首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study estimated genetic and phenotypic parameters and annual trends for growth and fertility traits of Charolais and Hereford cattle in Kenya. Traits considered were birth weight (BW, kg), pre-weaning average daily gain (ADG, kg/day) and weaning weight (WW, kg); calving interval (CI, days) and age at first calving (AFC, days). Direct heritability estimates for growth traits were 0.36 and 0.21; 0.25 and 0.10; 0.23 and 0.13 for BW, ADG and WW in Charolais and Hereford, respectively. Maternal heritability estimates were 0.11 and 0.01; 0.18 and 0.00; 0.17 and 0.17 for BW, ADG and WW in Charolais and Hereford, respectively. Direct-maternal genetic correlations ranged between −0.46 and 1.00; −0.51 and −1.00; −0.47 and −0.39 for BW, ADG and WW in Charolais and Hereford, respectively. Genetic correlations ranged from −0.99 to unity and −1.00 to unity for growth and fertility traits respectively. Prospects for improvement of growth and fertility traits exist.  相似文献   

2.
Published information on relative performance of beef breed crosses was used to derive combined estimates of purebred breed values for predominant temperate beef breeds. The sources of information were largely from the United States, Canada, and New Zealand, although some European estimates were also included. Emphasis was on maternal traits of potential economic importance to the suckler beef production system, but some postweaning traits were also considered. The estimates were taken from comparison studies undertaken in the 1970s, 1980s and 1990s, each with representative samples of beef breeds used in temperate agriculture. Weighting factors for breed-cross estimates were derived using the number of sires and offspring that contributed to that estimate. These weights were then used in a weighted multiple regression analysis to obtain single purebred breed effects. Both direct additive and maternal additive genetic effects were estimated for preweaning traits. Important genetic differences between the breeds were shown for many of the traits. Significant regression coefficients were estimated for the effect of mature weight on calving ease, both maternal and direct additive genetic, survival to weaning direct, and birth weight direct. The breeds with greater mature weight were found to have greater maternal genetic effects for calving ease but negative direct genetic effects on calving ease. A negative effect of mature weight on the direct genetic effect of survival to weaning was observed. A cluster analysis was done using 17 breeds for which information existed on nine maternal traits. Regression was used to predict breed-cross-specific heterosis using genetic distance. Only five traits, birth weight, survival to weaning, cow fertility, and preweaning and postweaning growth rate had enough breed-cross-specific heterosis estimates to develop a prediction model. The breed biological values estimated provide a basis to predict the biological value of crossbred suckler cows and their offspring.  相似文献   

3.
The Sahiwal breed has been used for upgrading the East African Zebu (EAZ) for improved milk production and growth performance in the southern rangelands of Kenya. Main users of this breed are Maasai pastoralists. Until now, there has been no deliberate effort to understand why these pastoralists specifically prefer to keep Sahiwal genetic resources as well as which traits are considered important by them and what is the underlying reason for this. However, this information is regarded vital for further development of the breed. A survey was conducted between May and October 2009 among Maasai pastoralists in Kajiado and Narok counties in the Southern part of Kenya, and private ranches and government farms to identify production objectives and breeding goals of Sahiwal cattle producers. Sahiwal genetic resources were mainly kept for domestic milk production and for revenue generation through milk sales and live animals. To a limited extent, they were kept for breeding and also for multiple objectives that included insurance against risks and social functions. Production aims were influenced to varying extents by various household and farmer characteristics. Sahiwal cattle and their crosses were generally perceived to be better with respect to productive traits and fertility traits when compared to the EAZ. However, the EAZ was rated higher with respect to adaptation traits. The breeding objective traits of primary importance were high milk yield and big body size, good reproductive efficiency and relatively good adaptation to local production conditions. Performance and functional traits are important breeding goals that play a major role in fulfilling the multiple production objectives. This forms the basis for the optimisation of a breeding programme for sustainable utilisation to meet the needs of Sahiwal cattle producers.  相似文献   

4.
An attempt was made for the first time in India to develop the performance indices for quantifying the relative emphasis to be given to production, reproduction, health and longevity traits for selection and genetic improvement of Sahiwal cattle in a sustainable manner. The study was conducted using information related to various production, reproduction, health and longevity traits spread over a period of 29 years in Sahiwal cattle. Using income and expenditure method, the relative economic values for 305 days milk yield (305DMY), average daily milk yield (ADMY), calving to first insemination interval (CFI), days open (DO) and longevity (LNG) were estimated as 1, 1, −6.62, −6.62 and 5.96 in Sahiwal cattle. A total of three performance indices were constructed using three-trait combination, that is production, reproduction and longevity before and after excluding the days suffered by the animals. Correlation between the aggregate genotype and index (RIH) was computed to determine the accuracy of each performance index, and based on highest RIH value, best performance index was identified for selection of Sahiwal cattle. Developed indices were further assessed for robustness by increasing the relative economic values of the traits by 25% and 50%. The performance index (305DMY, DO and LNG) was found to be the best index before as well as after excluding days suffered by the animals, but in later case emphasis to be given to different traits was found to be more balanced. The best index indicated that about 47, 42 and 11% relative emphasis to be assigned to 305 days milk yield, days open and longevity for selection of Sahiwal animals for sustainable genetic improvement.  相似文献   

5.
Most studies on feed efficiency in beef cattle have focused on performance in young animals despite the contribution of the cow herd to overall profitability of beef production systems. The objective of this study was to quantify, using a large data set, the genetic covariances between feed efficiency in growing animals measured in a performance-test station, and beef cow performance including fertility, survival, calving traits, BW, maternal weaning weight, cow price, and cull cow carcass characteristics in commercial herds. Feed efficiency data were available on 2,605 purebred bulls from 1 test station. Records on cow performance were available on up to 94,936 crossbred beef cows. Genetic covariances were estimated using animal and animal-dam linear mixed models. Results showed that selection for feed efficiency, defined as feed conversion ratio (FCR) or residual BW gain (RG), improved maternal weaning weight as evidenced by the respective genetic correlations of -0.61 and 0.57. Despite residual feed intake (RFI) being phenotypically independent of BW, a negative genetic correlation existed between RFI and cow BW (-0.23; although the SE of 0.31 was large). None of the feed efficiency traits were correlated with fertility, calving difficulty, or perinatal mortality. However, genetic correlations estimated between age at first calving and FCR (-0.55 ± 0.14), Kleiber ratio (0.33 ± 0.15), RFI (-0.29 ± 0.14), residual BW gain (0.36 ± 0.15), and relative growth rate (0.37 ± 0.15) all suggest that selection for improved efficiency may delay the age at first calving, and we speculate, using information from other studies, that this may be due to a delay in the onset of puberty. Results from this study, based on the estimated genetic correlations, suggest that selection for improved feed efficiency will have no deleterious effect on cow performance traits with the exception of delaying the age at first calving.  相似文献   

6.
Direct and maternal (co)variance components and genetic parameters were estimated for growth and reproductive traits in the Kenya Boran cattle fitting univariate animal models. Data consisted of records on 4502 animals from 81 sires and 1010 dams collected between 1989 and 2004. The average number of progeny per sire was 56. Direct heritability estimates for growth traits were 0.34, 0.12, 0.19, 0.08 and 0.14 for birth weight (BW), weaning weight (WW), 12-month weight (12W), 18-month weight (18W) and 24-month weight (24W), respectively. Maternal heritability increased from 0.14 at weaning to 0.34 at 12 months of age but reduced to 0.11 at 24 months of age. The maternal permanent environmental effect contributed 16%, 4% and 10% of the total phenotypic variance for WW, 12W and 18W, respectively. Direct-maternal genetic correlations were negative ranging from −0.14 to −0.58. The heritability estimates for reproductive traits were 0.04, 0.00, 0.15, 0.00 and 0.00 for age at first calving (AFC), calving interval in the first, second, and third parity, and pooled calving interval. Selection for growth traits should be practiced with caution since this may lead to a reduction in reproduction efficiency, and direct selection for reproductive traits may be hampered by their low heritability.  相似文献   

7.
The present study was conducted on 1,002 reproductive records of 430 Jersey crossbred cattle, descended from 57 sires and 198 dams, maintained at the Eastern Regional Station of ICAR-National Dairy Research Institute, Kalyani, Nadia, West Bengal, India to investigate the influence of direct genetic, maternal genetic and maternal permanent environmental effect on three most important reproductive traits viz., number of service per conception (NSPC), days open (DO) and calving interval (CI) of Jersey crossbred cattle. Six single-trait animal models (including or excluding maternal genetic or permanent environmental effects) were fitted to analyse these traits, and the best model was chosen after testing the significant increase in the log-likelihood values when additional parameters were added in the model. Direct heritability estimates for NSPC, DO and CI from the best model were 0.10, 0.14 and 0.20, respectively. The maternal permanent environmental (c2) effects on reproductive traits accounted for almost negligible fraction of the total phenotypic variance in this study. The maternal genetic effects (m2) also contributed very little (0%–3%) to the total phenotypic variance except for CI where it was important and accounted for 20% of phenotypic variance. A significantly large negative genetic correlation was observed between direct and maternal genetic effects for all traits, suggesting the presence of antagonistic relationship between dam's direct additive component and daughter's additive genetic component. Results suggest that both direct and maternal effects were important only for CI but not for other traits. Therefore, both direct additive effects and maternal genetic effect need to be considered for improving this trait by selection.  相似文献   

8.
Data comprising 7211 lactation records of 2894 cows were used to estimate genetic and phenotypic parameters for milk production (lactation milk yield, LMY and lactation length, LL) and fertility (calving interval, CI; number of services per conception, NSC and age at first calving, AFC) traits. Genetic, environmental and phenotypic trends were also estimated. Variance components were estimated using univariate, bivariate and trivariate animal models on based restricted maximum likelihood procedures. Univariate models were used for each trait, while bivariate models were used to estimate genetic and phenotypic correlations between milk production and fertility traits and between LMY, LL, CI and NSC within each lactation. Trivariate models were used in the analysis of LMY, LL, CI and NSC in the first three lactations. Heritability estimates from the univariate model were 0.16, 0.07, 0.03, 0.04 and 0.01 for LMY, LL, CI, AFC and NSC, respectively. The heritability estimates from trivariate analysis were higher for milk production traits than those from univariate analyses. Genetic correlations were high and undesirable between milk production and fertility traits, while phenotypic correlations were correspondingly low. Genetic trends were close to zero for all traits, while environmental and phenotypic trends fluctuated over the study period.  相似文献   

9.
A bio‐economic model was used to estimate economic values of 15 milk production, functional, growth and carcass traits for Hungarian Holstein‐Friesian cattle. The calculations were carried out for the situation in Hungary from 2000 to 2007, assuming no production quotas. The marginal economic values were defined as partial derivatives of the profit function with respect to each trait in a production system with dairy cow herds and with sales of surplus male calves. The economic weights for maternal and direct components of traits were calculated multiplying the marginal economic values by the number of discounted expression summed over a 25‐year investment period for 2‐year‐old bulls (candidates for selection). The standardized economic weight (economic weight × genetic standard deviation) of the trait or trait component expressed as percentage of the sum of the standardized economic weights for all traits and trait components represented the relative economic importance of this trait or trait component. The highest relative economic importance was obtained for milk yield (25%), followed by productive lifetime of cows (23%), protein yield and the direct component of a cow’s total conception rate (9% each), the maternal effect of the total conception rate of cows and the somatic cell score (approximately 7% each), fat yield (5%) and mature weight of cows and daily gain in rearing of calves (approximately 4% each). Other functional traits (clinical mastitis incidence, calving difficulty score, total conception rate of heifers and calf mortality) reached a relative economic importance between 0.5% and 2%. Birth weight and dressing percentage were least important (<0.5%). Based on these results, the inclusion of productive lifetime and cow fertility in the breeding programme for Holstein‐Friesian cattle in Hungary is advisable.  相似文献   

10.
The objectives of this study were to determine the importance of effects of cytoplasmic origin on milk production and reproduction traits.Cow families at the experimental farm originated from randomly collected calves from 240 herds in two breeding districts. Cytoplasmic origin was defined as the first animal in the traced, maternal lineage. Milk production of 290 cows in first lactation from 1976 to 1982 was used. Reproduction records of the same cows as nulliparous and primiparous could be analysed in cow families.Cytoplasmic origin was a significant (P < 0.01) source of variation in kg fat plus protein, and milk returns (Dfl.) after adjustment for district of origin of the cytoplasmic source, sire's breed, calving year and season, breeding values of sires and material grandsires, and age at calving. Cytoplasmic origin accounted for maximal 10% and 13%, respectively, of the phenotypic variation in the two traits.Cytoplasmic origin was not a significant source of variation in nulliparous and primiparous reproduction traits after adjustment for effects of sire's breed, calving year and season. Although not significant, the cytoplasmic components accounted for 10 to 4% of the phenotypic variation in number of inseminations per first conception and for −0.04% to 13% of the phenotypic variation in age at first calving for the first and second generation, respectively. Some of these cytoplasmic components accounted for more phenotypic variation in reproductive traits of nulliparous heifers than most additive genetic components found in the literature.The effects of cytoplasmic inheritance on production and reproduction traits might have an impact on breeding policies in dairy cattle.  相似文献   

11.
Korean cattle have an unusually short suckling period (4 mo) due to poor milking ability, and this is a hindrance to growth of calves. Therefore, Korean cattle breeders have shown interest in genetic improvement of milking ability. In this study, body weight (birth weight, weaning weight, and yearling weight) and five daily milk yields by period in Korean cattle (Hanwoo) were analyzed using a two-trait sire and maternal grandsire mixed model. The milk yields used were actually measured at sequential intervals from 1 to 4 mo after calving. Posterior means of the parameters were estimated using Gibbs sampling. Heritability estimates (0.25 to 0.26) for daily milk yield at weaning were larger than those with other periods. Genetic impact on daily milk yield, especially at weaning, was emphasized in order to lengthen the suckling period of Korean cattle. Genetic correlation estimates between BW and daily milk yield were all negative (-0.08 to -0.16 for birth weight, -0.04 to -0.21 for weaning weight, and -0.12 to -0.19 for yearling weight), whereas environmental correlation estimates were all positive (0.20 to 0.39 for birth weight, 0.34 to 0.51 for weaning weight, and 0.30 to 0.45 for yearling weight). The negative estimates of genetic correlation between weight and milk yield implied genetic antagonism between direct and maternal effects for weaning weight of beef cattle.  相似文献   

12.
The objective of this study was to estimate genetic correlations between calving difficulty score and carcass traits in Charolais and Hereford cattle, treating first and later parity calvings as different traits. Genetic correlations between birth weight and carcass traits were also estimated. Field data on 59,182 Charolais and 27,051 Hereford calvings, and carcass traits of 5,260 Charolais and 1,232 Hereford bulls, were used in bivariate linear animal model analyses. Estimated heritabilities were moderate to high (0.22 to 0.50) for direct effects on birth weight, carcass weight, and (S)EUROP (European Community scale for carcass classification) grades for carcass fleshiness and fatness. Heritabilities of 0.07 to 0.18 were estimated for maternal effect on birth weight, and for direct and maternal effects on calving difficulty score at first parity. Lower heritabilities (0.01 to 0.05) were estimated for calving difficulty score at later parities. Carcass weight was positively genetically correlated (0.11 to 0.53) with both direct and maternal effects on birth weight and with direct effects on calving difficulty score. Carcass weight was, however, weakly or negatively (-0.70 to 0.07) correlated with maternal calving difficulty score. Higher carcass fatness grade was genetically associated with lower birth weight, and in most cases, also with less difficult calving. Genetic correlations with carcass fleshiness grade were highly variable. Moderately unfavorable correlations between carcass fleshiness grade and maternal calving difficulty score at first parity were estimated for both Charolais (0.42) and Hereford (0.54). This study found certain antagonistic genetic relationships between calving performance and carcass traits for both Charolais and Hereford cattle. Both direct and maternal calving performance, as well as carcass traits, should be included in the breeding goal and selected for in beef breeds.  相似文献   

13.
Genetic trends were constructed to monitor the genetic change for subjectively assessed and objectively measured traits using data emanating from complete records from the National Small Stock Improvement Scheme database and performance records accumulated by a single breeder over a period of 24 years. The objectively measured production traits considered were weaning weight, post-weaning weight (PWW), yearling weight, average daily weight gain to weaning (ADGW), average daily weight gain during post-weaning phase (ADGPW) and average daily weight gain up to yearling age. The subjectively assessed traits (scored on a five-point scale) were conformation, fat distribution, size, type and colour. Direct genetic trends for live weight and growth traits (with the exception of ADGPW) were positive. All the objectively measured traits where maternal effects were significant, except PWW, registered small declines in maternal breeding values. The fastest genetic progress was attained by ADGW, which amounted to 0.29 % of the overall phenotypic mean per annum. Conformation and type exhibited positive but slow increments in direct breeding values at an equivalent annual rate amounting to 0.12 and 0.09 % of the overall phenotypic mean, respectively. Size demonstrated a negative genetic trend of ?0.14 % of the overall phenotypic mean per annum. Genetic trends for fat distribution and colour were negligible. It was concluded that breeders should focus more on the performance recording of objective traits as they are likely to respond favourably to selection pressure.  相似文献   

14.
Calving and weaning rates, birth weight, calving ease, and 24-h calf survival were evaluated in a four-breed diallel of Simmental (S), Limousin (L), Polled Hereford (H) and Brahman (B) beef cattle in five calf crops. Limousin dams tended to have the highest calving and weaning rates because they were able to have heavier calves with less calving difficulty and higher survival rates. Brahman-sired calves were the heaviest at birth (P less than .05) and B dams produced the lightest calves (P less than .001). Lower birth weights tended to be the limiting factor on survival of these calves. A linear comparison among means to evaluate purebred, additive, maternal and specific combining ability effects showed most of the reduction in birth weight from B dams was due to maternal effects. Breed of dam accounted for a higher proportion of variation in calving ease than did sire breed. Simmental sires had significantly heavier calves at birth and S and H dams tended to have more calving difficulty and lower survival rates. Heterosis for these traits was generally not significant. Correlations were generally positive and significant for birth weight and calving ease, but were more variable for birth weight and survival. Linear regressions of calving ease on birth weight both within years and within dam-breed-year subclasses were very similar in that the association of these two traits was reduced as dam age increased.  相似文献   

15.
Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality.  相似文献   

16.
Non-additive genetic effects are usually ignored in animal breeding programs due to data structure (e.g., incomplete pedigree), computational limitations and over-parameterization of the models. However, non-additive genetic effects may play an important role in the expression of complex traits in livestock species, such as fertility and reproduction traits. In this study, components of genetic variance for additive and non-additive genetic effects were estimated for a variety of fertility and reproduction traits in Holstein cattle using pedigree and genomic relationship matrices. Four linear models were used: (a) an additive genetic model; (b) a model including both additive and epistatic (additive by additive) genetic effects; (c) a model including both additive and dominance effects; and (d) a full model including additive, epistatic and dominance genetic effects. Nine fertility and reproduction traits were analysed, and models were run separately for heifers (N = 5,825) and cows (N = 6,090). For some traits, a larger proportion of phenotypic variance was explained by non-additive genetic effects compared with additive effects, indicating that epistasis, dominance or a combination thereof is of great importance. Epistatic genetic effects contributed more to the total phenotypic variance than dominance genetic effects. Although these models varied considerably in the partitioning of the components of genetic variance, the models including a non-additive genetic effect did not show a clear advantage over the additive model based on the Akaike information criterion. The partitioning of variance components resulted in a re-ranking of cows based solely on the cows’ additive genetic effects between models, indicating that adjusting for non-additive genetic effects could affect selection decisions made in dairy cattle breeding programs. These results suggest that non-additive genetic effects play an important role in some fertility and reproduction traits in Holstein cattle.  相似文献   

17.
试验旨在构建新疆褐牛不同生长阶段体尺体重性状的遗传参数估计模型,估计新疆褐牛生长发育性状的遗传参数,为新疆褐牛育种目标性状的确定和综合选择指数的制定提供理论依据。以1983-2017年收集的4个新疆褐牛核心育种场81头公牛后代的2 504条新疆褐牛体尺体重数据为研究材料,以初生及6、12和18月龄阶段的体重、体高、体斜长和胸围性状为研究对象,通过DMU软件构建多性状动物模型,以场、出生年份、出生季节和性别为固定效应,以加性效应和母体效应为随机效应,估计各性状的遗传力和遗传相关。结果显示,新疆褐牛初生至18月龄阶段体重遗传力估计值为0.22~0.61,体高遗传力估计值为0.43~0.46,体斜长遗传力估计值为0.29~0.52,胸围遗传力估计值为0.35~0.61。相同和不同生长阶段新疆褐牛各体尺体重性状间均呈现正的遗传相关和表型相关,其中相同生长阶段各体尺体重性状间的遗传相关系数为0.11~0.92,表型相关系数为0.05~0.92;不同生长阶段各体尺体重性状间的遗传相关系数为0.08~0.92,表型相关系数为0.01~0.72。18月龄与其他各生长阶段间体尺体重性状的遗传相关系数较高,且均属于中高遗传力性状。因此,在制定新疆褐牛综合选择指数时,应重点考虑18月龄阶段的体尺体重性状,从而进一步提升新疆褐牛生长发育性状的遗传进展。  相似文献   

18.

This study assessed daily milk yield (DMY), 100-day (MY100), and 305-day (MY305) milk yield, and lactation length (LL) in purebred Ankole cattle and Ankole crossbreds, and the influence of environmental factors on these traits. Milk yield data were obtained for 865 cows and 1234 lactations and analyzed using a mixed linear model. The overall least squares mean of DMY, MY100, and MY305 across breed groups was 2.7 L (N = 1234, SD = 1.7), 262 L (N = 959, SD = 176), and 759 L (N = 448, SD = 439), respectively, while the average lactation length was 256 days (N = 960, SD = 122). All factors included (breed group, season and year of calving, and parity) were significant for yield traits, except season of calving for MY305. First-parity cows had the lowest milk production, and fourth-parity cows the highest. For all traits, pure Ankole cows had the lowest milk yield. Among the crossbreds, there was no significant difference between Ankole × Friesian, Ankole-Jersey mother × Sahiwal sire, and Ankole-Sahiwal mother × Jersey sire, or between Ankole × Sahiwal and Ankole-Sahiwal mother × Sahiwal sire. It was concluded that Ankole crosses with Friesian or Jersey can be beneficial, even under a management system of limited nutrition as in Rwanda.

  相似文献   

19.
During last decades, native uniqueness decreased in local livestock breeds due to the introgression of high‐yielding breeds. Recovery of native uniqueness became important because of conservation aspects regarding native genetic diversity and native traits. Thereby the expectation exists, that the relation between native uniqueness and genetic gain is contradictory. The aim of this study was to explore the influence of native uniqueness on performance traits and the total merit index in a local red cattle breed from Northern Germany. Data contained a pedigree file of 178,255 Red Dual‐Purpose cattle, 809 target genotypes and 3,581 reference genotypes from introgressed breeds. Native genetic contributions were tested for correlation with performance traits of milk yield, longevity, foundation, somatic cells, fertility and maternal calving and the total merit index. The study revealed that native uniqueness is favourably related to longevity (0.16), foundation (0.23), and somatic cells (0.08), and the total merit index (0.10). Selection on native uniqueness could probably lead to an increased longevity, udder health and genetic gain of the Red Dual‐Purpose cattle. Moreover, it was shown that the Red Dual‐Purpose cattle was not upgraded through introgression of high‐yielding breeds.  相似文献   

20.
The aim of this paper was to estimate direct and maternal genetic parameters for calving ease (CE), birth weight (BrW), weaning weight (WW), and calving interval (CI) to assess the possibility of including this information in beef cattle improvement programs. Field data, including a total of 59,813 animals (1,390 sires and 1,147 maternal grand sires) from the Asturiana de los Valles beef cattle breed, were analyzed with a multivariate linear model. Estimates of heritability for direct genetic effects (CED, CID, BrWD, and WWD) were 0.191 +/- 0.019, 0.121 +/- 0.013, 0.390 +/- 0.030, and 0.453 +/- 0.035, respectively, whereas those for maternal genetic effects (CEM, BrWM, and WWM) were 0.140 +/- 0.015, 0.208 +/- 0.020, and 0.138 +/- 0.022, respectively. Genetic correlations between direct or maternal genetic effects across traits were, in general, positive and moderate to low. However, genetic correlation for the pair CED-BrWD was positive and high (0.604 +/- 0.064). Genetic correlations between the direct and maternal genetic effects within a trait were negative and moderate (-0.219 +/- 0.097 for CE, -0.337 +/- 0.080 for BrW, and -0.440 +/- 0.102 for WW). Genetic correlations for CED-BrWM and CED-WWM were -0.121 +/- 0.090 and -0.097 +/- 0.113, respectively. The genetic correlation for CEM-CID was unfavorable (0.485 +/- 0.078), and those for CEM-BrWD (-0.094 +/- 0.079) and CEM-WWD (-0.125 +/- 0.082) were low and negative. The genetic correlation between CID and WWM was favorable (-0.148 +/- 0.106). Overall, the data presented here support the hypothesis that maternal effects for CE and BrW are not the same and that the genetic relationships between CI and maternal effects for WW in beef cattle follow a similar pattern to that reported between CI and milk yield in dairy cattle. Moreover, the need to include direct and maternal breeding values in beef cattle selection programs is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号