共查询到20条相似文献,搜索用时 50 毫秒
1.
2.
3.
采用人工检测的石榴外观品质等级分级方法存在准确率和效率低的问题,提出一种基于机器视觉的石榴品质分级方法。首先,采用机器视觉系统采集石榴样本图像,进行去噪处理与获取掩模图像;其次,提取去噪图像的红、绿、蓝分量,用蓝色分量减去红、绿色分量得到色差图像,并对色差图像进行阈值分割;然后,对分割图像采用数学形态学处理获得连通的疑似缺陷区域的边界,提取纹理特征并根据缺陷与非缺陷区域纹理特征的不同来标记缺陷区域;最后,将缺陷面积与总面积之比和缺陷数目作为划分等级的依据,对石榴品质等级进行划分。试验结果表明:本方法总体分级准确率达到92.9%,能够高效、准确地识别石榴表面缺陷并进行品质分级,为实现自动分级的产业化提供思路。 相似文献
4.
5.
6.
基于机器视觉的荔枝果实采摘时品质检测技术 总被引:4,自引:0,他引:4
为了在荔枝采摘时实时判断果实的品质状态,通过分析自然环境中荔枝不同生长期的图像,对荔枝果实未成熟、成熟、成熟后外表腐烂变质的3种情况进行了图像数据分析。选取了YCbCr颜色模型,利用探索性分析法对荔枝不同部位、不同光照、不同生长期的荔枝图像的Cr分量进行了数据分析与统计,确定了辨识荔枝果实未成熟与成熟的Cr分量的阈值范围;对于成熟的荔枝,采用边缘提取与Hough圆拟合方法对其Cr分量图进行处理,标记出图像的荔枝果实,然后利用纹理统计法、颜色特征与果实不同部分面积比值相结合的方法进行果实变质的判断,最终实现了未成熟、成熟以及腐烂变质的荔枝果实的视觉智能判断,建立了荔枝果实品质辨识的智能系统。试验结果表明,辨识荔枝品质状态的正确率达93%。 相似文献
7.
《农机化研究》2021,43(12)
针对白菜种子,以北京小杂55号为研究对象,使用机器视觉技术获取种子10个颜色特征和6个形状特征,再通过单粒种子萌发试验确定种子活力,并使用曼-惠特尼U检验分析种子活力与图像特征的相关性。将显著相关图像特征与种子发芽实验结果组成数据集,结合偏最小二乘判别分析法建立分类模型,并通过MatLab软件进行了仿真分析。结果表明:白菜种子的R分量均值、R分量标准差、G分量均值、G分量标准差、B分量标准差、H分量均值、H分量标准差、S分量均值、S分量标准差和圆形度P与白菜种子活力显著相关。结合这些特征,使用偏最小二乘判别分析法建立分类模型,进行种子精选,可以将该批白菜种子发芽率由原始50.67%提升至69.43%。由此表明,可通过机器视觉技术对白菜种子进行精选,从而提高种子的活力。 相似文献
8.
随着图像处理技术的专业化与计算机硬件成本的下降和计算机速度的提高,机器视觉技术在农产品品质自动检测领域应用已经越来越广泛。为了能充分利用国内外的最新研究成果,从小麦、水稻和玉米3种谷物综述了国内外在利用机器视觉技术进行外观品质检测的研究现状,同时,指出当今国内外研究中存在的问题和对今后研究的进一步展望。 相似文献
9.
10.
11.
玉米种子的品质关系到后期玉米种植收获的好坏,也是玉米收获后的重要加工环节,一般在收获的玉米中挑选出品质优良的作为种子。利用计算机视觉对玉米种子品质进行挑选,具有效率高、准确度高的优势,可代替传统的人工作业,节省了大量劳动力。计算机视觉技术是通过对玉米种子采集的图像进行格式转换、图像变换、图像直方图信息统计、图像增强、图像分割及形态学处理等一系列图像预处理技术,并提取有效图像进行分析验算。计算机视觉技术对玉米种子品质的研究主要表现在玉米种子的品种、纯度、活力、裂纹等方面的检测,本文对玉米种子的检测智能化进行了阐述,为后期研究提供参考。 相似文献
12.
13.
14.
计算机视觉在水稻大面积制种中的应用研究 总被引:1,自引:0,他引:1
水稻是我国最主要的粮食作物,在农业经济中占有重要的地位。水稻种植环境多样,高产稳产在很大程度上依赖于优良品种。制种是杂交稻生产的关键环节,种子质量对产量有着决定性的影响。随着科学技术的发展,无人机、物联网和计算机视觉等新技术在农业中得到了应用,推动了农业现代化进程。为此,将计算机视觉用于水稻大面积制种,实现对田间的空行和杂草杂株的识别,以及对父母本抽穗期的监测。试验表明:计算机视觉能够有效识别水稻空行,对杂株杂草的识别较为准确,没有出现误检的情况。计算机视觉监测的父母本抽穗期与实际接近,最大差异仅为1天,可以提高杂交种产量和纯度,推动水稻制种技术的发展。 相似文献
15.
16.
首先介绍了基于视觉的目标对象检测算法,然后介绍了计算机姿态识别与传感器检测技术,并确定了玉米定向精播种粒品质动态检测方法,进行了实际的测试试验.测试结果表明:基于计算机姿态识别的玉米定向精播种粒品质动态检测准确率在95%以上,精准度较高,符合设计需求,能够实现对玉米定向的精准播种,对玉米种粒的无人化播种具有重要的现实意... 相似文献
17.
为探索基于计算机视觉的马铃薯表面缺陷检测新方法,该研究提出能将马铃薯表面疑似缺陷一次性分离出来的快速灰度截留分割方法和用于缺陷识别的十色模型。选择面积比率和十色比率作为缺陷判别特征,对分割出来的深色部位采用阈值法进行缺陷识别。采用基于快速G与亮度截留分割的2种方法对发芽进行识别。通过对326个马铃薯样本的652幅正反面图像进行试验,基于十色模型的缺陷识别方法对分割出来的深色区域的正确识别率为93.6%,基于快速G与亮度截留分割2种方法结合对有芽体图像的正确识别率为97.5%,马铃薯表面缺陷正确检测率为95 相似文献
18.
蔬菜种子除芒机结构的设计与分析 总被引:1,自引:0,他引:1
简述了我国蔬菜除芒机械现状,提出了种子除芒机的设计原理,设计了5CM-135型蔬菜种子除芒机。同时,重点对该机械的主要部件进行了设计计算,确定了影响性能的主要结构,探索了新的工作原理和新的结构设计。通过田间试验验证了机械的性能良好,达到了技术标准。该机械工作可靠、生产率高,为进一步研究除芒机理与机具提供了依据。 相似文献
19.
优质农作物种子对于夺取农业丰收来说至关重要,农民有必要掌握一些种子质量鉴别方法。介绍大田种子和蔬菜种子的一些简单、易操作的鉴别方法,并针对凌源市设施蔬菜生产需要介绍常用设施蔬菜种子的质量鉴别方法,以期为农民在选购种子时提供依据,避免购买到假劣种子造成经济损失。 相似文献
20.
为了从混合的饱满红枣和干瘪红枣中识别出干瘪红枣,首先分析了颜色空间模型的特性,选择灰度图、RGB颜色空间模型的R分量、L*a*b*颜色空间模型的a*分量,并使用不同的梯度算子作为对比;然后通过形态学运算、逻辑运算去除异常梯度,进行梯度归一化变换;最后采用归一化的梯度直方图作为红枣表面的纹理特征表示方法,并计算其梯度分布不均匀性作为判别准则。利用12通道红枣分选机采集240幅饱满与202幅干瘪红枣图像作为样本图像。实验结果表明,采用简单梯度算子对L*a*b*模型的a*分量提取纹理信息效果最好,误判率为0.83%,正确识别率高达99.01%。 相似文献