共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
采用人工检测的石榴外观品质等级分级方法存在准确率和效率低的问题,提出一种基于机器视觉的石榴品质分级方法。首先,采用机器视觉系统采集石榴样本图像,进行去噪处理与获取掩模图像;其次,提取去噪图像的红、绿、蓝分量,用蓝色分量减去红、绿色分量得到色差图像,并对色差图像进行阈值分割;然后,对分割图像采用数学形态学处理获得连通的疑似缺陷区域的边界,提取纹理特征并根据缺陷与非缺陷区域纹理特征的不同来标记缺陷区域;最后,将缺陷面积与总面积之比和缺陷数目作为划分等级的依据,对石榴品质等级进行划分。试验结果表明:本方法总体分级准确率达到92.9%,能够高效、准确地识别石榴表面缺陷并进行品质分级,为实现自动分级的产业化提供思路。 相似文献
4.
5.
6.
《农机化研究》2021,43(12)
针对白菜种子,以北京小杂55号为研究对象,使用机器视觉技术获取种子10个颜色特征和6个形状特征,再通过单粒种子萌发试验确定种子活力,并使用曼-惠特尼U检验分析种子活力与图像特征的相关性。将显著相关图像特征与种子发芽实验结果组成数据集,结合偏最小二乘判别分析法建立分类模型,并通过MatLab软件进行了仿真分析。结果表明:白菜种子的R分量均值、R分量标准差、G分量均值、G分量标准差、B分量标准差、H分量均值、H分量标准差、S分量均值、S分量标准差和圆形度P与白菜种子活力显著相关。结合这些特征,使用偏最小二乘判别分析法建立分类模型,进行种子精选,可以将该批白菜种子发芽率由原始50.67%提升至69.43%。由此表明,可通过机器视觉技术对白菜种子进行精选,从而提高种子的活力。 相似文献
7.
基于机器视觉的荔枝果实采摘时品质检测技术 总被引:4,自引:0,他引:4
为了在荔枝采摘时实时判断果实的品质状态,通过分析自然环境中荔枝不同生长期的图像,对荔枝果实未成熟、成熟、成熟后外表腐烂变质的3种情况进行了图像数据分析。选取了YCbCr颜色模型,利用探索性分析法对荔枝不同部位、不同光照、不同生长期的荔枝图像的Cr分量进行了数据分析与统计,确定了辨识荔枝果实未成熟与成熟的Cr分量的阈值范围;对于成熟的荔枝,采用边缘提取与Hough圆拟合方法对其Cr分量图进行处理,标记出图像的荔枝果实,然后利用纹理统计法、颜色特征与果实不同部分面积比值相结合的方法进行果实变质的判断,最终实现了未成熟、成熟以及腐烂变质的荔枝果实的视觉智能判断,建立了荔枝果实品质辨识的智能系统。试验结果表明,辨识荔枝品质状态的正确率达93%。 相似文献
8.
随着图像处理技术的专业化与计算机硬件成本的下降和计算机速度的提高,机器视觉技术在农产品品质自动检测领域应用已经越来越广泛。为了能充分利用国内外的最新研究成果,从小麦、水稻和玉米3种谷物综述了国内外在利用机器视觉技术进行外观品质检测的研究现状,同时,指出当今国内外研究中存在的问题和对今后研究的进一步展望。 相似文献
9.
10.
基于机器视觉和工艺参数的针芽形绿茶外形品质评价 总被引:6,自引:0,他引:6
外形是针芽形绿茶的关键感官评价指标,通常依据色泽、条形、嫩度和匀整度等表象特征进行人工评审,难以做到精准、客观和量化评价。本文以自动化生产线机制的针芽形绿茶为研究对象,基于茶叶品质、形成工艺和视觉形态等内外因素,构建了外形品质的智能感官评价方法。首先,在线采集在制品的17个机制工艺参数和成品茶的图像,进行图像特征提取,选取9个颜色特征和6个纹理特征。进而,通过与专家感官评分进行关联分析,明确了与感官品质显著相关的特征变量。为获取高效的评价模型,采用偏最小二乘法(PLS)、极限学习机(ELM)和强预测器集成算法(ELM-Ada Boost)3种多元校正方法,分别建立了基于工艺或图像特征的针芽形绿茶外形感官的量化评价模型。建模结果表明,基于图像特征建立的ELM-Ada Boost模型(Rp=0.892,RPD大于2),其预测性能优于其他模型,且具有更小的RMSEP(0.874)、Bias(-0.148)、SEP(0.226)和CV(0.018)值。同时,非线性模型的预测性能均高于PLS线性模型,能更好地表征工艺参数、图像信息与感官评分之间的解析关系,且建模速度更快(0.014~0.281 s)。而Ada Boost法作为一种混合迭代算法,能进一步提升ELM模型的精度和泛化能力。结果表明,基于机器视觉和工艺评价针芽形绿茶外形品质是可行的,为拓展茶叶感官品质评价方法和专家工艺决策支持系统研制,提供理论依据和数据支撑。 相似文献
11.
12.
玉米种子的品质关系到后期玉米种植收获的好坏,也是玉米收获后的重要加工环节,一般在收获的玉米中挑选出品质优良的作为种子。利用计算机视觉对玉米种子品质进行挑选,具有效率高、准确度高的优势,可代替传统的人工作业,节省了大量劳动力。计算机视觉技术是通过对玉米种子采集的图像进行格式转换、图像变换、图像直方图信息统计、图像增强、图像分割及形态学处理等一系列图像预处理技术,并提取有效图像进行分析验算。计算机视觉技术对玉米种子品质的研究主要表现在玉米种子的品种、纯度、活力、裂纹等方面的检测,本文对玉米种子的检测智能化进行了阐述,为后期研究提供参考。 相似文献
13.
计算机视觉在水稻大面积制种中的应用研究 总被引:1,自引:0,他引:1
水稻是我国最主要的粮食作物,在农业经济中占有重要的地位。水稻种植环境多样,高产稳产在很大程度上依赖于优良品种。制种是杂交稻生产的关键环节,种子质量对产量有着决定性的影响。随着科学技术的发展,无人机、物联网和计算机视觉等新技术在农业中得到了应用,推动了农业现代化进程。为此,将计算机视觉用于水稻大面积制种,实现对田间的空行和杂草杂株的识别,以及对父母本抽穗期的监测。试验表明:计算机视觉能够有效识别水稻空行,对杂株杂草的识别较为准确,没有出现误检的情况。计算机视觉监测的父母本抽穗期与实际接近,最大差异仅为1天,可以提高杂交种产量和纯度,推动水稻制种技术的发展。 相似文献
14.
15.
排种器是播种机的关键部件,其作业性能的好坏直接关系到播种的质量,想要实现排种器精确控制必须先对其进行监测,通过监测其排种质量调整排种器的作业过程,以提高排种质量。为此,提出了一种基于机器视觉的气吸滚筒式精密排种器的监测和控制系统,并利用反馈调节实现了排种器的闭环控制。为了验证方案的可行性,将监测实验台安装到了气吸滚筒式播种机上,并对监测控制系统的性能进行了测试。测试结果表明:采用基于计算机视觉的播种质量监测平台可以成功地监测到排种器的重播指数和漏播指数。最后,对不同气吸滚筒负压差下的播种质量进行了检测,并将计算机视觉监测和人工监测的数据进行对比,对比结果表明:采用计算机视觉监测系统得到的结果和人工监测结果基本吻合,且播种的合格率较高,满足精密播种机的作业需求。 相似文献
16.
针对世界四大主要油料作物之一的向日葵种子的分选问题,结合近红外技术和计算机视觉技术,进行了根据向日葵种子内部含油率高低不同的自动分选系统设计开发。依据不同含油率种子在近红外光下的成像特征,将向日葵种子区分为两个级别。该系统由Labview计算机视觉系统、红外光发生器、图像采集卡、黑白照相机、40 W的环形灯、白色的照相纸及X射线图像处理工作站组成。运用所设计样机进行向日葵种子分选试验,结果表明:与化学分析方法相比较,本系统设计含油率分选准确,从而为满足不同市场需求的向日葵种子分选提供一种方便、快捷的方法,提高了向日葵种子的市场价格经济效益。 相似文献
17.
首先介绍了基于视觉的目标对象检测算法,然后介绍了计算机姿态识别与传感器检测技术,并确定了玉米定向精播种粒品质动态检测方法,进行了实际的测试试验.测试结果表明:基于计算机姿态识别的玉米定向精播种粒品质动态检测准确率在95%以上,精准度较高,符合设计需求,能够实现对玉米定向的精准播种,对玉米种粒的无人化播种具有重要的现实意... 相似文献
18.
计算机视觉在芒果品质检测中的应用研究 总被引:1,自引:0,他引:1
传统的芒果分级采用人工观察和化学分析方法,无法适应产业的发展。随着科学的进步,人们开发出多种无损检测和分级技术以提高水果的市场竞争力,但受检测和分级设备的限制,目前的相关研究都停留在试验阶段。为此,设计了一种基于计算机视觉的芒果品质检测方法,拍摄芒果图像后利用自适应Canny算法获取目标区域的边缘,以大小、颜色和表面缺陷反映芒果的品质,并基于BP神经网络实现对芒果的分级。仿真试验表明:计算机视觉对芒果品质分级的准确率超过93%,处理单张图像平均耗时0.8s,可以用于芒果品质的实时检测和在线分级。 相似文献
19.
基于计算机视觉的成熟番茄识别研究 总被引:1,自引:0,他引:1
以番茄图像为研究对象,提出一种成熟番茄识别方法。首先,以HSI模型中的色调分量为基础进行图像分割,提取出成熟番茄目标图像;然后,再采用最大方差自动取阈值法进行分割处理,对得到的目标图像进行轮廓提取;最后,对轮廓曲线采用Hough变换的方法进行识别,以同一个轮廓圆识别的多个极值点的均值作为最终识别结果,在Hough变换之前采用最小外接矩形法进行有效区域标记,提高了Hough变换的效率。通过多幅番茄果实图像的仿真测试表明:本算法对果实遮掩度为0、小于50%、大于50%这3种情况的识别率分别为78.7%、6 8.1%、4 1.9%,平均识别率达到7 0.6%。本算法对于成熟番茄可以较好识别,尤其对于存在重叠情况的番茄,识别准确率较高。 相似文献
20.
我国茶叶种植面积和产量均为世界第一,是特色农业的重要组成部分;但我国茶叶品质检测体系不完善,分级技术水平不高,影响了产品在国际市场上的竞争力。传统的茶叶分级是由人工分析判断,具有较大的局限性。计算机视觉是一种新型的图像处理技术,已经应用于茶叶品质分析。为此,将拍摄的茶叶和茶水图像进行预处理、灰度化和阈值分割,获得目标轮廓并分析颜色特征,并通过建模集样本确定用于色泽检测的特征量,然后对检验集样本进行色泽检测。结果表明:检验集中被错误识别的茶叶种类极少,总体的识别准确率达到9 0%,为准确评价茶叶的色泽品质提供了技术支持。 相似文献