首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flow-based transpiration was measured to parameterize Jarvis-type models of gc and thus to simulate Ec of Populus cathayana using the Penman–Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Ec and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in gc, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91 × 10?3 (with the time lag) and 3.12 × 10?3 cm h?1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10?3 cm h?1.  相似文献   

2.
通过对黑龙江省西部地区不同结构农田防护林蒸腾耗水与节水潜力的试验研究,结果表明,黑龙江省西部地区不同结构农田防护林蒸腾耗水量的月变化有明显的差异性,其中落叶松纯林在8月的蒸腾耗水量最大,理论值为1319.67mm,实际值为723.75mm,而樟子松纯林6月的蒸腾耗水量最小,理论值为29.4mm,实际值为15.64mm;对生长季不同结构农田防护林的蒸腾耗水量进行了排序,其实际蒸腾耗水量排序为:落叶松纯林樟子松和小黑杨混交林落叶松和小黑杨混交林银中杨成林小黑杨纯林樟子松纯林银中杨幼林;给出了不同结构农田防护林的节水潜力,其差异很大,其中落叶松纯林节水潜力最大,理论上节水2586.9kg·hm-2,实际上可节水1284.69kg·hm-2,且樟子松与小黑杨混交林的实际节水量与之相当。  相似文献   

3.
Lack of data on water use of key species of drylands constitutes an obstacle to understanding their role in hydrological processes in this environment. To elucidate seasonal variation in water consumption by Vitellaria paradoxa, the dominant species of parklands of the semi-arid areas of West Africa, we’ve measured its transpiration using heat ratio method (HRM) and seven potential explanatory variables. Sap flux was found to be significantly different among years with 0.64, 0.59 and 0.67 L h?1 dm?2 in 2008, 2009 and 2010, respectively. Sap flux was significantly higher in the dry (0.73 L h?1 dm?2) than in the wet season (0.53 L h?1 dm?2). Nighttime sap flux during dry season (0.48 L h?1 dm?2) was significantly higher than that of the wet season (0.20 L h?1 dm?2) and it contributes on average to 26% of daily sap flow with a maximum reaching 49%. The mean transpiration rate per tree was 151 L day?1 and all measured variables except rainfall and soil water content were significantly correlated with sap flux. These correlations were stronger (higher R value) during the rainy than in the dry season. Vapor Pressure Deficit (VPD) explained the highest proportion of sap flux variation and their curve was of parabolic type (R2 = 0.54) indicating that V. paradoxa can probably down-regulate its canopy conductance beyond a certain threshold of VPD, which is about 3 kPa in the present study. Future studies should investigate such hypothesis as well as the impacts of the variation of V. paradoxa transpiration due to climatic variables on hydrological cycles.  相似文献   

4.
对嫩江中下游地区小黑杨片林及林网内农作物的水分生产率进行了研究,结果表明:嫩江流域中下游地区小黑杨林分的水分生产率为1.113,较全国农业平均水分生产率(0.8)相对提高39.13%;500 m×500 m的小黑杨农田防护林网,在树高达到10 m时,可使网内农作物的水分生产率提高12.9个百分点,效益十分显著,说明本地区的产业结构是科学的、合理的。  相似文献   

5.
Black locust (Robinia pseudoacacia) is a major reforestation species in the semiarid region in the Loess Plateau of China. There has been increasing concern about the sustainability of the plantations because of their possible high water-use. This study was, accordingly, undertaken to quantify the stand-scale water use of a middle-aged black locust plantation in the region. The thermal dissipation probe method was applied to 27 trees to measure sap flux densities in an experimental plot during the growing season of 2008. The monoculture stand has a basal area of 23.3 m2 ha?1 and a maximum plant area index (PAI) of 2.89. Sapwood areas were estimated by use of a regressive relationship with the diameter at breast height (DBH) for scaling up of stand transpiration. The results showed that DBH could be a good predictor of sapwood area of individual trees. The diurnal cycles of average sap flux densities differed among DBH classes. Daily transpiration can be predicted from mean daily daytime vapor pressure deficit (VPDm) using a fitted exponential saturation model. Model variables were different among seasons, probably owing to different soil water conditions and leaf phenology. By using the derived model for each month, stand canopy transpiration over the growing season was estimated to be 73.8 mm, with an average daily value of 0.41 mm day?1 and a maximum of 0.89 mm day?1. The relatively small estimates of stand transpiration might be attributed to low PAI and sap wood area of the middle-aged stand.  相似文献   

6.
Cacao trees under different shade tree shelter: effects on water use   总被引:1,自引:1,他引:0  
We asked how shade tree admixture affects cacao water use in agroforests. In Central Sulawesi, Indonesia, cacao and shade tree sap flux was monitored in a monoculture, in a stand with admixed Gliricidia trees and in a mixture with a multi-species tree assemblage, with both mixtures having similar canopy openness. A Jarvis type sap flux model suggested a distinct difference in sap flux response to changes in vapor pressure deficit and radiation among cacao trees in the individual cultivation systems. We argue that differences originate from stomatal control of transpiration in the monoculture and altered radiation conditions and a different degree of uncoupling of the VPD from the bulk atmosphere inside shaded stands. Probably due to high sap flux variability among trees, these differences however did not result in significantly altered average daily cacao water use rates which were 16 L day?1 in the multi-species assemblage and 22 L day?1 in the other plots. In shaded stands, water use of single cacao trees increased with decreasing canopy gap fraction in the overstory since shading enhanced vegetative growth of cacao fostering transpiration per unit ground area. Estimated transpiration rates of the cacao tree layer were further controlled by stem density and amounted to 1.2 mm day?1 in the monoculture, 2.2 mm day?1 for cacao in the cacao/Gliricidia stand, and 1.1 mm day?1 in the cacao/multi-species stand. The additional transpiration by the shade trees is estimated at 0.5 mm day?1 for the Gliricidia and 1 mm day?1 for the mixed-species cultivation system.  相似文献   

7.
The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g.m^-2.month ^-1 in June 2004 (simplified expression of g (carbon).m^-2.month^-1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g-m^-2.a^-1 (simplified expression of g (carbon).m^-2.a^-1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD 〈 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD 〉 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol.m^-2.s^-1kPa -1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol.m^-2.s-1.kPa^-1. Under humid conditions (VPD 〈 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.  相似文献   

8.
Canopy transpiration (E c) of a 50-year-old Pinus canariensis Chr. Sm. Ex DC. stand at tree line in Tenerife, Canary Islands, was estimated continuously throughout a year from March 1, 2008, to February 28, 2009, by means of xylem sap flow measurements. E c varied markedly throughout the entire year generally following the seasonal trends in soil water availability and varied between 0.89 mm day?1 under the conditions of non-limiting soil water availability and close to zero under soil drought. This is because canopy conductance declined significantly with increasing evaporative demand and thus significantly reduced tree water loss, and this decrease was more pronounced during the soil drought. Total annual E c was 79.6 mm, which is significantly below the values estimated for other Mediterranean forest ecosystems and even 70 % lower than the value estimated for a P. canariensis forest at 1,650 m a.s.l. where the soil water content was higher than at the tree line site. Therefore, these results highlighted the importance of drought stress in tree line ecotone and should be taken more into account in semiarid tree lines.  相似文献   

9.
In a Metasequoia glyptostroboides coastal forest shelterbelt near Shanghai, China, we studied relationships between stand structure and wind shelter effect. We located 16 plots at intervals of 500 m along the shelterbelt and characterized both horizontal and vertical structure of each plot. Wind speed was measured within each plot and at different distances windward and leeward. We found that wind shelter effects were closely related to stand structure of the studied M. glyptostroboides shelterbelt. Stands with high basal area but intermediate crown index and intermediate proportion of large trees (LT) produced the best shelter effects, with significantly longer shelter distance (d70, shelter distance which the wind speed U does not exceed 70 % of U 0) and slightly lower minimum relative wind speed (U m /U 0). Simple structural indices that can be easily measured in the field were good predictors of the shelter effect. LT was the best predictor of d70, while basal area at ground level was the best predictor of U m/U 0. The relationships between stand structure and shelter effect provides a practical guideline to the design, construction and management of forest shelterbelts. In order to provide the best shelter effects, high basal area of >50 m2 ha?1 at ground level or >33 m2 ha?1 at breast height coupled with an intermediate LT value of about 60 % should be maintained for the studied M. glyptostroboides shelterbelt.  相似文献   

10.
In this paper, we studied the nocturnal stem water recharge of Acacia mangium. It is helpful to improve the precision of canopy transpiration estimation and canopy stomatal conductance, and to further understand the lag time of canopy transpiration to stem sap flow. In this study, the whole-tree sap flow in an A. mangium forest was measured by using Granier’s thermal dissipation probe for over two years in the hilly land of South China. The environmental factors, including relative humidity (RH), precipitation, vapor pressure deficit (VPD), photosynthetically active radiation (PAR), and air temperature (T a) were recorded simultaneously. The stem water recharge of A. mangium was analyzed on both daily and monthly scales. Sap flux density was lower at night than during the day. The time range of nighttime sap flux density was longer in the dry season than in the wet season. The water recharging mainly occurred from sunset to midnight. No significant differences were observed among inter-annual nighttime water recharges. Nighttime water recharge had no significant correlation with environmental factors, but was well correlated with the diameter at breast height, tree height, and crown size. In the dry season the contribution of nighttime water recharge to total transpiration had significant correlations with daytime transpiration, total transpiration, VPD, PAR and T a, while in the wet season it was significantly correlated with daily transpiration and total transpiration. __________ Translated from Chinese Journal of Ecology, 2007, 26(4): 476–482 [译自: 生态学杂志]  相似文献   

11.
The nitrogen status of most Zambian soils is inherently low. Nitrogen-fixing trees such as Faidherbia albida (F. albida) could have the potential to restore soil fertility. We conducted a study to examine the role of mature F. albida trees on the soil microbial communities and overall N fertility status in Zambia. Soil samples were collected under and outside the canopies of F. albida trees in representative fields from two sites namely; Chongwe (loamy sand) and Monze (sandy loam). To assess the long term canopy effects; total N, mineral N and soil organic carbon (Corg) content were directly measured from soils collected under and outside the canopy. Short term litter effects were assessed by subtracting concentrations of biochemical properties of non-amended controls from amended soils with F. albida litter during an 8 week incubation experiment. We also determined N mineralization rates, microbial community structure—Phospholipid fatty acids, microbial biomass carbon, and labile organic carbon (\({\text{C}}_{{{\text{org[K}}_{ 2} {\text{SO}}_{ 4} ]}}\)) during incubation. For the long term canopy effect, average N mineralization rate, Corg, total N and mineral N content of non-amended soils under the canopy were (all significant at p < 0.05) greater than soils outside the canopy on both sites. In the short term, amending soils with litter significantly increased N mineralization rates by an average of 0.52 mg N kg?1 soil day?1 on soil from Monze. Microbial biomass carbon measured after 4 weeks of incubation was on average significantly higher on amended soils by 193 and 334 mg C kg?1 soil compared with non-amended soils in Chongwe and Monze soils, respectively. After 6 weeks of incubation, the concentration of all selected biomarkers for major microbial groups concentrations in non-amended soils were significantly higher (all p < 0.05) under the canopy than outside in Monze soil. Using principal component analysis, we found that the segregation of the samples under and outside the canopy by the first principal component (PC1) could be attributed to a proportional increase in abundances of all microbial groups. Uniform loadings on PC1 indicated that no single microbial group dominated the microbial community. The second principal component separated samples based on incubation time and location. It was mainly loaded with G-positive bacteria, and partly with G-negative bacteria, indicating that microbial composition was dominated by these bacterial groups probably at the beginning of the incubation on Monze soils. Our results show that the improvement of soil fertility status by F. albida could be attributed to a combination of both long term modifications of the soil biological and chemical properties under the canopy as well as short term litter fall addition.  相似文献   

12.
The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g·m−2·month−1 in June 2004 (simplified expression of g (carbon)·m−2·month−1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g·m−2·a−1 (simplified expression of g (carbon)·m−2·a−1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD < 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD > 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol·m−2·s−1·kPa-1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol·m−2·s−1·kPa−1. Under humid conditions (VPD < 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.  相似文献   

13.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

14.
Responses of leaf conductance (g L) to variation in environmental and plant hydraulic factors were examined on intact and detached shoots of little-leaf linden (Tilia cordata Mill.) with respect to branch position in the crown. Using detached shoots, we manipulated leaf water supply and light availability in order to separate the effects of insufficient hydraulic supply and low irradiance. The intact upper-crown leaves demonstrated 2.0–2.2 times higher (P < 0.001) daily maxima of g L compared to the lower-crown leaves growing in the shadow of upper branches. Mean soil-to-leaf conductance (G T) was 1.9 times higher (P < 0.001) for the upper-crown foliage compared to that of the lower crown. The total hydraulic resistance was distributed: soil to distal shoots—41–51%, 25-cm distal shoots—10–15% and leaves—39–44%. In lower branches, g L was constrained by both low light availability and limited water supply; in upper branches, only by irradiance. Artificial reduction of hydraulic constraints raised bulk leaf water potential (Ψ L) and made g L less sensitive to changes in both atmospheric and plant factors. Stomatal responses to leaf-to-air vapour pressure difference (VPD) were significantly modified by leaf water status: high Ψ L seemingly inverted the g L versus VPD relationship. Enhanced water supply increased g L and transpiration rate (E) in the lower-crown foliage, but not in the upper-crown foliage. The results support the idea that leaves in the lower canopy are hydraulically more constrained than those in the upper canopy.  相似文献   

15.
Carbon (C) sequestration potential was quantified for five tree species, commonly used in tree-based intercropping (TBI) and for conventional agricultural systems in southern Ontario, Canada. In the 25-year-old TBI system, hybrid poplar (Populus deltoides × Populus nigra clone DN-177), Norway spruce (Picae abies), red oak (Quercus rubra), black walnut (Juglans nigra), and white cedar (Thuja occidentalis) were intercropped with soybean (Glycine max). In the conventional agricultural system, soybean was grown as a sole crop. Above- and belowground tree C Content, soil organic C, soil respiration, litterfall and litter decomposition were quantified for each tree species in each system. Total C pools for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and a soybean sole-cropping system were 113.4, 99.4, 99.2, 91.5, 91.3, and 71.1 t C ha?1, respectively at a tree density of 111 trees ha?1, including mean tree C content and soil organic C stocks. Net C flux for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and soybean sole-crop were 2.1, 1.4, 0.8, 1.8, 1.6 and ?1.2 t C ha?1 year?1, respectively. Results presented suggest greater atmospheric CO2 sequestration potential for all five tree species when compared to a conventional agricultural system.  相似文献   

16.
Land-use change from forest to cocoa agroforestry and other tree-based farming systems alters the structure of forest stands and influences the magnitude of canopy water fluxes and subsequent bio-element inputs to the forest floor. The partitioning of incident rainfall (IR) into throughfall (TF), stemflow (SF) and canopy interception loss (ILC) and their associated nutrient element concentrations and fluxes was examined along a replicated chrono-sequence: forest, 3, 15 and 30-year-old smallholder shaded-cocoa systems in Ashanti Region, Ghana. Mean annual precipitation during the 2-year observational period (2007 and 2008) was 1376.2 ± 93.8 mm. TF contributed between 76.5–90.4%, and SF between 1.4–1.7% of the annual IR to the forest floor. There were significant differences in IR, TF and SF chemistry. While TF and SF were enriched in phosphorus (1.33–5.67-fold), potassium (1.1–5.69 fold), calcium (1.35–2.65 fold) and magnesium (1.4–2.68 fold) relative to IR, total N (NH4 ++NO3 ?) declined (0.5–0.91) of IR values in TF and SF in forest and shaded cocoa systems. Incident rainfall was significantly more acidic than TF and SF in both forest and shaded-cocoa systems. Mean annual total N, P, K, Ca and Mg inputs to the forest floor through IR were 5.7, 0.14, 13.6, 9.43 and 5.6 kg ha?1year?1 respectively. Though an important source of available nutrients for plant growth, incident rainfall provides only a small percentage of the annual nutrient requirements. With declining soil fertility and pervasive low cocoa yields, possible effects of the reported nutrient fluxes on nutrient budgets in cocoa systems merit further investigation. Against the background of increased TF and decreased ILC following forest conversion to shaded-cocoa, it is also recommended that more studies be carried out on rainfall partitioning and its impact on ground water recharge as a way of establishing its influence on the availability of moisture for agriculture in these systems.  相似文献   

17.
The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was above 11%. The seedlings were able to take up water from soil with above 6 % soil water content, which was the threshold level of soil moisture for seedlings. The relationship between transpiration and potential evaporation was linear for well-watered seedlings. The decrease of soil water availability led to different degrees of down-regulation of stomatal conductance, leaf transpiration and net CO2 assimilation rate. The stomata played a relatively small part in determining the net CO2 assimilation rate for the same seedling. The relationship between net CO2 assimilation rate and transpiration was linear diurnally, and reduction scale of leaf transpiration was much bigger than that of net CO2 assimilation rate by waters tress treatments, therefore intrinsic water-use-efficiency increased. High evaporative demand increased the leaf transpiration but inhibited net CO2 assimilation rate.Because of the effect of VPD on transpiration in this region, the transpiration of well-watered and mild water stress seedlings becomes responsive to change in stomatal conductance over a wider range.  相似文献   

18.
Cottonwood (Populus deltoides Bartr. ex Marsh.) trees grown for 9 months in elevated carbon dioxide concentration ([CO2]) showed significant increases in height, leaf area and basal diameter relative to trees in a near-ambient [CO2] control treatment. Sample trees in the CO2 treatments were subjected to high and low atmospheric vapor pressure deficits (VPD) over a 5-week period at both high and low soil water contents (SWC). During these periods, transpiration rates at both the leaf and canopy levels were calculated based on sap flow measurements and leaf-to-sapwood area ratios. Leaf-level transpiration rates were approximately equivalent across [CO2] treatments when soil water was not limiting. In contrast, during drought stress, canopy-level transpiration rates were approximately equivalent across [CO2] treatments, indicating that leaf-level fluxes during drought stress were reduced in elevated [CO2] by a factor equal to the leaf area ratio of the two canopies. The shift from equivalent leaf-level transpiration to equivalent canopy-level transpiration with increasing drought stress suggests maximum water use rates were controlled primarily by atmospheric demand at high SWC and by soil water availability at low SWC. Changes in VPD had less effect on transpiration than changes in SWC for trees in both CO2 treatments. Transpiration rates of trees in both CO2 treatments reached maximum values at a VPD of about 2.0 kPa at high SWC, but leveled off and decreased slightly in both canopies as VPD increased above this value. At low SWC, increasing VPD from approximately 1.4 to 2.5 kPa caused transpiration rates to decline slightly in the canopies of trees in both treatments, with significant (P = 0.004) decreases occurring in trees in the near-ambient [CO2] treatment. The transpiration responses at high VPD in the presence of high SWC and throughout the low SWC treatment suggest some hydraulic limitations to water use occurred. Comparisons of midday leaf water potentials of trees in both CO2 treatments support this conclusion.  相似文献   

19.
We measured sap flux in Pinus ponderosa Laws. and Pinus flexilis James trees in a high-elevation meadow in northern Arizona that has been invaded by conifers over the last 150 years. Sap flux and environmental data were collected from July 1 to September 1, 2000, and used to estimate leaf specific transpiration rate (El), canopy conductance (Gc) and whole-plant hydraulic conductance (Kh). Leaf area to sapwood area ratio (LA/SA) increased with increasing tree size in P. flexilis, but decreased with increasing tree size in P. ponderosa. Both Gc and Kh decreased with increasing tree size in P. flexilis, and showed no clear trends with tree size in P. ponderosa. For both species, Gc was lower in the summer dry season than in the summer rainy season, but El did not change between wet and dry summer seasons. Midday water potential (Psi(mid)) did not change across seasons for either species, whereas predawn water potential (Psi(pre)) tracked variation in soil water content across seasons. Pinus flexilis showed greater stomatal response to vapor pressure deficit (VPD) and maintained higher Psi(mid) than P. ponderosa. Both species showed greater sensitivity to VPD at high photosynthetically active radiation (PAR; > 2500 micromol m-2 s-1) than at low PAR (< 2500 micromol m-2 s-1). We conclude that the direction of change in Gc and Kh with increasing tree size differed between co-occurring Pinus species, and was influenced by changes in LA/SA. Whole-tree water use and El were similar between wet and dry summer seasons, possibly because of tight stomatal control over water loss.  相似文献   

20.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号