首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 140 毫秒
1.
采用人工配置的5种斥水程度等级的黏壤土,通过室内一维积水入渗试验,探究了斥水程度对黏壤土湿润锋运移、累积入渗量、入渗率、土壤剖面含水率以及水分再分布的影响,分析了不同斥水程度土壤入渗条件下入渗模型的适用性.结果表明:随着斥水程度增大,土壤入渗率变慢,湿润锋运移相同距离所需要的时间显著增加,其中运移到40 cm时,强斥水土壤比亲水土壤的运移时间增加了63%;随着斥水程度增大,累积入渗量减小,入渗结束时强斥水土壤比亲水土壤的累积入渗量减小了27%;土壤的入渗率也随着斥水程度增大而逐渐减小,强斥水土壤的稳定入渗率为亲水土壤的37%;随着斥水程度增大,土壤剖面含水率减小,且经过相同时间的水分再分布,土壤剖面含水率的变化量也随之减小;幂函数可以很好地模拟湿润锋运移距离和累积入渗量随时间的变化过程;对弱斥水土壤而言,Philip模型和Kostiakov模型对入渗率与时间的关系有较高的拟合度,而强斥水土壤则Kostiakov模型更为适用.研究可为斥水土壤的入渗提供理论基础.  相似文献   

2.
斥水土壤的水力参数及水平吸渗规律   总被引:1,自引:0,他引:1  
为了对不同斥水程度土壤的水力性质进行分析,对比了van Genuchten和Brooks-Corey模型对于不同斥水程度下的塿土、砂姜黑土、盐碱土和砂土的适用性;进行了一维水平吸渗试验,分别运用Philip模型和Kostiakov公式对入渗规律进行了模拟,并分析了吸渗率和斥水持续时间的关系;采用水平吸渗法推求了土壤非饱和扩散率,并用指数函数拟合了非饱和扩散率和体积含水率的关系.结果表明:van Genuchten和Brooks-Corey模型对亲水和斥水土壤均具有较好的适用性;斥水性土壤的累积入渗量随时间变化曲线在一定时刻发生转折,未转折前Kostiakov公式的模拟结果比Philip模型好;当斥水时间大于40 s时,吸渗率的变化趋于稳定并在0~0.1 cm/min0.5内变化;非饱和扩散率和体积含水率关系的模拟可采用指数关系,且其对亲水性土壤的模拟效果优于斥水性土壤.斥水土壤的水力参数与亲水土壤的有明显差别,且表现出特殊性.  相似文献   

3.
选用砂土和盐碱土并添加斥水剂,采用0、1、3和6g/L的CaCl2溶液进行室内土柱入渗试验,对比灌水水质对土壤水盐及斥水性分布的影响。结果表明:咸水灌溉后,砂土1和亲水盐碱土的累积入渗量、湿润锋和入渗率曲线均较光滑;而砂土2和斥水盐碱土的入渗特征曲线不如砂土1的光滑,入渗过程比前者慢得多。灌水矿化度增加对盐碱土的入渗过程影响更明显。Philip模型与Kostiakov公式拟合亲水土壤入渗率过程都较好。砂土1和砂土2在咸水灌溉后剖面的滴水穿透时间都比初始值有所增加,但最大增加值仅3.6 s。盐碱土灌后剖面的滴水穿透时间增加明显,最大增加值为19 s。灌水矿化度增加对电导率、Ca2+质量浓度和Cl-质量浓度分布均有影响。研究表明咸水灌溉不仅影响水盐分布,而且对斥水性也有不同程度的影响。  相似文献   

4.
为了对斥水土壤的入渗特性及形成机理作进一步研究,分别对4种不同质地的斥水土壤进行了一维土柱垂直积水入渗试验.作图分析了斥水土壤入渗过程中累积入渗量、入渗率、湿润锋的变化情况及入渗结束后剖面含水率的分布,并采用4种入渗模型对入渗率随时间变化情况作了对比;对累积入渗量与湿润深度之间的关系采用线性关系进行了描述.结果表明:与亲水土壤相比,4种斥水土壤在入渗过程中自某一时刻会出现入渗特性的改变:I-t,zf-t及zf-I曲线均会自某点起发生转折,以此转折点可以将整个入渗过程分为转折前和转折后进行分析.Kostiakov公式可以较好地描述亲水土壤在整个入渗过程中及斥水土壤入渗转折前的i-t关系;不同质地的斥水土壤在入渗转折后入渗率变化情况差异较大;斥水土壤湿润锋与累积入渗量之间的关系可以在转折前后采用两段线性公式进行较好地描述;发现了斥水土壤剖面较上层土壤含水率大于亲水土壤的现象.  相似文献   

5.
初始含水率对斥水黏壤土入渗特性的影响   总被引:3,自引:0,他引:3  
为了探究初始含水率对斥水土壤入渗过程的影响规律,通过室内二维土箱的滴灌模拟试验,设置6个初始含水率水平(4.78%,7.28%,9.97%,13.64%,16.07%,19.02%),研究了初始含水率对湿润锋运移距离、宽深比、累积入渗量、入渗速率和土壤水分分布的影响,并评价了不同入渗模型的适用性.结果表明:随着初始含水率的提高,湿润锋运移相同深度所需时间呈逐渐减小趋势,两者较好满足幂函数关系,湿润锋宽深比逐渐减小;累积入渗量变化趋势为先减小后增大;入渗速率整体趋势为逐渐减小,其中斥水程度峰值含水率附近的处理出现入渗速率短暂提高的现象;Kostiakov模型能够较好反映斥水黏壤土的入渗规律,且斥水程度越大,模型拟合精度越低;随着斥水程度增加,土壤水分逐渐向湿润体垂向中间区域集中,并出现过度饱和现象.该研究可为斥水土壤的入渗理论奠定一定的基础.  相似文献   

6.
为了研究不同质量浓度KCl溶液对土壤入渗及溶质运移特性的影响,将KCl溶液质量浓度分别设置为0、2、3、4、5、8和10g/L,基于一维土柱入渗试验,采用CXTFIT模型对Cl-运移特性进行拟合。结果表明,累积入渗量、湿润锋推进速度、入渗率、土壤的导水能力均随着KCl溶液质量浓度的增加而增加。Kostiakov模型、Philip模型对KCl溶液入渗具有良好的适应性,相同历时下的累积入渗量与湿润锋推进距离存在良好的线性关系(R2=0.912 9)。此外,CXTFIT模型能够较好的反应不同质量浓度KCl溶液下的Cl-的运移过程且质量浓度高的KCl溶液在土壤中的对流弥散速度大于质量浓度低的。  相似文献   

7.
为了探明不同污灌水质对土壤斥水性的影响,研究采用12种不同污染程度的生活污水对以色列3种类型的5种斥水土壤进行斥水性测定分析,通过对非均质条件下测定的土壤斥水持续时间进行标准化处理,并对12种污水中的9种独立水质指标进行主成分分析,计算污水水质综合指标,分析不同污水水质综合指标和不同主成分分量与土壤斥水性持续时间的关系.研究结果表明:黏性土和壤土的斥水持续时间与综合水质指标F值呈线性正相关关系,即土壤斥水持续时间随水质污染程度的增大而增大;砂质土壤的斥水持续时间与F值不具有统计学意义,即土壤斥水持续时间不受水质污染程度的影响.经多元回归分析得出,水质中的2个主成分分量与黏性土和壤土的土壤斥水性都呈正相关关系,而且第一主成分对土壤斥水性的影响大于第二主成分.  相似文献   

8.
通过室内滴灌入渗的三维水盐运移试验,分析了斥水和亲水土壤在相同滴头流量下的湿润锋变化规律,研究了轻微斥水土壤的湿润锋随时间变化规律、含水率的三维空间分布特征以及不同斥水度土壤中含盐量和Cl-浓度分布特点。结果表明,在相同的滴头流量(0.07mL/min)下,亲水土壤与轻微斥水土壤的水平、垂直湿润锋与入渗时间具有良好的幂函数关系;亲水土壤与轻微斥水的土壤含盐量与距滴头距离符合良好的二阶多项式关系;虽然定量结果不同,但总体上轻微斥水的土壤在入渗中仍与亲水土壤具有相似的水分、盐分分布特征。在轻微斥水的农田中,滴灌灌水技术仍可为作物创造有利的水盐环境。  相似文献   

9.
滴灌两点源交汇入渗的斥水土壤水分运动规律   总被引:1,自引:0,他引:1  
基于室内滴灌两点源交汇的水分入渗试验,对比研究了滴头间距为30 cm、滴头流量为041 mL/min条件下,斥水和亲水土壤的湿润锋变化和含水率分布规律.试验结果表明:在湿润体交汇前和交汇后,亲水土壤湿润锋都较光滑,形状呈1/4椭圆形,水平湿润锋比垂直的长,亲水性塿土和盐碱土交汇时间分别为1 270和2 79 min.斥水土壤的湿润锋明显不如亲水土壤光滑,部分位置出现优先流,斥水塿土和盐碱土交汇时间分别为40和210 min.不同条件下湿润锋的定量关系可采用对数和幂函数,拟合的决定系数均达到0.86以上.入渗的交汇面上,水平和垂向湿润锋与时间关系均可用对数关系描述,拟合的决定系数均达到098以上.塿土滴头下方垂向剖面上的土壤水分分布最均匀,湿润面近似圆形;塿土交汇面的次之,但仍比盐碱土的含水率等值线图规则.2种斥水土壤在不同深度上的水分分布都有很大的随机性和空间不均匀性.总体上,亲水性塿土的水分运动比亲水性盐碱土更具规律性,斥水土壤水分运动由于出现非稳定流,因此比亲水土壤的更不规律.相关成果可为在斥水土壤中应用节水灌溉技术提供技术参考.  相似文献   

10.
负水头条件下入渗模型对于水分入渗规律适用性研究   总被引:1,自引:0,他引:1  
通过室内土柱入渗实验,对比了不同负水头高度条件下的土壤入渗规律,并采用了三种入渗模型分析了土壤水分入渗特点。实验结果表明,累积吸渗量与时间呈良好的幂函数关系,湿润锋与时间平方根间呈良好的线性关系,并且负水头高度减小,累积入渗量逐渐减小,湿润锋的推进速度减慢。累积入渗量与湿润锋推进距离呈良好的线性关系。利用Green-Ampt模型、Philip模型和Kostiakov公式对入渗率与入渗时间的关系进行拟合,得出Kostiakov公式能更准确地描述出入渗率与时间关系。  相似文献   

11.
Summary Six commercial wetting agents (three nonionic and three anionic compounds) were tested for their effects on water infiltration into poorly wettable sand, a layer of dry bermudagrass sod, and two wettable soils. The poorly wettable sand and the sod of dormant bermudagrass were obtained from an old lawn area, and the wettable soils (silty clay, and saline sodic silty clay loam) from a pecan orchard and a cotton field. The infiltration of tap water (salinity of 0.8 dS m–1 and a sodium adsorption ratio of 5) was measured in laboratory columns using air-dried soil (or sod) samples after initial soil application of wetting agents at rates equivalent to 12 and 24 L ha–1. The stem of the dormant bermudagrass exuded a brownish substance, and was found to be strongly water-repellent. Application of wetting agents markedly improved initial water infiltration into both the poorly wettable sand and the sod. The effect persisted for the entire test period of four irrigations using a total of 10 cm of water. Effectiveness, however, varied significantly among the tested compounds: polyoxyethylene glycol, polyethylene glycol ether and sulfosuccinate compounds were more effective than linear sulfonate or ethoxolated alcohol. The water-repellency of the poorly wettable sand was reduced substantially without wetting agents after two irrigations (using 5 cm of water), and that of the dormant sod after three irrigations (7.5 cm of water). Water infiltration into the air-dried wettable soils also increased significantly in the 1st irrigation (using 10 cm of water) showing 10 to 25% reductions in infiltration time with the application of polyoxyethylene glycol and polyethylene glycol ether.Contribution from Texas Agricultural Experiment Station, Texas A&M University System  相似文献   

12.
为研究土壤容重以及供水水质对土壤水分垂直入渗性能的影响,以香山地区不同容重(1.35、1.45 g/cm3)的土壤为研究对象,通过室内土柱一维垂直入渗试验,选择供水水质为影响因子,设置4种不同电导率的供水水质(0、2.5、5.0、7.5 mS/cm)对土壤入渗时间、入渗率,盐分分布特征以及含水率分布特征进行研究,并用P...  相似文献   

13.
为了探讨4种常规的入渗模型在含盐水入渗条件下的适用性,采用室内一维垂直土柱进行积水入渗实验,对比不同KCl质量浓度下的土壤入渗规律,并采用4种模型分别拟合土壤入渗率变化特征。结果表明,相同时间内的累积入渗量随KCl质量浓度的增加而增加,并且湿润锋的推进距离与累积入渗量之间具有较好的线性关系(R2>0.7)。Philip和Horton入渗模型的拟合效果要优于Green-Ampt模型和Kostiakov公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号