗斯沙棘,最适蒸腾速率、气温、空气相对湿度、光合有效辐射居于中国沙棘和俄罗斯沙棘之间。俄罗斯沙棘&#215;中国沙棘在最适气孔导度下的光合速率高于中国沙棘和俄罗斯沙棘;在最适胞间CO2浓度、蒸腾速率、气温、大气CO2浓度、空气相对湿度、光合有效辐射下的光合速率低于中国沙棘和俄罗斯沙棘。中国沙棘、俄罗斯沙棘和俄罗斯沙棘&#215;中国沙棘的光合速率均与上午的气孔导度、胞间CO2浓度、蒸腾速率、气温、大气CO2浓度、空气相对湿度、光合有效辐射显著相关,均为“抛物线”关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号