首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Legumes' sensitivity to salt is exacerbated under growth conditions requiring nitrogen fixation by the plant. Phosphorus (P) deficiency is widespread in legumes, especially common bean (Phaseolus vulgaris L). To examine the performance of P. vulgaris under salt stress conditions, a field experiment was conducted using two recombinants inbred lines (RILs) 115 (P‐deficiency tolerant) and 147 (P‐deficiency susceptible), grown under different salinity levels (L) (1.56, 4.78, and 8.83 dS m?1 as LI, L2, and L3, respectively) and supplied with four P rates (0, 30, 60, and 90 kg ha?1 P as P0, P30, P60, and P90, respectively) in order to assess the impact of P on salt tolerance. Results indicate that growing both RILs at P60 or P90 under all salinity levels (especially L1) significantly increased total chlorophyll, carotenoids, total soluble sugars, total free amino acids, and proline. Increasing P supply up to P60 under all salinity levels significantly induced higher accumulation of P, K+, Ca2+ and Mg2+ leaves in both RILs. Based on quadratic response over all locations, the maximum seed yield of 1.465 t ha?1 could be obtained at application of P 81.0 kg ha‐1 in RIL115, while seed yield of 1.275 t ha?1 could be obtained with P rate of 78.3 kg ha?1 in RIL147. RIL115 exhibited more salt‐tolerance with positive consequence on plant biomass and grain yield stability. Improved salt tolerance through adequate P fertilization is likely a promising strategy to improve P. vulgaris salinity tolerance and thus productivity, a response that seems to be P‐rate dependent.  相似文献   

2.
The response of spring wheat to heat stress has been determined in several hot wheat growing environments worldwide on different types of germplasm. Physiological data has been collected to identify potential traits to assist in the empirical breeding for heat tolerance. Initial studies focused on 10 established varieties to determine genetic diversity for heat tolerance, identify association between heat tolerance and traits measured, and evaluate genotype by environment interaction (G x E). Yields from over 40 hot environments were analysed for G x E, and relative humidity (RH) was identified as the major factor determining relative genotype ranking. Further analysis focused on 16 environments: those with low RH and relatively high yields, i.e., over 2.5 t ha-1. For these environments, mean yield of lines correlated with a number of physiological traits measured in Mexico, including canopy temperature depression (CTD), membrane thermostability, leaf conductance and photosynthetic rate at heading, chlorophyll content during grainfilling, leaf internal CO2 concentration, and dark respiration. Morphological traits were measured in all environments and the following showed associations with yield: above ground biomass at maturity, days from emergence to anthesis and to maturity, grain number m-2, and ground cover estimated visually after heading. Subsequent studies focused on breeding material, namely recombinant inbred lines derived from crosses between parents of contrasting heat tolerance, and 60 advanced breeding lines selected for performance under heat stress. The genetic basis for association between heat tolerance and CTD was established by demonstrating a correlation between the two traits in RILs (recombinant inbred lines). Data from RILs, as well as from the 60 advanced lines grown at several international locations, indicated CTD to be a powerful and robust selection criterion for heat tolerance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
In the lowland regions of Latin America, a large proportion of beans are sown at the beginning of a dry season where a guaranteed terminal (end-of-season) drought will reduce yields. This study was undertaken to identify lines within two black bean recombinant inbred line (RIL) populations with resistance to terminal drought. The two RIL populations were developed from crosses between a drought resistant line, B98311 from Michigan, with TLP 19 and VAX 5, two lines from CIAT with improved disease resistance and adaptation to growing conditions in Latin America. The RIL populations were evaluated in experiments conducted in Zamorano, Honduras and Veracruz, Mexico under drought stress and well-watered (non-stress) treatments. Yields were reduced in each experiment by drought and the fungal pathogen, Macrophomina phaseolina. Drought stress, disease pressure and low yields contributed to high coefficients of variation (CV), which made it difficult to select superior lines. Selection was based on rank of geometric mean (GM) yield calculated from the yield in the stress and non-stress treatments. One RIL, L88-63 ranked first in GM yield at both locations. Subsequent testing in Honduras and Michigan confirmed the high yield potential and broad adaptation of L88-63. Breeding beans for drought resistance in lowland tropical environments should also include breeding for resistance to M. phaseolina. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Chickpea is the most important pulse crop globally after dry beans. Climate change and increased cropping intensity are forcing chickpea cultivation to relatively higher temperature environments. To assess the genetic variability and identify heat responsive traits, a set of 296 F8–9 recombinant inbred lines (RILs) of the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant) was evaluated under field conditions at ICRISAT, Patancheru, India. The experiment was conducted in an alpha lattice design with three replications during the summer seasons of 2013 and 2014 (heat stress environments, average temperature 35 °C and above), and post-rainy season of 2013 (non-stress environment, max. temperature below 30 °C). A two-fold variation for number of filled pods (FPod), total number of seeds (TS), harvest index (HI), percent pod setting (%PodSet) and grain yield (GY) was observed in the RILs under stress environments compared to non-stress environment. A yield penalty ranging from 22.26% (summer 2013) to 33.30% (summer 2014) was recorded in stress environments. Seed mass measured as 100-seed weight (HSW) was the least affected (6 and 7% reduction) trait, while %PodSet was the most affected (45.86 and 44.31% reduction) trait by high temperatures. Mixed model analysis of variance revealed a high genotypic coefficient of variation (GCV) (23.29–30.22%), phenotypic coefficient of variation (PCV) (25.69–32.44%) along with high heritability (80.89–86.89%) for FPod, TS, %PodSet and GY across the heat stress environments. Correlation studies (r = 0.61–0.97) and principal component analysis (PCA) revealed a strong positive association among the traits GY, FPod, VS and %PodSet under stress environments. Path analysis results showed that TS was the major direct and FPod was the major indirect contributors to GY under heat stress environments. Therefore, the traits that are good indicators of high grain yield under heat stress can be used in indirect selection for developing heat tolerant chickpea cultivars. Moreover, the presence of large genetic variation for heat tolerance in the population may provide an opportunity to use the RILs in future-heat tolerance breeding programme in chickpea.  相似文献   

5.
Salinity is a major abiotic stress to barley (Hordum vulgare L.) growth and yield. In the current study, quantitative trait loci (QTL) for yield and physiological components at the late growth stage under salt stress and non-stress environments were determined in barley using a double haploid population derived from a cross between CM72 (salt-tolerant) and Gairdner (salt-sensitive). A total of 30 QTLs for 10 traits, including tiller numbers (TN), plant height, spikes per line (SPL), spikes per plant (SPP), dry weight per plant, grains per plant, grain yield, shoot Na+ (NA) and K+ concentraitions (K) in shoot, and Na+/K+ ratio (NAK), were detected, with 17 and 13 QTLs under non-stress and salt stress, respectively. The phenotypic variation explained by individual QTL ranged from 3.25 to 29.81%. QTL flanked by markers bPb-1278 and bPb-8437 on chromosomes 4H was associated with TN, SPL, and SPP under salt stress. This locus may be useful in the breeding program of marker-assisted selection for improving salt tolerance of barley. However, QTLs associated with NA, K, and NAK differed greatly between non-stress and salt stress environments. It may be suggested that only the QTLs detected under salt stress are really associated with salt tolerance in barley. D. Xue and Y. Huang contributed equally to the article.  相似文献   

6.
A wheat (Triticum aestivum L.) recombinant inbred line (RIL) population was used to identify quantitative trait loci (QTL) associated with yield, yield components, and canopy temperature depression (CTD) under field conditions. The RIL population, consisting of 118 lines derived from a cross between the stress tolerant cultivar ‘Halberd’ and heat stress sensitive cultivar ‘Karl92’, was grown under optimal and late sown conditions to impose heat stress. Yield and yield components including biomass, spikes m?2, thousand kernel weight, kernel weight and kernel number per spike, as well as single kernel characteristics were determined. In addition, CTD was measured during both moderate (32–33 °C) and extreme heat stress (36–37 °C) during grain-filling. Yield traits showed moderate to high heritability across environments with a large percentage of the variance explained by genetic effects. Composite interval mapping detected 25 stable QTL for the 15 traits measured, with the amount of phenotypic variation explained by individual QTL ranging from 3.5 to 27.1 %. Two QTL for both yield and CTD were co-localized on chromosomes 3BL and 5DL and were independent of phenological QTL. At both loci, the allele from Halberd was associated with both higher yield and a cooler crop canopy. The QTL on 3BL was also pleiotropic for biomass, spikes m?2, and heat susceptibility index. This region as well as other QTL identified in this study may serve as potential targets for fine mapping and marker assisted selection for improving yield potential and stress adaptation of wheat.  相似文献   

7.
High temperature is a major environmental stress factor limiting wheat (Triticum aestivum L.) productivity. Improvement of heat tolerance in wheat is an important breeding objective. Genetic variation in cellular thermotolerance among 56 spring wheat cultivars was evaluated at the seedling stage of growth by cell membrane thermostability (CMS) and triphenyl tetrazolium chloride (TTC) assays. A subset of eight lines was also evaluated at the flowering stage using the same assays. With both assays Average thermotolerance tended to decrease from the seedling to the flowering stages. However, thermotolerance was well correlated between growth stages among the eight cultivars for both CMS (r = 0.92; p = 0.004) and TTC (r = 0.84; p = 0.050). The correlation between TTC and CMS among the eight cultivars tested at the seedling and the flowering growth stages was significant (r = 0.74; p = 0.031 and r = 0.75; p = 0.029, respectively). The same correlation was less strong, though still significant (r = 0.32; p = 0.014) across 56 cultivars at the seedling stage. In a study of the cross V747 (tolerant)/Barkaee (susceptible), broad sense heritability was estimated at 89% for TTC. Most of the genetic variance was additive. CMS in seedlings of 16 cultivars was positively and significantly (p ≤ 0.05) correlated with yields of these cultivars in each of four hot environments in Mexico, Sudan, India, and Brazil. The same correlations for TTC were positive but nonsignificant. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Drought tolerance is one of the most important objectives of sugar beet breeding programs in semi-arid regions, particularly during the last decade. Due to global climate changes and limitations of agricultural irrigation water, varieties with drought tolerance are taken into consideration in order to avoid yield losses due to drought. In this study, drought tolerance of 76 S1 lines (full-sib families) that had been extracted from a genetically broad base multigerm sugar beet open pollinated population, were examined. Test crosses were made between the lines as pollinators and a cytoplasmic male sterile (CMS) single cross. The consequent hybrids along with checks were evaluated during 2007 and 23 more tolerant hybrids during 2008, in two adjacent experiments under drought stress and non-stress conditions. Drought tolerance indices calculated based on sugar yield, such as mean productivity (MP), geometric mean productivity (GMP) and stress tolerance index (STI) were used to assess hybrids responses to drought. The results showed significant genetic differences for root yield and sugar yield under both conditions. Drought tolerance indices displayed significant genetic variability for sugar yield among the hybrids. Many hybrids were drought tolerant as compared with the original base population as indicated by their high STI. The estimates of heritability for sugar yield in stress and non-stress conditions were much close to each other (0.31 and 0.34, respectively). Whereas, for root yield the heritability estimate in stress condition (0.46) was relatively higher than that in non-stress condition (0.34). Significant differences were observed among the selected hybrids for root yield and sugar yield, indicating genotypic variability for pollinator lines derived from the population. There were no significant differences for sugar content. For increasing the drought tolerance potential in a breeding population and developing drought-tolerant varieties by male parent, the drought-tolerant lines could be used.  相似文献   

9.
Sorghum, Sorghum bicolor L. Moench, is grown mostly in semi-arid climates where unpredictable drought stress constitutes a major production constraint. To investigate hybrid performance at different levels of drought stress, 12 single-cross hybrids of grain sorghum and their 24 parent lines were grown in eight site-season combinations in a semi-arid area of Kenya. In addition, a subset of 20 genotypes was evaluated at the seedling stage under polyethylene glycol (PEG)-induced drought stress. Environmental means for grain yield ranged from 47 to 584 g/m2reflecting the following situations: two non-stress, one moderate pre-flowering, four moderate terminal and one extreme drought stress. Mean hybrid superiority over mid-parent values was 54% for grain yield and 35% for above-ground biomass. Across environments, hybrids out-yielded two local varieties by 12%. Differences in yield potential contributed to grain yield differences in all stress environments. Early anthesis was most important for specific adaptation to extreme drought. Field performance was not related to growth reduction and osmotic adjustment under PEG-induced drought stress. In conclusion, exploitation of hybrid vigour could improve the productivity of sorghum in semi-arid areas.  相似文献   

10.
Two experiments were conducted in the Rift Valley, Ethiopia (8°N and 39°E) to determine associations between eight plant traits and seed yield, and to obtain estimates of narrow sense heritability for the traits. Experiment I evaluated seven dry edible bean cultivars/lines at two locations to simulate different soil moisture stress, including, Debre Zeit(non-stress) and Dera (moderate-stress). Experiment II evaluated 25 cultivars/lines in three environments including, Melkassa early planted (non-stress), Melkassa late planted (high-stress), and Dera (moderate-stress). A randomized-complete-block design with three replicates was used in both experiments. Plant traits evaluated were seed yield, pods plant-1, seeds pod-1, 100 seed weight, root dry weight, hypocotyl diameter, plant biomass, plant height and days to flowering. Plant traits that were significantly associated with seed yield were included in a stepwise-regression model to determine which trait or combination of traits provided the best model to estimate seed yield in each environment. An analysis of variance was conducted to test main effects and interactions between plant traits and environments. Significant variation among lines occurred for seed yield and all plant traits in both experiments. Strong positive correlations were observed between plant biomass and seed yield in all environments. Seed yield and pods plant-1 were also highly associated in four of the five environments. Stepwise regression models indicated that the combination of pods plant-1 and plant biomass consistently contributed to seed yield prediction, while other traits did not. Because both plant biomass and pods plant-1 had moderate to high narrow sense heritability estimates and low GE interactions, they should be useful as indirect selection criteria to improve and stabilize seed yield in a breeding program. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Choice of selection strategy in breeding barley for stress environments   总被引:1,自引:0,他引:1  
To determine the optimum selection environment for barley (Hordeum vulgare L.) targeted at low-input, stress environment, barley lines were selected for high yield under stress (YS), high yield under non-stress (YNS), or average yield in stress and non-stress conditions (YA) during three breeding cycles (cohorts) of three years each. The lines were then tested in a total of 21 year-location combinations with average grain yields ranging from 0.35 to 4.86 t ha-1. Yield under stress of the YS lines was between 27% and 54% higher than that of the YNS lines, with the top YS lines yielding under stress between 16% and 30% more than the top YNS lines. Realized heritability was between 0.35 and 0.67 when selection was conducted under stress and was significant in all three cohorts. By contrast, selection under non-stress gave a significant response in only one cohort, and its efficiency in improving yield under stress was significantly lower than selection under stress. The best YNS line ranked only 19th for yield under stress. The highest-yielding lines under stress were not only selected under stress, but were also landraces collected in very dry areas (< 250 mm total annual rainfall). This confirms earlier findings and supports the idea that the most effective way to improve productivity of crops grown in less-favored areas is to use locally adapted germplasm and select in the target environment(s). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Thorough understanding of the genetic mechanisms governing drought adaptive traits can facilitate drought resistance improvement. This study was conducted to identify chromosome regions harbouring QTLs contributing for water stress resistance in wheat. A RIL mapping population derived from a cross between W7984 (Synthetic) and Opata 85 was phenotyped for root length and root dry weight under water stress and non-stress growing conditions. ANOVA showed highly significant (p ≤ 0.01) variation among the RILs for both traits. Root length and root dry weight showed positive and significant (p ≤ 0.01) phenotypic correlation. Broad sense heritability was 86% for root length under stress and 65% for root dry weight under non-stress conditions. A total of eight root length and five root dry weight QTLs were identified under both water conditions. Root length QTLs Qrln.uwa.1BL, Qrln.uwa.2DS, Qrln.uwa.5AL and Qrln.uwa.6AL combined explained 43% of phenotypic variation under non-stress condition. Opata was the source of favourable alleles for root length QTLs under non-stress condition except for Qrln.uwa.6AL. Four stress specific root length QTLs, Qrls.uwa.1AS, Qrls.uwa.3AL, Qrls.uwa.7BL.1 and Qrls.uwa.7BL.2 jointly explained 47% of phenotypic variation. Synthetic wheat contributed favourable alleles for Qrls.uwa.1AS and Qrls.uwa.3AL. Two stable root dry weight QTLs on chromosomes 4AL and 5AL were consistently found in both water conditions. Three validation populations were developed by crossing cultivars Lang, Yitpi, and Chara with Synthetic W7984 to transfer two of the QTLs identified under stress condition. The F2.3 and F3.4 validation lines were phenotyped under the same level of water stress as RILs to examine the effect of these QTLs. There were 13.5 and 14.5% increases in average root length due to the inheritance of Qrls.uwa.1AS and Qrls.uwa.3AL, respectively. The result indicated that closely linked SSR markers Xbarc148 (Qrls.uwa.1AS) and Xgwm391 (Qrls.uwa.3AL) can be incorporated into MAS for water stress improvement in wheat.  相似文献   

13.
S. S. Dhanda    R. Munjal 《Plant Breeding》2006,125(6):557-564
Leaf membrane stability (LMS) and the tetrazolium triphenyl chloride (TTC) test, heat susceptibility index (HSI), heat response index (HRI) and grain yield were used to evaluate 20 diverse wheat genotypes under normal and heat stress conditions for 2 years. The varieties ‘Seri’ and ‘Raj 3765’ had a desirable combination of cellular thermotolerance (TTC and LMS), heat tolerance (HRI) and high grain yield potential under heat stress, while ‘WH 730’ and ‘WH 533’ were better in cellular thermotolerance and heat tolerance. The varieties ‘PBW 373’ and ‘Kauz’ also performed better under heat stress in terms of grain yield and HSI/HRI. The varieties ‘Kanchan’, ‘PBW 373’, ‘NIAW 34’ and ‘GW 173’ were avoiders/escapers, ‘Seri’ and ‘HUW 234’ were tolerant to heat stress, while ‘WH 730’, ‘WH 533’, ‘Nesser’, ‘Raj 3765’ and ‘Kauz’ showed a combination of both. Correlation coefficients revealed that HRI was the most important trait, followed by TTC because the genotype having high HRI also had high grain yield and was better in mitochondrial viability and membrane stability under heat stress. Significance of GCA and SCA variances indicated the presence of both additive and dominant types of gene action. The use of the parents with high GCA effects, namely, ‘Raj 3765’ and ‘WH 730’ in a crossing programme for thermotolerance may provide desirable segregants through selection.  相似文献   

14.
To examine the extent to which heat stress during grain filling impacts on the development and yield of winter wheat (Triticum aestivum L.), a 3-year field experiment was conducted on a loess soil with high water holding capacity in the North German Plain. Thirty-two mostly European winter wheat cultivars were exposed to heat stress in a mobile foil tunnel with maximum air temperatures of 45.7, 45.4, and 47.2°C in 2015, 2016, and 2017, respectively. The 14-day post-anthesis heat stress treatment caused an average 57.3% grain yield reduction compared to a close-by non-stressed control. The proportion of green crop area after the heat stress phase varied from 7% to 98% in 2016 and from 37% to 94% in 2017. The green crop area percentage did not significantly correlate with grain yield, indicating that the delayed senescence of stay-green phenotypes offers no yield advantage under terminal heat stress. The water soluble carbohydrate (WSC) concentration of the stems at crop maturity varied between 6 and 92 g/kg dry matter, showing that the genotypes differed in their efficiency at using the stem carbohydrate reserves for grain filling under heat stress. The stem WSC concentration correlated positively with the beginning of anthesis (r = 0.704; p < .001) but negatively with the grain yield (r = −0.431; p < .05). For heat tolerance breeding, the stem reserve strategy, i. e. the rapid and full exhaustion of the temporary carbohydrate storage therefore seems more promising than the stay-green strategy.  相似文献   

15.
D. M. Tucker    C. A. Griffey    S. Liu    M. A. Saghai Maroof   《Plant Breeding》2006,125(5):430-436
Three quantitative trait loci (QTL) associated with adult plant resistance (APR) to powdery mildew (Blumeria graminis) in wheat (Triticum aestivum) cultivar ‘Massey’ were mapped in a previous study. The three QTL were located on chromosomes 2A, 2B and 1B, and explained 50% of the total phenotypic variation. A 293 recombinant inbred line (RIL) breeding population (UJ) derived from the cross of ‘USG 3209’, a derivative of ‘Massey’, and ‘Jaypee’ was used to evaluate the potential effectiveness of marker‐assisted selection (MAS) for APR. Powdery mildew severities of the 293 UJ RILs were evaluated in 2002 (F5 : 6) and 2003 (F6 : 7) under natural disease pressure in the field. The 293 RILs were also evaluated for disease severity in a 2004 (F7 : 8) greenhouse experiment using a composite of five different isolates of B. graminis. Selection of RILs possessing the QTL on chromosome 2A, and to a lesser extent, the one on chromosome 1B was effective in identifying powdery mildew resistance in both greenhouse and field experiments. Overall, selecting RILs with QTL on chromosomes 2A and 2B was most successful in identifying highly resistant RILs, which had mean mildew severities of 4.4% and 3.2% in 2002 and 2003 field experiments, respectively. Breeders implementing MAS programs for APR to powdery mildew via selection of RILs containing the two QTL on chromosomes 2A and 2B likely will obtain RILs having high levels of resistance in the field, however combining all three QTL may ensure greater durability.  相似文献   

16.
Rice is a typical silicon-accumulating plant and the beneficial effect of silicon on rice has long been recognized. In a previous study using 244 recombinant inbred lines (RILs) of an indica rice cross, Zhenshan 97B/Milyang 46 grown in 2003, four QTLs were detected for hull silicon content. QTL qHUS-6 had the largest effect among these, and the same interval also had significant effects on yield traits in the same population. The primary objective of this study was to validate the QTL effect in this region on HUS and yield traits. The same RIL population and another RIL population of lower heterogeneity were grown in 2004. QTL qHUS-6 was found to have significant additive effects on hull silicon content with a consistent direction in the two populations. From a residual heterozygous line selected from RILs of the same cross, 15 F2:3 lines that differed only in a 2.15-Mb segment extending from RM587 to RM6119 on the short arm of chromosome 6 were derived. In these lines, qHUS-6 displayed a major effect, so did QTLs for yield traits previously detected in the same region. Two more QTLs for HUS detected in 2003, qHUS-1-1 and qHUS-1-2, also had consistent effects in the Zhenshan 97B/Milyang 46 RIL population in 2004. Thus this study verified three candidate regions for fine mapping HUS QTLs and determining the genetic relationship between silicon content and yield traits in rice.  相似文献   

17.
Quantitative trait loci (QTL) affecting resistance to south-western corn borer Diatraea grandiosella (SWCB) and sugarcane borer Diatraea saccharalis (SCB) have been identified previously in F2:3 lines and recombinant inbred lines (RILs) of tropical maize using restriction fragment length polymorphism (RFLP) analyses. Our objective was to determine whether QTLs identified in these generations are also expressed in test crosses (TC) of RILs. A population of 166 TC progenies was developed by crossing RILs from the cross CML131 (susceptible) × CML67 (resistant) with the unrelated, susceptible tester line CML216. Resistance to first-generation SWCB, measured as leaf-feeding damage (LFD) under artificial infestation, and other agronomic traits were evaluated in two environments for the TC progenies and three environments for 183 RILs. The correlation between line per se and TC performance was low for LFD and intermediate for most agronomic traits. Estimates of the genotypic variance and heritabilities were smaller in the TC progenies than in the RILs for all traits. Quantitative trait loci were identified using an RFLP linkage map with 136 loci. For LFD, four QTLs were detected in the TC progenies, of which two were in common with nine QTLs previously mapped in the RILs. Few QTLs for agronomic traits were common to the two types of progeny, because of the low consistency of QTL positions for all traits in RIL and TC progenies, the use of TC progenies should be considered in QTL mapping studies as the first step for marker-assisted selection in hybrid breeding.  相似文献   

18.
The induction of flowering under long‐day conditions is an important adaptation by short‐day plants, such as adzuki beans (Vigna angularis), to high‐latitude environments. This study clarified the genetic control underlying the long‐day insensitivity of adzuki bean cultivar ‘Shumari’. ‘Shumari’ was found to be insensitive to a 16‐h day, whereas landrace Acc2265 was highly sensitive. When grown under natural long‐day conditions at Obihiro (42°9′N), Acc2265 initiated flowering at least 80 days after ‘Shumari’. When 86 recombinant inbred lines (RILs) derived from crosses between ‘Shumari’ and Acc2265 were grown under these conditions, their flowering dates ranged from the middle of July to the end of October. The distinct bimodal distribution in the RIL population was due to a single major gene, designated Flowering Date1 (FD1). Molecular mapping showed that FD1 was located between the SSR markers Az02‐37M3 and Az02‐40M9, at distances of 6 and 10.4 cM, respectively, on linkage group 2. RILs carrying FD1S lacked long‐day sensitivity, whereas RILs carrying FD1A were sensitive to long‐day conditions, confirming that FD1 controls long‐day sensitivity.  相似文献   

19.
The biomass allocation pattern of plants to shoots and roots is a key in the cycle of elements such as carbon, water and nutrients with, for instance, the greatest allocations to roots fostering the transfer of atmospheric carbon to soils through photosynthesis. Several studies have investigated the root to shoot ratio (R:S) biomass of existing crops but variation within a crop species constitutes an important information gap for selecting genotypes aiming for increasing soil carbon stocks for climate change mitigation and food security. The objectives of this study were to evaluate agronomic performance and quantify biomass production and allocation between roots and shoots, in response to different soil water levels to select promising genotypes for breeding. Field and greenhouse experiments were carried out using 100 genotypes including wheat and Triticale under drought‐stressed and non‐stressed conditions. The experiments were set‐up using a 10 × 10 alpha lattice design with two replications under water stress and non‐stress conditions. The following phenotypic traits were collected: number of days to heading (DTH), number of productive tillers per plant (NPT), plant height (PH), days to maturity (DTM), spike length (SL), kernels per spike (KPS), thousand kernel weight (TKW), root biomass (RB), shoot biomass (SB), root to shoot ratio (R:S) and grain yield (GY). There was significant (p < 0.05) variation for grain yield and biomass production because of genotypic variation. The highest grain yield of 247.3 g/m2 was recorded in the genotype LM52 and the least was in genotype Sossognon with 30 g/m2. Shoot biomass ranged from 830 g/m2 (genotype Arenza) to 437 g/m2 (LM57), whilst root biomass ranged between 603 g/m2 for Triticale and 140 g/m2 for LM15 across testing sites and water regimes. Triticale also recorded the highest R:S of 1.2, whilst the least was 0.30 for wheat genotype LM18. Overall, drought stress reduced total biomass production by 35% and R:S by 14%. Genotypic variation existed for all measured traits useful for improving drought tolerance, whilst the calculated R:S values can improve accuracy in estimating C sequestration potential of wheat. Wheat genotypes LM26, LM47, BW140, LM70, LM48, BW152, LM75, BW162, LM71 and BW141 were selected for further development based on their high total biomass production, grain yield potential and genetic diversity under drought stress.  相似文献   

20.
Exploiting genetic variation through inter-specific breeding has improved cotton yield, fibre properties and adaptability. The objectives of this study were to examine heritability and predicted selection response of yield components and fibre properties in a recombinant inbred line (RIL) population from an inter-specific cross between Gossypium hirsutum (Gh) variety Guazuncho 2, and G. barbadense (Gb) line VH8-4602. A population of 93 and 82 RILs was tested in two seasons, with two parents and local controls, Sicot 75 (Gh) and Sipima 280 (Gb) in field experiments. Seed cotton samples hand harvested before and after defoliation were used to measure lint percent, boll weight, 100 seed weight and the lint to measure fibre length, uniformity, short fibre index (SFI), elongation, strength, micronaire, maturity ratio (MR), percent of maturity (PM) and fineness. There was large phenotypic variation for individual traits and transgressive segregation occurred in lint percent, lint weight/seed, fibre no./seed, uniformity, SFI, elongation, MR and PM. Narrow sense heritabilities were moderate for yield components (34.3–41.2%) and for key fibre properties, length, strength, micronaire and fineness (38.3–42.1%), which led to a predicted selection response of 6.7–24.0% for yield components and 3.9–10.9% for key fibre properties under a selection intensity of 10%. Favourable associations were found between key fibre properties, but an adverse association between lint percent and each of these fibre properties. Only five RILs were identified with desirable combinations. The results demonstrated the value of exploiting inter-specific variation to develop cotton germplasm and how breeding strategies can be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号