首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Nutritional efficacy of fairy shrimp (Streptocephalus sirindhornae) nauplii, as a live food, was studied for growth performance and survival rate of giant freshwater prawn (Macrobrachium rosenbergii) postlarvae. A feeding experiment was designed with four different feeds: dry commercial feed, fairy shrimp nauplii, Artemia sp. nauplii and adult Moina macrocopa. Results from the nutritional composition revealed that fairy shrimp nauplii had protein and lipid contents of 54.58 ± 2.8 g kg?1 and 255 ± 2.8 g kg?1, respectively. The highest value for an individual amino acid in fairy shrimp was lysine (140.7 ± 1.6 g kg?1). The essential amino acids content in the whole body of the larval prawns was in the range of 66.7–67.5 g kg?1. Fairy shrimp nauplii had the highest essential amino acid ratio (A/E) of lysine, similarly, in musculature of prawn larvae. Weight gain and specific growth rate of the postlarvae fed with fairy shrimp nauplii were significantly higher than those fed with Artemia nauplii, adult Moina and dry commercial feed. The presented results suggest that S. sirindhornae nauplii can be used as a nutritionally adequate food for freshwater prawn M. rosenbergii postlarvae.  相似文献   

2.
Microbound feeds have been well accepted by shrimps and farmers in many penaeid shrimp hatcheries. The present study focused on an adequate level of replacement of Artemia nauplii and microalgae by a microbound diet for rearing Litopenaeus setiferus (Burkenroad) larvae. A microbound diet (MBD) consisting of fishmeal, squid meal, shrimp meal, yeast meal and soybean meal was used. The first experiment was designed to obtain the optimum level of MBD to complete the live feeding schedule, from Protozoea (PZIII) to Mysis (MIII). The experimental levels of the microbound diet tested were 2, 4, 6 and 8 mg MBD L?1 day?1. The next step was to determine the Artemia nauplii replacement level from PZI to MIII by MBD. These experiments were carried out either in the presence (Experiment 2) or in the absence of algae (Experiment 3). Four replacement levels were tested: 0% (4 mg MBD L?1 day?1: 1 Artemia nauplii mL?1), 40% (5.5 mg MBD L?1 day?1: 0.6 Artemia nauplii), 60% (6.5 mg MBD L?1 day?1: 0.4 Artemia nauplii) and 100% (8 mg MBD L?1 day?1: 0 Artemia nauplii). In all experiments growth, survival, development, quality index (QI) and performance index (PI), were used to determine the optimum concentration of microbound diet. Results showed that 6 mg MBD L?1 day?1 can be recommended as a complement to live food for L. setiferus larvae from PZIII to MIII. In the presence of algae, maximum growth and survival may be obtained in 40–60% (5.5–6.5 mg MBD L?1 day?1) of Artemia nauplii replacement levels. In the absence of algae, the Artemia nauplii replacement resulted in slower development, less salinity resistance, lower growth and lower survival than was obtained in larvae fed with algae.  相似文献   

3.
The effect of an abrupt change in the live diet of shrimp larvae was investigated by replacing Artemia with Moina micrura. The control treatment consisted of feeding Artemia throughout the rearing period (regime A), while in the other treatments the onset of Moina feeding was arbitrarily chosen at larval stages iv (A3M), vi (A5M), viii (A7M) and x (A9M). No significant differences ( = 0.05) were observed among the treatments during larval production, mean stage development (MSD) and growth of postlarvae. The mean (SD) yields of postlarvae (PL) were 11.97 (1.98), 15.10 (2.92), 14.72(1.56), 13.51 (1.74) and 12.70 (1.40) PL l–1 respectively for the feeding regimes A3M, A5M, A7M, A9M and A. Up to stage v, the ingestion rate in the Moina treatment was as low as 0.01–0.47 larva–1 h–1 compared with that in the Artemia treatment (0.29–1.77 larva–1 h–1). However, the ingestion of Moina increased from stage vi–vii onwards.  相似文献   

4.
A study was conducted to establish whether a particulate form of ascorbic acid (AA), ascorbyl‐2‐phosphate (A2P), could be used to enrich Artemia. In the first experiment, we examined the efficiency of A2P conversion to and maintenance of AA by juvenile Artemia (1.5 mm, 5‐day‐old) held at 9000 L?1 and 28 °C for 24 h. Maximal uptake and assimilation was >10 000 μg AA g?1 dry weight (dw) (representing >1%Artemia dw) at enrichment rates of ≥1.2 g A2P L?1. In the second experiment, a similar biomass of instar II/III nauplii (1 mm, 2‐day‐old) and juvenile (2.5 mm, 8‐day‐old) Artemia were enriched for 6 or 24 h at 28 °C before starvation for 6 or 24 h at 18 or 28 °C. At 0 h and after 6 and 24 h enrichment, AA levels were 485, 3468 and 11 080 μg g?1 dw in nauplii and 122, 4286 and 12 470 μg g?1 dw in juveniles. When Artemia nauplii or juveniles were enriched for 6 h and starved for 6 h at 18 or 28 °C, there was no significant reduction in AA. Continuation of starvation to 24 h at 18 and 28 °C reduced the level of AA to 3367 and 2482 μg g?1 dw in nauplii and 3068 and 2286 μg g?1 dw in juveniles. After 24 h enrichment, 6 h of starvation at 18 and 28 °C reduced AA to 8847 and 7899 μg g?1 dw in nauplii and to 9053 and 8199 μg g?1 dw in juveniles. Continuation of starvation to 24 h at 18 and 28 °C further reduced AA levels in nauplii to 6977 and 4078 μg g?1 dw and to 7583 and 5114 μg g?1 dw in juveniles. This study demonstrated that A2P could be assimilated as AA in the body tissue of different‐sized Artemia in a dose‐dependant manner and AA was depleted during starvation depending on time and temperature.  相似文献   

5.
The nematode Panagrellus redivivus (Linné) has been suggested as a source of live food in the rearing of larval fish and shrimp species. This study tested the use of P. redivivus in the early rearing of the bottom‐feeding catfish Synodontis petricola (Matthes). A comparison of feeding rates of 5000–10 000 nematodes larva−1 day−1 showed that fish receiving 5000 nematodes larva−1 day−1 grew faster than those fed a dry diet, but slower than treatments fed 200 and 600 Artemia larva−1 day−1. Enrichment of nematodes with SuperSelco® improved fish growth relative to a non‐enriched control treatment, with both treatments receiving 5000 nematodes larva−1 day−1. In the first two trials, feeding commenced 2 days after hatching. In the third study, fish were fed nematodes 6 days after hatching and there was no difference in growth between Artemia‐fed fish (600 Artemia larva−1 day−1) and fish fed 5000 nematodes larva−1 day−1. Thus, it is suggested to feed S. petricola at a nematode density of at least 10 000nematodes larva−1 day−1 in order to achieve growth comparable to that of fish fed Artemia, or, alternatively, to feed 5000 nematodes larva−1 day−1 to improve growth relative to that achieved with a dry diet. Furthermore, nematodes may be enriched with essential fatty acids to improve the growth of S. petricola larvae.  相似文献   

6.
The aim of this study was to evaluate the effects of hatchery‐tank colours (white, yellow, red, blue, green and black) on the performance of larval culture of Macrobrachium amazonicum. The larvae were fed daily with newly hatched Artemia nauplii. The hatchery‐tank colours affected the light level inside the tanks, the consumption of Artemia nauplii (AN), larval development, survival, mass gain and productivity of postlarvae (PL). The overall consumption of Artemia nauplii per larva during the larval cycle was 30% and 45% higher in the green and red tanks respectively. The significant variation of AN consumption among tank colours (= 0.0006) indicates that M. amazonicum larvae are visual predators. Survival was higher in the black, blue and green tanks, reaching more than 75%. However, the highest productivity was obtained in the black tanks (80.1 PL L?1). Lighter coloured tanks and excess luminosity (more than 2 μmol s?1 m2 at tank bottom) appear to be important stress factors for larvae, contributing to reduce survival and productivity. The results indicate that rearing M. amazonicum in black tanks will improve larvae condition, ensure greater productivity of postlarvae and lower Artemia consumption, increasing technological and economic viability.  相似文献   

7.
Daily food intakes, optimal feeding regimes and food concentrations for laboratory reared Paralithodes camtschaticus (Tilesius, 1815) larvae were investigated. Artemia nauplii hatched at standard conditions were used as food. Daily food intakes of zoeae I–IV at 7–8 °C comprised 11.3, 22.4, 33.2, and 41.8 nauplii individuals (ind)?1 day?1, respectively, taking into account that wet weight of Artemia nauplii used for the experiments constituted 0.026 mg, dry weight 0.0042 mg. Optimal initial Artemia nauplii concentrations for feeding zoeae I–IV was determined as 400–600, 600–800, 800–1000 and 1000–1200 nauplii L?1 respectively. Recommendations on using Artemia nauplii as food for red king crab larvae were outlined on the basis of experimental results. Growth, development and survival rates of zoeae I–IV reared in recycling water system at 7–8 °C and fed Artemia nauplii according to these recommendations were described.  相似文献   

8.
The proteolytic digestive activity and growth of Parachromis dovii larvae during the ontogeny were evaluated in a recirculation system using two feeding strategies during a 28-day period. Larvae were reared using two feeding protocols (three replicates each): (A) Artemia nauplii (at satiation), fed from exogenous feeding [8 days after hatching (DAH)] until 15 DAH followed by nauplii substitution by formulated feed (20 % day?1) until 20 DAH and then formulated feed until 28 DAH; (B) formulated feed (100 % BW daily) from exogenous feeding until 28 DAH. Levels of acid (pepsin type) and alkaline digestive proteases as well as growth and survival of larvae were measured along the feeding period. Survival was high and similar between treatments: 98.9 ± 0.0 for Artemia, 97.3 ± 0.0 % for formulated feed. The specific growth rate for length and weight was higher in larvae fed with Artemia nauplii than in larvae reared with formulated feed: 3.4 ± 0.1 versus 1.8 ± 0.1 % day?1 for body length (P = 0.009) and 12.2 ± 0.1 versus 6.5 ± 0.3 % day?1 for body weight (P = 0.002). The acid and alkaline proteolytic activity was detected, in both treatments, from the beginning of the experiment, at 8 DAH. The total enzymatic activity (U larva?1) for acid and alkaline proteases was higher in larvae reared with Artemia after 12 DAH, whereas the specific enzymatic activity was similar for both enzyme types in the two treatments. The results suggest that P. dovii larvae were capable to digest formulated diets from the beginning of exogenous feeding and that they could be reared with formulated feeds. However, the formulated feed used should be nutritionally improved because of the poor growth obtained in this research.  相似文献   

9.
Heterobranchus longifilis larvae were reared over a 35 d period to evaluate the effects of stocking densities and feeding regimes on growth and survival. In experiment 1, larvae (12.3?±?2.1 mg) were stocked into glass aquaria at densities of 1, 2, 5, 10, 15, 20, and 25 larvae L?1. Larvae were fed on Artemia nauplii ad libitum. Significant variations in terms of growth performance and feed utilization occurred at all levels of density treatments. Specific growth rate (SGR), body weight gain (BWG), and feed efficiency (FE) of the larvae decreased significantly as density increased. However, survival rate increased with the increase of stocking density. In experiment 2, larvae (13.4?±?1.1 mg) stocked at a density of 15 larvae L?1, in the same conditions as experiment 1, were fed on three different regimes: Artemia nauplii; 35%?protein beef brain; and 35%?protein commercial catfish feed (CN+). SGR, BWG, and coefficient of variation (CV) of larvae fed on Artemia nauplii were significantly higher than those fed on beef brain and CN+. The survival rate of larvae fed on beef brain was significantly higher (88.40?±?9.75%) than those of Artemia (69.21?±?6.69%) and CN+ (40.40?±?6.22%). The results of this study suggest that the optimum stocking density is 15 larvae L?1 and the beef brain can be used as alternative feed to Artemia in rearing H. longifilis larvae.  相似文献   

10.
The effects of the density and type of food on oxygen consumption and ingestion rate of larvae of the white shrimp Penaeus setiferus fed diatoms Chaetoceros ceratosporum, flagellates Tetraselmis chuii and Artemia franciscana nauplii were analysed. Diatoms, flagellates and Artemia nauplii were fed at five densities from 10 to 5 × 103 cells mL?1, 0 to 4 × 103 cells mL?1, and 0.1, 0.5, 1.0, 1.5 and 2 nauplii mL?1, respectively. In three experiments, two of three types of food were maintained constant at concentrations of 30-40 × 103 cells mL?1 (diatoms), 2 × 103 cells mL?1 (flagellates) and 1 Artemia nauplii mL?1. The oxygen consumption in three experiments increased with larval stage, reaching maximum values in Mill except at lower feed concentrations. A maximum ingestion peak in MI was recorded in larvae fed diatoms, whereas that peak was observed in Mil in larvae fed flagellates. The maximum ingestion rate of Artemia nauplii was observed in Mill. Feed concentrations that produced an optimum metabolic rate as a consequence of equilibrium between ingested food and larval stages were obtained with 20 and 30 × 103 cells mL?1 of C. ceratosporum, 2 and 3 × 103 cells mL?1 of T. chuii, and 1.0 Artemia nauplii mL?1. These concentrations would be the most suitable for producing P. setiferus postlarvae.  相似文献   

11.
Growth rate, soluble-protein content and digestive-enzyme activities were studied in Litopenaeus vannamei (Boone, 1931) early post-larvae under six feeding regimens, which included combinations of freshly hatched Artemia nauplii, an artificial diet and algae. Growth (0.11 mg DW day−1) and soluble-protein content (61.8 μg protein larvae−1 at PL10) of post-larvae fed mixed diets were significantly higher (P < 0.05). An artificial diet used alone or co-fed with algae caused the lowest growth (0.03–0.05 mg DW day−1) and soluble-protein content (13.7–15.5 μg protein larvae−1 at PL10). Trypsin-like activity was higher (up to 10 times) in post-larvae fed Artemia nauplii and an artificial diet alone or plus algae. The artificial diet stimulated chymotrypsin activity, apparently in response to squid meal present in this diet. Amylase activity increased when post-larvae were fed the artificial diet. This was apparently related more to the origin of the starch than to the total carbohydrate level of the diet. No obvious relationship was found between enzyme activity and growth in any feed combination. Based on growth and soluble-protein content, we determined that partial substitution (50%) of Artemia nauplii by artificial diet and the use of algae co-fed beyond the first post-larval stage benefits growth and the nutritional state of L. vannamei post-larvae.  相似文献   

12.
The effects of enriched Artemia nauplii on larvae production and survival and growth of the mysid Mysidopsis almyra Bowman 1964 are compared. There were no significant differences (P > 0.05) in production between mysids fed the Artemia nauplii (133 ± 69 mysids day−1) and mysids fed the enriched nauplii (139 ± 82 mysids day−1). No differences in size of newly hatched mysids or mysid growth to 15 days (P > 0.05) were found between the two diets. Survival was significantly higher (P < 0.05) for mysids fed the enriched nauplii (59.1%) compared with mysids fed Artemia nauplii (41.4%).  相似文献   

13.
An alternative larval shrimp feeding regime, in which umbrella‐stage Artemia were constituting the first zooplankton source was evaluated in the culture of Litopenaeus vannamei. In a preliminary experiment, umbrella‐stage Artemia were fed to larvae from zoea 2 (Z2) to mysis 2 (M2) stages to identify the larval stage at which raptorial feeding starts and to determine daily feeding rates. The following experiment evaluated the performance of two feeding regimen that differed during the late zoea/early mysis stages: a control treatment with frozen Artemia nauplii (FAN), and a treatment with frozen umbrella‐stage Artemia (FUA). The ingestion rate of umbrella‐stage Artemia increased from nine umbrella per larvae day?1 at Z2 stage to 21 umbrella per larvae day?1 at M2. A steep increase in ingestion and dry weight from Z3 to M2 suggests a shift to a raptorial feeding mode at the M1 stage. Treatment FUA exhibited a significantly higher larval stage index (P < 0.05) during the period that zoea larvae metamorphosed to the mysis stage, and a higher final biomass, compared with treatment FAN. Based on these results and on practical considerations, a feeding regime starting with umbrella‐stage Artemia from Z2 sub‐stage can be recommended for L. vannamei larvae rearing.  相似文献   

14.
The encapsulation capacity of Artemia nauplii with customized probiotics Pseudomonas synxantha and Pseudomonas aeruginosa for use in the cultivation of western king prawns (Penaeus latisulcatus) was investigated. Seven trials were conducted to investigate this encapsulation capacity in terms of Artemia survival and probiotic load in Artemia. Newly hatched Artemia nauplii at 250 nauplii mL?1 were fed individual probiotics at 0, 103, 105 and 107 colony‐forming units (CFU) per millilitre, and mixtures of these two probiotics (105 CFU mL?1) at 30:70, 50:50 or 70:30 v/v in a medium of ozonated water (OW), tryptone soya broth (TSB), and a mixture of these media. The appropriate medium for encapsulation of probiotics by Artemia nauplii was the mixture of OW and TSB at 75:25 v/v; whereas, the use of OW or TSB alone was not effective. Artemia nauplii most effectively encapsulated the customized probiotics at 105 CFU mL?1. The results indicates that the encapsulation of Artemia nauplii is optimized by using a combination of P. synxantha and P. aeruginosa at 50:50 v/v in a media mixture of OW and TSB at 75: 25 v/v. Artemia should be harvested at 48 h when survival is still high (78%) and the probiotic load in Artemia is high (3 × 104 CFU nauplius?1).  相似文献   

15.
Newly hatched Jasus edwardsii phyllosoma were fed unenriched Artemia [endogenous ascorbic acid (AA) concentration of 166 μg g?1 dry weight (dw)], Artemia supplemented with algae (AA concentration 594 μg g?1 dw) or with ascorbyl‐2‐polyphosphate (A2P) (AA concentration 11 737 μg g?1 dw) to examine possible benefits of AA enhancement on culture. Plain or algal‐enriched Artemia were fed continuously for 28 days in two treatments during the study. Four other treatments received A2P‐enriched Artemia on a progressive basis starting from the commencement of the trial (D‐0), the third (D‐3), sixth (D‐6) or ninth day (D‐9) of Stage I (14 days) and similarly during Stage II (14 days). Prior to the commencement of A2P supplementation, plain Artemia were supplied to these animals. By Stage III (28 days feeding), algal, D‐0 and D‐3 phyllosoma had attained the largest size. The uptake and retention of AA by Stage III phyllosoma appeared to be dose‐dependent with the highest concentration of AA incorporation evident in D‐0 phyllosoma (1816 μg g?1 dw), while algal and plain phyllosoma contained the lowest concentrations (600 and 300 μg g?1 dw, respectively). Survival at Stage III was highest in D‐0 phyllosoma (89%) and lowest in plain phyllosoma (51%). There was a positive relationship between phyllosoma AA concentration and larval survival (R2 = 0.8328, P < 0.0001). D‐0 phyllosoma had the lowest stress index when subjected to an osmotic/temperature activity test, indicative of better survival in culture compared to plain, algal and D‐9 phyllosoma, which had consistently higher indices. A negative relationship existed between phyllosoma AA concentration and stress indices at Stage III (R2 = 0.9263, P < 0.0001), suggesting that AA from the Artemia diet conferred stress resistance.  相似文献   

16.
The present study was conducted to study probiotics treatment in the post‐larval diet of Macrobrachium rosenbergii. Three hundred postlarvae (average weight, 114–118 mg±0.11) were divided in five experimental groups each with four replicates. The experiment was conducted for 60 days. Experimental diets were identical in all the aspects except for variation in the probiotics strain. T1 and T2 groups were fed Lactobacillus acidophilus (140×1011 CFU 100 g?1) and L. sporogenes (24×107 CFU 100 g?1) respectively. The T3 group was fed L. sporogenes bioencapsulated in Artemia nauplii. T4 was the control group (without probiotic) whereas T5 was fed Artemia along with control diet. The bacteriological study indicated that the gut microflora of postlarvae are devoid of lactic acid bacteria. The probiotic strains were found to have inhibitory effects against the gram‐negative bacterial flora present in the gut. Growth of the probiotic fed groups was significantly higher (P<0.05) than the control group. Significantly higher growth (P<0.05), per cent weight gain (132.5%), specific growth rate (1.41%), feed efficiency ratio (FER) (0.45), protein efficiency ratio (1.29) and protein gain (161.6%) were recorded in T3 group fed Artemia bioencapsulated L. sporogenes over the control group (P<0.05). Although insignificant (P>0.05), growth‐promoting effects of L. sporogenes were found to be higher than L. acidophillus. Survival of the postlarvae was not affected by probiotics in the diet.  相似文献   

17.
Brachionus plicatilis and Artemia nauplii were fed to a number of larval stages of the penaeid prawn Penaeus indicus to determine ingestion rates, larval energy requirements and to establish at which stage larval predation commenced. The raptorial feeding rates were then contrasted on an energy basis with filter feeding rates for P. indicus larvae to compare the relative efficiency of these two feeding mechanisms. Brachionus was first eaten as early as protozoea 1 to protozoea 2, while the maximum ingestion rate of 300 rotifers larva?1 d?1 (1.06 J larva?1 d?1) was obtained during protozoea 3 to mysis 1. Artemia were effectively ingested by P. indicus protozoea 3 (4.1 J larva?1 d?1) to post-larva (8.2 J larva?1 d?1). Daily energy intake rate from filter feeding increased from 1.1 J larva?1 d?1 during protozoea 1 to reach a peak of 5.32 J larva?1 d?1 during mysis 3 after which it declined to 2.66 J larva?1 d?1 during the post-larval stage. This decline in energy intake from filter feeding with a concomitant increase in energy intake from Artemia predation demonstrates a predominant feeding mode changeover point during mysis 3. Energy intake was consistently low with Brachionus, indicating that it may be unnecessary for commercial culture purposes.  相似文献   

18.
A feeding experiment was conducted to evaluate the effect of rotifers (Brachionus plicatilis) and Artemia sp. enriched differently on early growth, survival and lipid class composition of Atlantic cod larvae (Gadus morhua). Rotifers enrichments tested were: (1) AlgaMac 2000®, (2) AquaGrow® Advantage and (3) a combination of Pavlova sp. paste and AlgaMac 2000®. The same treatments were tested with Artemia as well as a combination of DC DHA Selco® and AlgaMac 2000® as a fourth treatment. After rotifer feeding, the larvae from treatment 3 [1.50 ± 0.11 mg dry weight (dw)] were significantly heavier than larvae from treatment 2 (1.03 ± 0.04 mg dw). After feeding Artemia, the larvae from treatment 1 were significantly heavier (12.06 ± 2.54 mg dw) than those from treatments 3 (6.5 ± 0.73 mg dw) and 4 (5.31 ± 1.01 mg dw). Treatment 3 resulted in the best survival through the 59 days of larviculture. After rotifer feeding, high larval concentrations of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (AA) and ω6 docosapentaenoic acid (ω6DPA) could be linked to better larval growth and survival while after feeding Artemia, high larval DHA/EPA ratios (~3) and high DPA/AA ratios (>1) could be linked to better survival.  相似文献   

19.
The goal of this study is to develop a larviculture protocol for Mithraculus forceps, a popular marine aquarium species. Different temperatures (25±0.5°C and 28±0.5°C), stocking densities (10, 20, 40 and 80 larvae L?1), prey densities (newly hatched Artemia of 1, 4, 7 and 12 nauplii mL?1) and metamorphosis to crab conditions (Systems A and B) were tested. The best survivorship and faster development were obtained when the larvae were reared at a density of 40 larvae L?1 for 7 days post hatching (DPH) in System A, at 28°C and fed with 7 mL?1 of newly hatched Artemia nauplii. After 7 DPH all the megalopa were moved to System B and the same temperature and prey density were maintained. At the end of the experiment, 12 DPH, survivorship of 74.1±4.8% was obtained.  相似文献   

20.
The effect of different food items on growth and survival was assessed in four feeding experiments conducted consecutively using distinct Farfantepenaeus paulensis (Pérez‐Farfante) postlarval growing stages: (1) PL1–PL4 (i.e. from postlarvae 1‐day old to postlarvae 4 days old); and (2) PL4–PL10; (3) PL10–PL18 and (4) PL18–PL30. For each trial, 10 feeding treatments were tested in triplicate: Unf, unfed shrimp; Tt, Tetraselmis chuii; Ch, Chaetoceros calcitrans; C, commercial diet; AC, decapsulated Artemia cysts; C+Ph, commercial diet and phytoplankton combination; FA, frozen Artemia nauplii; A, live Artemia nauplii; A+Ph, Artemia nauplii and phytoplankton combination and Mix, mixture of phytoplankton, live Artemia nauplii and commercial diet. Postlarvae feed phytoplankton (i.e. Tt or Ch) exclusively exhibited low growth and survival. The best results for growth and survival were observed in the A, A+Ph and Mix treatments. Frozen Artemia nauplii was found to be suitable for younger postlarvae (PL1–10), whereas AC may be offered from PL4 to PL30. In general, the present findings indicated that even at an early postlarval stage, F. paulensis presents a high degree of carnivory, and a diet containing Artemia is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号