首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thyroxine (T4), 3,5,3'-triiodothyronine (T3), and cortisol frequently are quantified in canine serum or plasma samples to aid in the diagnosis of hypothyroidism, hypoadrenocorticism, and hyperadrenocorticism. Many laboratories have established reliable references values for concentrations of these hormones in blood of clinically normal animals. However, nonpathologic factors that affect thyroidal and adrenocortical secretion may lead to misinterpretation of test results when values for individual animals are compared with reference values. The objective of the study reported here was to identify effects of age, sex, and body size (ie, breed) on serum concentrations of T3, T4, and cortisol in dogs. Blood samples were collected from 1,074 healthy dogs, and serum concentrations of the iodothyronines and cortisol were evaluated for effects of breed/size, sex, and age. Mean (+/- SEM) serum concentration of T4 was greater in small (2.45 +/- 0.06 micrograms/dl)- than in medium (1.94 +/- 0.04 micrograms/dl)- or large (2.03 +/- 0.03 micrograms/dl)-breed dogs, the same in females (2.11 +/- 0.04 micrograms/dl) and males (2.08 +/- 0.04 micrograms/dl), and greater in nursing pups (3.04 +/- 0.05 micrograms/dl) than in weanling pups (1.94 +/- 0.05 micrograms/dl), rapidly growing dogs (1.95 +/- 0.04 micrograms/dl), and young adult (1.90 +/- 0.06 micrograms/dl), middle-aged adult (1.72 +/- 0.05 micrograms/dl), or old adult (1.50 +/- 0.05 micrograms/dl) dogs. Dogs greater than 6 years old had lower mean serum T4 concentration than did dogs of all other ages, except middle-aged adults. Mean serum T3 concentration in medium-sized dogs (1.00 +/- 0.01 ng/ml) was greater than that in small (0.90 +/- 0.01 ng/ml)- and large (0.88 +/- 0.01 ng/ml)-breed dogs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Twenty-one healthy Thoroughbred and Quarter Horse foals were studied from birth until 1 year of age. Foals had access to an iron-supplemented creep feed before weaning and were fed an iron-supplemented concentrate as part of their diet after weaning at 4 months of age. Initial blood samples were taken before foals were allowed to nurse. Serum iron concentration, total iron-binding capacity, and PCV decreased during the foal's first 24 hours of life. Serum iron concentration decreased rapidly from 446 +/- 16 micrograms/dl (mean +/- SE) at birth to 105 +/- 11 micrograms/dl at 3 days of age. Serum ferritin concentration increased from a mean of 85 +/- 8 ng/ml at birth to 159 +/- 11 ng/ml at 1 day of age. Thereafter, ferritin concentration decreased gradually to a minimum of 61 +/- 6 ng/ml at 3 weeks of age, and then at 6 months increased to values similar to those from reference adult horses. The ferritin concentration in colostrum at birth was 354 +/- 42 ng/ml, compared with 25 +/- 2 ng/ml in milk 1 day later. The decrease and then increase in serum ferritin concentration occurred concomitantly with opposite changes in serum total iron-binding capacity. The mean PCV decreased gradually to a minimum at 3 months of age. This decrease was associated with an increasing number of microcytes, as determined with a cell-size distribution analyzer.  相似文献   

3.
Serum concentrations of metronidazole were determined in 6 healthy adult mares after a single IV injection of metronidazole (15 mg/kg of body weight). The mean elimination rate (K) was 0.23 h-1, and the mean elimination half-life (t1/2) was 3.1 hours. The apparent volume of distribution at steady state was 0.69 L/kg, and the clearance was 168 ml/h/kg. Each mare was then given a loading dose (15 mg/kg) of metronidazole at time 0, followed by 4 maintenance doses (7.5 mg/kg, q 6 h) by nasogastric tube. Metronidazole concentrations were measured in serial samples of serum, synovia, peritoneal fluid, and urine. Metronidazole concentrations in CSF and endometrial tissues were measured after the fourth maintenance dose. The highest mean concentration in serum was 13.9 +/- 2.18 micrograms/ml at 40 minutes after the loading dose (time 0). The highest mean synovial and peritoneal fluid concentrations were 8.9 +/- 1.31 micrograms/ml and 12.8 +/- 3.21 micrograms/ml, respectively, 2 hours after the loading dose. The lowest mean trough concentration in urine was 32 micrograms/ml. Mean concentration of metronidazole in CSF was 4.3 +/- 2.51 micrograms/ml and the mean concentration in endometrial tissues was 0.9 +/- 0.48 micrograms/g at 3 hours after the fourth maintenance dose. Two mares hospitalized for treatment of bacterial pleuropneumonia were given metronidazole (15.0 mg/kg, PO, initially then 7.5 mg/kg, PO, q 6 h), while concurrently receiving gentamicin, potassium penicillin, and flunixin meglumine IV. Metronidazole pharmacokinetics and serum concentrations in the sick mares were similar to those obtained in the healthy mares.  相似文献   

4.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Serum concentrations of cefepime (BMY-28142) were determined for four dosing regimes, 10 mg/kg or 20 mg/kg, given as single subcutaneous (SC) or intramuscular injections (IM) to dogs. Serial serum samples were analyzed for the presence of cefepime by high-performance liquid chromatography. In experiment 1, the overall mean (+/- SEM) serum concentration (for a 12-hour period) after a dose of 20 mg/kg for SC and IM routes (4.9 +/- 0.74 micrograms/ml and 5.5 +/- 0.63 micrograms/ml, respectively) was twice that for the 10 mg/kg dose given either SC or IM (2.2 +/- 0.31 micrograms/ml and 2.8 +/- 0.47 micrograms/ml, respectively). There was no significant difference (p greater than 0.05) in mean serum concentrations for SC and IM routes of administration at the same dosage. In subsequent experiments, 5 doses of cefepime (20 mg/kg) were administered IM at 12-hour (experiment 2) or 24-hour (experiment 3) intervals. The mean (+/- SEM) peak serum concentration was 12.1 +/- 1.59 micrograms/ml, 2 hours after the 2nd injection in experiment 2. In experiment 3, the mean (+/- SEM) peak serum concentration was 10.9 +/- 1.34 micrograms/ml, 4 hours after the 1st injection. Mean trough concentrations in experiment 2 were greater than or equal to 0.5 microgram/ml and less than or equal to 0.5 in experiment 3. Multiple IM doses produced transient edema at the injection site and mild lameness in all dogs. Cefepime was highly active against single canine isolates of Staphylococcus intermedius, Pseudomonas aeruginosa and Escherichia coli, with minimum inhibitory concentrations of 0.125 microgram/ml, 1 microgram/ml and 0.3 microgram/ml, respectively.  相似文献   

6.
Gentamicin (GT) was administered IM to 6 healthy mature mare ponies at a dosage of 5 mg/kg of body weight every 8 hours for 7 consecutive days (total, 21 doses). Two venous blood samples were collected before (trough) and at 1 hour (peak) after the 5th, 10th, 14th, and 19th doses. An endometrial biopsy was done of each mare on days 4 and 7. On the 7th day, just before the 21st administration of GT, base-line blood samples were collected, and 22 blood samples were collected over a period of 48 hours after GT was given. The mares were catheterized on the 7th day, and urine was collected for 24 hours. Serum, urine, and endometrial GT concentrations were determined by a radioimmunoassay technique (sensitivity of 0.3 micrograms/ml of serum). Serum GT concentration data obtained from the terminal phase were best fitted by a 1-compartment open model with a biological half-life of 2.13 +/- 0.43 hours. Total body clearance and renal clearance were 1.69 +/- 0.41 and 1.40 +/- 0.26 ml/min/kg, respectively. Mean endometrial concentrations on day 4 and day 7 were 5.02 +/- 3.3 and 12.75 +/- 1.6 micrograms/g. To achieve mean serum GT concentrations (micrograms/ml) at steady state of 6.47 +/- 1.51, a maximum steady-state concentration of 12.74 +/- 1.60, and a minimum steady-state concentration of 1.43 +/- 0.57, a dosage of 5 mg/kg every 8 hours is recommended. Serum urea nitrogen, serum creatinine, and the fractional clearance of sodium sulfanilate were determined before and after GT treatment. Renal function remained within the base-line range during 7 days of GT administration.  相似文献   

7.
Vancomycin was administered IV to healthy adult female dogs at a dosage of 15 mg/kg of body weight every 12 hours for 10 days. Pharmacokinetic values were determined after the first and last doses. The disposition of vancomycin was not altered by multiple dosing, and little accumulation attributable to multiple dosing was observed. Serum vancomycin concentration after the first and last dose were described, using a 2-compartment open model with first-order elimination. The distribution and elimination half-lives after the single dose were 15.4 +/- 2.7 minutes and 137 +/- 21.8 minutes (geometric mean +/- pseudo-SD), respectively; whereas the distribution and elimination half-lives after the last dose were 11.3 +/- 2.61 minutes and 104 +/- 11.2 minutes, respectively. The mean (+/- SD) area-derived volume of distribution was 396 +/- 156 ml/kg and 382 +/- 160 ml/kg after the first and last dose, respectively. Serum vancomycin clearance was 2.13 +/- 0.35 ml/min/kg and 2.49 +/- 0.79 ml/min/kg after the first and last dose, respectively, and 25 to 49% of the total dose of vancomycin was recovered in the urine in the first 24 hours after the single dose administered IV. Mean serum vancomycin concentration reached 101.8 +/- 30.6 micrograms/ml and 99.7 +/- 28.0 micrograms/ml at 5 minutes after a single dose and the last of the multiple doses, respectively, and decreased to 0.94 +/- 0.58 microgram/ml and 1.51 +/- 1.44 micrograms/ml, respectively, at 12 hours after administration. The side effects that accompany vancomycin treatment in human beings were not observed in the dogs; all remained healthy through the end of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Four healthy adult mares were each given a single injection of sodium cefoxitin (20 mg/kg of body weight, IV), and serum cefoxitin concentrations were measured serially during a 6-hour period. The mean elimination rate constant was 1.08/hour and the elimination half-life was 0.82 hour. The apparent volume of distribution (at steady state) and the clearance of the drug were estimated at 0.12 L/kg and 259 ml/hr/kg, respectively. Each mare and 2 additional mares were then given 4 consecutive IM injections of sodium cefoxitin (400 mg/ml) at a dosage of 20 mg/kg. Cefoxitin concentrations in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium were measured serially. After IM administration, the highest mean serum concentration was 23.1 micrograms/ml 30 minutes after the 2nd injection. The highest mean synovial concentration was 11.4 micrograms/ml 1 hour after the 4th injection. The highest mean peritoneal concentration was 10.4 micrograms/ml 2 hours after the 4th injection. The highest mean endometrial concentration was 4.5 micrograms/g 4 hours after the 4th injection. Mean urine concentrations reached 11,645 micrograms/ml. Cefoxitin did not readily penetrate the CSF. Bioavailability of cefoxitin given IM was 65% to 89% (mean +/- SEM = 77% +/- 5.9%). One of the 6 mares developed acute laminitis during the IM experiment.  相似文献   

9.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A fluorometric assay was applied to evaluate blastogenesis of equine lymphocytes. Optimal culture conditions were as follows; concentrations of phytohaemagglutinin-P (PHA), concanavalin A (Con A) and pokeweed mitogen (PWM) were 1 microgram/ml, 40 micrograms/ml and 10 micrograms/ml, respectively, when 5 X 10(5) lymphocytes were incubated with culture medium containing 20% pooled horse serum (PHS) for 120 hours. The relative mean stimulation index of healthy non-pregnant mares were 5.107 +/- 0.323 (M +/- SE) with PHA, 4.019 +/- 0.183 with Con A and 3.610 +/- 0.131 with PWM. Sequentially the blastogenic responses of lymphocytes from twenty mares were observed during various stages of the perinatal period. Response decreased gradually before parturition was lowest at the time of parturition (PHA: 1.923 +/- 0.174, Con A: 1.698 +/- 0.206 and PWM: 1.706 +/- 0.177), and then increased gradually after parturition towards non-pregnant levels.  相似文献   

11.
Gentamicin sulfate (2.2 mg/kg of body weight, IV) was given to anesthetized horses. Jejunal and large colon tissue samples (1 g), serum, and urine were collected over a 4-hour period. Maximum gentamicin concentrations in serum (10.06 +/- 2.85 micrograms/ml) occurred at 0.25 hours after injection. Maximum gentamicin concentrations in the large colon (4.13 +/- 1.80 micrograms/ml) and jejunum (2.26 +/- 1.35 micrograms/ml) occurred in horses at 0.5 and 0.33 hours, respectively. Tissue concentrations decreased in parallel with serum concentrations and were still detectable at the end of the 4-hour period. During the time that samples were collected, the total amount of gentamicin excreted in the urine ranged from 7.21 +/- 3.11 mg to 11.91 +/- 7.12 mg, with a mean urinary concentration of 57.01 +/- 5.37 micrograms/ml. Over the 4-hour collection period, the fraction of dose that was excreted unchanged in the urine was 4.8 +/- 1.9%. Pharmacokinetic analyses of the serum concentration-time data gave a serum half-life of 2.52 +/- 1.29 hours, volume of distribution of 227 +/- 83 ml/kg, and body clearance of 1.12 +/- 0.26 ml/min/kg. The half-lives of the antibiotic in the jejunum and large colon were 1.32 and 1.33 hours, respectively.  相似文献   

12.
Six healthy adult mixed breed dogs were each given 5 oral doses of trimethoprim (TMP)/sulfadiazine (SDZ) at 2 dosage regimens: 5 mg of TMP/kg of body weight and 25 mg of SDZ/kg every 24 hours (experiment 1) and every 12 hours (experiment 2). Serum and skin concentrations of each drug were measured serially throughout each experiment and mean serum concentrations of TMP and SDZ were determined for each drug for 24 hours (experiment 1) and 12 hours (experiment 2) after the last dose was given. In experiment 1, mean serum TMP concentration was 0.67 +/- 0.02 micrograms/ml, and mean skin TMP concentration was 1.54 +/- 0.40 micrograms/g. Mean serum SDZ concentration was 51.1 +/- 12.2 micrograms/ml and mean skin SDZ concentration was 59.3 +/- 9.8 micrograms/g. In experiment 2, mean serum TMP concentration was 1.24 +/- 0.35 micrograms/ml and mean skin TMP concentration was 3.03 +/- 0.54 micrograms/g. Mean serum SDZ concentration was 51.6 +/- 9.3 micrograms/ml and mean skin SDZ concentration was 71.1 +/- 8.2 micrograms/g. After the 5th oral dose in both experiments, mean concentration of TMP and SDZ in serum and skin exceeded reported minimal inhibitory concentrations of TMP/SDZ (less than or equal to 0.25/4.75 micrograms/ml) for coagulase-positive Staphylococcus sp. It was concluded that therapeutically effective concentrations in serum and skin were achieved and maintained when using the manufacturer's recommended dosage of 30 mg of TMP/SDZ/kg (5 mg of TMP/kg and 25 mg of SDZ/kg) every 24 hours.  相似文献   

13.
Bovine alpha 1-acid glycoprotein (alpha 1AG) was purified from pooled normal bovine sera by successive ammonium sulfate precipitation, ion-exchange chromatographies and gel filtration. Bovine alpha 1AG had a molecular weight of 42,000 +/- 2,000 and a sedimentation coefficient of 3.4S. It contained 26.6% carbohydrate. Gel isoelectric focusing revealed a microheterogeneity with 7 to 8 bands in a pI range of 3.2 to 3.7. It migrated to the alpha 1-globulin region upon immunoelectrophoresis. Single radial immunodiffusion was developed for the quantitative measurement of bovine alpha 1AG in serum. The mean serum value of alpha 1AG in 152 healthy Holstein cattle (1-12 years old) was 283.2 +/- 82.3 micrograms/ml. Elevated values (cut-off value = 450 micrograms/ml) were observed in cattle with traumatic pericarditis (100%), arthritis (100%), mastitis (91%), pneumonia (70%), and mesenteric liponecrosis (43%).  相似文献   

14.
Concentrations of IGF-I and IGF-II, and IGF binding proteins (IGFBP) in serum and mammary gland secretions were surveyed during the dry period and early lactation of 30 Holstein cows. Although there was a threefold drop in the concentration of IGF-I in serum from the last week of the dry period to parturition (81 +/- 7 to 24 +/- 3 ng/ml, P less than .01), there was no significant change in serum IGF-II concentration during this period (150 +/- 17 vs 173 +/- 13 ng/ml, P greater than .05). Furthermore, a 57% increase in serum IGF-I was observed from the last week of lactation to the second week of drying off (100 +/- 5 to 157 +/- 8 ng/ml, P less than .05). Changes in serum IGF-II were not observed (126 +/- 11 vs 150 +/- 10 ng/ml, respectively; P greater than .05). Although IGF-I, IGF-II, and IGFBP concentrations in mammary secretions peaked 2 wk before parturition (2.95 +/- 1.1, 1.83 +/- .6, and 7.27 +/- .76 micrograms/ml, respectively), total output/quarter was highest in colostrum (394 +/- 119, 295 +/- 132, and 2,680 +/- 1,967 micrograms/quarter, respectively). Weekly milking of two individual quarters during the dry period did not affect (P greater than .05) IGF-I or IGF-II concentration (ng/ml) or total output (microgram/quarter) and milk yield in colostrum and milk (2 wk and 7 wk) compared with the ipsilateral quarter. The data support the hypothesis that IGF-I may be transported by the mammary gland epithelium. Furthermore, the secretion mechanisms of IGF-I, IGF-II, and IGFBP by the gland may be related to each other.  相似文献   

15.
Twenty-nine healthy 17- to 29-day-old unweaned Israeli-Friesian male calves were each given a single IV or IM injection of 10 or 20 mg of moxalactam disodium/kg of body weight. Serum concentrations were measured serially during a 12-hour period. Serum concentration vs time profiles were analyzed by use of linear least-squares regression analysis and the statistical moment theory. The elimination half-lives after IV administration were 143.7 +/- 30.2 minutes and 155.5 +/- 10.5 minutes (harmonic mean +/- SD) at dosages of 10 and 20 mg of moxalactam/kg of body weight, respectively. Corresponding mean residence time values were 153.1 +/- 26.8 minutes and 169.9 +/- 19.3 minutes (arithmetic mean +/- SD). Mean residence time values after IM administration were 200.4 +/- 17.5 minutes and 198.4 +/- 19.9 minutes at dosages of 10 and 20 mg/kg, respectively. The volumes of distribution at steady state were 0.285 +/- 0.073 L/kg and 0.313 +/- 0.020 L/kg and total body clearance values were 1.96 +/- 0.69 ml/min/kg and 1.86 +/- 0.18 ml/min/kg after administration of dosages of 10 and 20 mg/kg, respectively. Moxalactam was rapidly absorbed from the IM injection site and peak serum concentrations occurred at 1 hour. The estimated bioavailability ranged from 69.8 to 79.1%. The amount of serum protein binding was 53.4, 55.0, and 61.5% when a concentration of moxalactam was at 50, 10, and 2 micrograms/ml, respectively. The minimal inhibitory concentrations of moxalactam ranged from 0.01 to 0.2 micrograms/ml against Salmonella and Escherichia coli strains and from 0.005 to 6.25 micrograms/ml against Pasteurella multocida strains.  相似文献   

16.
Cephapirin (20 mg/kg of body weight, IV) was administered before and after 3 doses of probenecid (25, 50, or 75 mg/kg, intragastrically, at 12-hour intervals) to 2 mares. Clearance and apparent volume of distribution, based on area under the curve, were negatively correlated with probenecid dose. Clearance of cephapirin was decreased by approximately 50% by administration of 50 mg of probenecid/kg. Serum, synovial fluid, peritoneal fluid, CSF, urinary, and endometrial concentrations of cephapirin were determined after 5 doses of cephapirin (20 mg/kg, IM, at 12-hour intervals) without and with concurrently administered probenecid (50 mg/kg, intragastrically) to 6 mares, including the 2 mares given cephapirin, IV. Highest mean serum cephapirin concentrations were 16.1 +/- 2.16 micrograms/ml at 0.5 hour after the 5th cephapirin dose [postinjection (initial) hour (PIH) 48.5] in mares not given probenecid and 23.7 +/- 1.30 micrograms/ml at 1.5 hours after the 5th cephapirin dose (PIH 49.5) in mares given probenecid. Mean peak peritoneal fluid and synovial fluid cephapirin concentrations were 6.2 +/- 0.57 micrograms/ml and 6.6 +/- 0.58 micrograms/ml, respectively, without probenecid administration and 12.3 +/- 0.46 micrograms/ml and 10 +/- 0.78 micrograms/ml, respectively, with concurrent probenecid administration. Mean trough cephapirin concentrations for peritoneal and synovial fluids in mares given probenecid were 2 to 3 times higher than trough concentrations in mares not given probenecid. Overall mean cephapirin concentrations were significantly higher for serum, peritoneal fluid, synovial fluid, and endometrium when probenecid was administered concurrently with cephapirin (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Healthy mature cows (n = 6) were injected intrauterinally (IU) with gentamicin (50 ml of a 5% injectable solution) daily for 3 consecutive days. Venous blood and milk samples were collected at postinjection (initial) hours (PIH) 1, 3, 6, 9, 12, 24, 28, 31, 34, 37, 48, 51, 54, 57, 60, and 71, and endometrial biopsies were performed at PIH 6, 25, 48, 73, 95, and 119. Skeletal muscle biopsy samples were taken at PIH 25 and 73, and urine was collected every 1 or 2 hours during 12 consecutive hours after the first IU injection. Serum, milk, urine, and tissue concentrations of gentamicin were measured by radioimmunoassay. The highest mean serum concentration of gentamicin occurred during the 3 hours after each injection (2.49 +/- 1.46, 6.60 +/- 5.47, and 4.98 +/- 2.70 micrograms/ml). The mean peak concentration of gentamicin in milk occurred 3 to 6 hours after each injection. Mean peak urine concentration of gentamicin (256.8 +/- 127.9 micrograms/ml) was measured at PIH 6. The mean percentage of the first dose of gentamicin excreted in the urine within 12 hours was 14.78 +/- 3.56. The highest concentration of gentamicin in endometrial tissue (639.16 +/- 307.22 micrograms/g) was measured at PIH 6, decreasing to 9.64 +/- 3.55 micrograms/g before the next IU dose. Gentamicin was still detectable in endometrial tissue (0.86 +/- 0.43 microgram/g) 71 hours after the 3rd (last) IU injection.  相似文献   

18.
To study the roles of conglutinin (Kg), mannan-binding protein (MBP), and serum amyloid P component (SAP) in the protection of cattle against infections, the concentrations of these proteins in the sera from cows with mastitis were determined by sandwich enzyme-linked immunosorbent assays. The Kg and MBP concentrations in the sera from cows with mastitis were much lower than those from uninfected (or clinically healthy) ones, and increased after recovery. No significant difference in the SAP concentrations was found between healthy and infected cows. With the sera from cows experimentally infected with bovine leukemia virus, the Kg concentrations were also lower than those from uninfected ones, whereas the MBP concentrations were not. From these findings, the Kg concentration is suggested to be serologically a possible indicator for clinical diagnosis of treatment for mastitis although both Kg and MBP concentrations were found to decrease in cows with mastitis and to increase after recovery.  相似文献   

19.
Pharmacokinetics of cefotaxime in the domestic cat   总被引:1,自引:0,他引:1  
Cefotaxime was administered as single IV or IM dose for the purpose of examining its pharmacokinetics in healthy cats. The mean predicted plasma concentration of cefotaxime in 6 cats at 0 time after a single IV dosage of 10 mg/kg of body weight was 88.9 micrograms/ml. The mean plasma concentrations decreased to 10.8 micrograms/ml at 2 hours, 3.7 micrograms/ml at 3 hours, and 0.5 microgram/ml at 6 hours. The half-life was 0.98 +/- 0.25 hour (mean +/- SD), and the total body clearance was determined to be 2.76 +/- 1.25 ml/min/kg. After a single IM injection of 10 mg/kg of body weight, the mean maximum observed plasma concentration was 36.2 micrograms/ml at 0.75 hour. The mean absorption half-life was 0.24 hour. In 2 animals, the bioavailability of an IM injection was 98.2% and 93.0%.  相似文献   

20.
The pharmacokinetic disposition of theophylline was determined by high-performance liquid chromatographic analysis of plasma samples from six healthy, adult horses following the administration of intravenous aminophylline (dosed at 9.94 mg/kg as theophylline), immediate-release aminophylline tablets (dosed at 9.94 mg/kg as theophylline), and sustained-release theophylline tablets (dosed at 20 mg/kg). The elimination rate constant (lambda z), apparent volume of distribution (Vz), and clearance (Cl) determined by compartmental analysis of the intravenous data were 0.07 +/- 0.01 h-1, 0.80 +/- 0.06 l/kg, and 0.06 +/- 0.01 l/kg/h (mean +/- SD), respectively. Mean residence time determined by statistical moment theory of the oral data was different (P less than 0.05) for the immediate-release aminophylline (13.8 +/- 2.8 h) and sustained-release theophylline (18.2 +/- 2.3 h) formulation. Immediate-release aminophylline tablets quickly achieved peak theophylline plasma concentration of 11.51 +/- 1.4 micrograms/ml at 1.6 +/- 0.6 h while the sustained-release theophylline tablets were more slowly absorbed and achieved peak theophylline concentrations of 17.20 +/- 1.3 micrograms/ml at 7.3 +/- 1.0 h. Absolute bioavailability was 87% for the immediate-release and 97% for the sustained-release formulation. Using the principle of superposition, a loading dose of 20 mg/kg of the sustained-release formulation followed by maintenance doses of 15 mg/kg every 24 h was predicted to achieve trough-peak theophylline plasma concentrations between 6 and 17 micrograms/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号