首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Further studies of the Saturnian magnetosphere and planetary magnetic field by Voyager 2 have substantiated the earlier results derived from Voyager 1 observations in 1980. The magnetic field is primarily that of a centered dipole (moment = 0.21 gauss-RS(3); where one Saturn radius, RS, is 60,330 kilometers) tilted approximately 0.8 degrees from the rotation axis. Near closest approach to Saturn, Voyager 2 traversed a kronographic longitude and latitude range that was complementary to that of Voyager 1. Somewhat surprisingly, no evidence was found in the data or the analysis for any large-scale magnetic anomaly in the northern hemisphere which could be associated with the periodic modulation of Saturnian kilometric radiation radio emissions. Voyager 2 crossed the magnetopause of a relatively compressed Saturnian magnetosphere at 18.5 RS while inbound near the noon meridian. Outbound, near the dawn meridian, the magnetosphere had expanded considerably and the magnetopause boundary was not observed until the spacecraft reached 48.4 to 50.9 RS and possibly beyond. Throughout the outbound magnetosphere passage, a period of 46 hours (4.5 Saturn rotations), the field was relatively steady and smooth showing no evidence for any azimuthal asymmetry or magnetic anomaly in the planetary field. We are thus left with a rather enigmatic situation to understand the basic source of Saturnian kilometric radiation modulation, other than the small dipole tilt.  相似文献   

2.
Within distances to Uranus of about 6 x 10(6) kilometers (inbound) and 35 x 10(6) kilometers (outbound), the planetary radio astronomy experiment aboard Voyager 2 detected a wide variety of radio emissions. The emission was modulated in a period of 17.24 +/- 0.01 hours, which is identified as the rotation period of Uranus' magnetic field. Of the two poles where the axis of the off-center magnetic dipole (measured by the magnetometer experiment aboard Voyager 2) meets the planetary surface, the one closer to dipole center is now located on the nightside of the planet. The radio emission generally had maximum power and bandwidth when this pole was tipped toward the spacecraft. When the spacecraft entered the nightside hemisphere, which contains the stronger surface magnetic pole, the bandwidth increased dramatically and thereafter remained large. Dynamically evolving radio events of various kinds embedded in these emissions suggest a Uranian magnetosphere rich in magnetohydrodynamic phenomena.  相似文献   

3.
During a detailed search of Voyager 1 frames for additional observations of the satellite 1979J1, two small dark spots were observed in transit in several consecutive wide-angle frames of the Jovian atmosphere. The size, spacing, and motion of these pairs of dark spots indicated that they were the images of 1979J1 and its shadow. Subsequent analysis of images spanning 6 days, however, proved that the satellite observed in these Voyager 1 frames would have been occulted by Jupiter at the times of the Voyager 2 images of 1979J1 and was, therefore, a new satellite. It was subsequently found in transit on Voyager 2 images within 13 degrees of the Voyager 1 prediction. Its period is 7 hours 4 minutes 30 seconds +/- 3 seconds, and its mean distance is 1.793 Jupiter radii (Jupiter radius = 71,400 kilometers). The observable profile appears to be roughly circular with a diameter of 40 kilometers, and the albedo is approximately 0.05, similar to Amalthea's.  相似文献   

4.
The plasma science experiment on Voyager 2 made observations of the plasma environment in Neptune's magnetosphere and in the surrounding solar wind. Because of the large tilt of the magnetic dipole and fortuitous timing, Voyager entered Neptune's magnetosphere through the cusp region, the first cusp observations at an outer planet. Thus the transition from the magnetosheath to the magnetosphere observed by Voyager 2 was not sharp but rather appeared as a gradual decrease in plasma density and temperature. The maximum plasma density observed in the magnetosphere is inferred to be 1.4 per cubic centimeter (the exact value depends on the composition), the smallest observed by Voyager in any magnetosphere. The plasma has at least two components; light ions (mass, 1 to 5) and heavy ions (mass, 10 to 40), but more precise species identification is not yet available. Most of the plasma is concentrated in a plasma sheet or plasma torus and near closest approach to the planet. A likely source of the heavy ions is Triton's atmosphere or ionosphere, whereas the light ions probably escape from Neptune. The large tilt of Neptune's magnetic dipole produces a dynamic magnetosphere that changes configuration every 16 hours as the planet rotates.  相似文献   

5.
During a detailed examination of imaging data taken by the Voyager 1 spacecraft within 4.5 hours of its closest approach to Jupiter, a shadow-like image was observed on the bright disk of the planet in two consecutive wide-angle frames. Analysis of the motion of the image on the Jovian disk proved that it was not an atmospheric feature, showed that it could not have been a shadow of any satellite known at the time, and allowed prediction of its reappearance in other Voyager 1 frames. The satellite subsequently has been observed in transit in both Voyager 1 and Voyager 2 frames; its period is 16 hours 11 minutes 21.25 seconds +/- 0.5 second and its semimajor axis is 3.1054 Jupiter radii (Jupiter radius = 7.14 x 10(4) kilometers). The profile observed when the satellite is in transit is roughly circular with a diameter of 80 kilometers. It appears to have an albedo of approximately 0.05, similar to Amalthea's.  相似文献   

6.
During the encounter with Uranus, the cosmic ray system on Voyager 2 measured significant fluxes of energetic electrons and protons in the regions of the planets magnetosphere where these particles could be stably trapped. The radial distribution of electrons with energies of megaelectron volts is strongly modulated by the sweeping effects ofthe three major inner satellites Miranda, Ariel, and Umbriel. The phase space density gradient of these electrons indicates that they are diffusing radially inward from a source in the outer magnetosphere or magnetotail. Differences in the energy spectra of protons having energies of approximately 1 to 8 megaelectron volts from two different directions indicate a strong dependence on pitch angle. From the locations of the absorption signatures observed in the electron flux, a centered dipole model for the magnetic field of Uranus with a tilt of 60.1 degrees has been derived, and a rotation period of the planet of 17.4 hours has also been calculated. This model provides independent confirmaton of more precise determinations made by other Voyager experiments.  相似文献   

7.
Magnetic field studies by Voyager 1 have confirmed and refined certain general features of the Saturnian magnetosphere and planetary magnetic field established by Pioneer 11 in 1979. The main field of Saturn is well represented by a dipole of moment 0.21 +/- 0.005 gauss-R(s)(3) (where 1 Saturn radius, R(s), is 60,330 kilometers), tilted 0.7 degrees +/- 0.35 degrees from the rotation axis and located within 0.02 R(s) of the center of the planet. The radius of the magnetopause at the subsolar point was observed to be 23 R(s) on the average, rather than 17 R(s). Voyager 1 discovered a magnetic tail of Saturn with a diameter of approximately 80 R(s). This tail extends away from the Sun and is similar to type II comet tails and the terrestrial and Jovian magnetic tails. Data from the very close flyby at Titan (located within the Saturnian magnetosphere) at a local time of 1330, showed an absence of any substantial intrinsic satellite magnetic field. However, the results did indicate a very well developed, induced magnetosphere with a bipolar magnetic tail. The upper limit to any possible internal satellite magnetic moment is 5 x 10(21) gauss-cubic centimeter, equivalent to a 30-nanotesla equatorial surface field.  相似文献   

8.
The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii) There are large fluxes of electrons of approximately 1.5 million electron volts and smaller fluxes of electrons of approximately 10 million electron volts and of protons greater, similar 54 million electron volts inside the orbits of Enceladus and Mimas; all were sharply peaked perpendicular to the local magnetic field. (viii) In general, observed satellite absorption signatures were not located at positions predicted on the basis of dipole magnetic field models.  相似文献   

9.
Analysis of the preliminary results from the Voyager mission to the Neptune system has provided the scientific community with several methods by which the temperature of Neptune's satellite Triton may be determined. If the 37.5 K surface temperature reported by several Voyager investigations is correct, then the photometry reported by the imaging experiment on Voyager requires that Triton's surface have a remarkably low emissivity. Such a low emissivity is not required in order to explain the photometry from the photopolarimeter experiment on Voyager. A low emissivity would be inconsistent with Triton having a rough surface at the approximately 100-microm scale as might be expected given the active renewal processes which appear to dominate Triton's surface.  相似文献   

10.
The first of at least nine bow shock crossings observed on the inbound pass of Voyager 2 occurred at 98.8 Jupiter radii (R(J)) with final entry into the magnetosphere at 62 R(J). On both the inbound and outbound passes the plasma showed a tendency to move in the direction of corotation, as was observed on the inbound pass of Voyager 1. Positive ion densities and electron intensities observed by Voyager 2 are comparable within a factor of 2 to those seen by Voyager 1 at the same radial distance from Jupiter; the composition of the magnetospheric plasma is again dominated by heavy ions with a ratio of mass density relative to hydrogen of about 100/1. A series of dropouts of plasma intensity near Ganymede may be related to a complex interaction between Ganymede and the magnetospheric plasma. From the planetary spin modulation of the intensity of plasma electrons it is inferred that the plasma sheet is centered at the dipole magnetic equator out to a distance of 40 to 50 R(J) and deviates from it toward the rotational equator at larger distances. The longitudinal excursion of the plasma sheet lags behind the rotating dipole by a phase angle that increases with increasing radial distance.  相似文献   

11.
Results of measurements of plasma electrons and poitive ions made during the Voyager 2 encounter with Saturn have been combined with measurements from Voyager 1 and Pioneer 11 to define more clearly the configuration of plasma in the Saturnian magnetosphere. The general morphology is well represented by four regions: (i) the shocked solar wind plasma in the magnetosheath, observed between about 30 and 22 Saturn radii (RS) near the noon meridian; (ii) a variable density region between approximately 17 RS and the magnetopause; (iii) an extended thick plasma sheet between approximately 17 and approximately 7 RS symmetrical with respect to Saturn's equatorial plane and rotation axis; and (iv) an inner plasma torus that probably originates from local sources and extends inward from L approximately 7 to less than L approximately 2.7 (L is the magnetic shell parameter). In general, the heavy ions, probably O(+), are more closely confined to the equatorial plane than H(+), so that the ratio of heavy to light ions varies along the trajectory according to the distance of the spacecraft from the equatorial plane. The general configuration of the plasma sheet at Saturn found by Voyager 1 is confirmed, with some notable differences and additions. The "extended plasma sheet," observed between L approximately 7 and L approximately 15 by Voyager 1 is considerably thicker as observed by Voyager 2. Inward of L approximately 4, the plasma sheet collapses to a thin region about the equatorial plane. At the ring plane crossing, L approximately 2.7, the observations are consistent with a density of O(+) of approximately 100 per cubic centimeter, with a temperature of approximately 10 electron volts. The location of the bow shock and magnetopause crossings were consistent with those previously observed. The entire magnetosphere was larger during the outbound passage of Voyager 2 than had been previously observed; however, a magnetosphere of this size or larger is expected approximately 3 percent of the time.  相似文献   

12.
This report provides an initial survey of results from the plasma wave instrument on the Voyager 2 spacecraft, which flew by Jupiter on 9 July 1979. Measurements made during the approach to the planet show that low-frequency radio emissions from Jupiter have a strong latitudinal dependence, with a sharply defined shadow zone near the equatorial plane. At the magnetopause a new type of broadband electric field turbulence was detected, and strong electrostatic emissions near the upper hybrid resonance frequency were discovered near the low-frequency cutoff of the continuum radiation. Strong whistler-mode turbulence was again detected in the inner magnetosphere, although in this case extending out to substantially larger radial distances than for Voyager 1. In the predawn tail region, continuum radiation was observed extending down to extremely low frequencies, approximately 30 hertz, an indication that the spacecraft was entering a region of very low density, approximately 1.0 x 10(-5) per cubic centimeter, possibly similar to the lobes of Earth's magnetotail.  相似文献   

13.
The Voyager 2 Planetary Radio Astronomy experiment to Jupiter has confirmed and extended to higher zenomagnetic latitudes results from the identical experiment carried by Voyager 1. The kilometric emissions discovered by Voyager 1 often extended to 1 megahertz or higher on Voyager 2 and often consisted of negatively or, less frequently, positively drifting narrowband bursts. On the basis of tentative identification of plasma wave emissions similar to those detected by Voyager 1, the plasma torus associated with Io appeared somewhat denser to Voyager 2 than it did to Voyager 1. We report here on quasiperiodic sinusoidal or impulsive bursts in the broadcast band range of wavelengths (800 to 1800 kilohertz). A Faraday effect appears at decametric frequencies, which probably results from propagation of the radiation near its sources on Jupiter. Finally, we discuss the occurrence of decametric emission in homologous arc families.  相似文献   

14.
Voyager observations suggest that three of Neptune's major cloud features oscillate in latitude by 2 degrees to 4 degrees and that two of them simultaneously oscillate in longitude by 7.8 degrees and 98 degrees about their mean drift longitudes. The observations define most convincingly the two orthogonal oscillations of the second dark spot (near 53 degrees south). These oscillations have similar periods near 800 hours and approximately satisfy a simple advective model in which a latitudinal oscillation produces a phase-shifted longitudinal oscillation proportional to the local wind shear. The latitudinal motion of the Great Dark Spot can be fit with an oscillation period of about 2550 hours, whereas its dominant longitudinal motion, if oscillatory at all, has such a long period that it is not well constrained by the Voyager data.  相似文献   

15.
Radio signals from Ulysses were used to probe the lo plasma torus (IPT) shortly after the spacecraft's closest approach to Jupiter. The frequencies of the two downlinks at S-band (2.3 gigahertz) and X-band (8.4 gigahertz) were recorded, differenced, and integrated in order to derive the columnar electron density of the IPT. The measurements agree qualitatively with contemporary models of the IPT based on Voyager data, but significant differences are apparent as well. The overall level of the IPT electron density is approximately the same as the prediction, implying that the amount of gas (or plasma) injected from lo is similar to that observed during the Voyager era. On the other hand, the IPT seems to be less extended out of the centrifugal equator, implying a smaller plasma temperature than predicted.  相似文献   

16.
Planetary radio astronomy measurements obtained by Voyager 2 near Saturn have added further evidence that Saturnian kilometric radiation is emitted by a strong dayside source at auroral latitudes in the northern hemisphere and by a weaker source at complementary latitudes in the southern hemisphere. These emissions are variable because of Saturn's rotation and, on longer time scales, probably because of influences of the solar wind and Dione. The electrostatic discharge bursts first discovered by Voyager 1 and attributed to emissions from the B ring were again observed with the same broadband spectral properties and an episodic recurrence period of about 10 hours, but their occurrence frequency was only about 30 percent of that detected by Voyager 1. While crossing the ring plane at a distance of 2.88 Saturn radii, the spacecraft detected an intense noise event extending to above 1 megahertz and lasting about 150 seconds. The event is interpreted to be a consequence of the impact, vaporization, and ionization of charged, micrometer-size G ring particles distributed over a vertical thickness of about 1500 kilometers.  相似文献   

17.
During the passage of Voyager 2 through the Saturn system, infrared spectral and radiometric data were obtained for Saturn, Titan, Enceladus, Tethys, Iapetus, and the rings. Combined Voyager 1 and Voyager 2 observations of temperatures in the upper troposphere of Saturn indicate a seasonal asymmetry between the northern and southern hemispheres, with superposed small-scale meridional gradients. Comparison of high spatial resolution data from the two hemispheres poleward of 60 degrees latitude suggests an approximate symmetry in the small-scale structure, consistent with the extension of a symmetric system of zonal jets into the polar regions. Longitudinal variations of 1 to 2 K are observed. Disk- averaged infrared spectra of Titan show little change over the 9-month interval between Voyager encounters. By combining Voyager 2 temperature measurements with ground-based geometric albedo determinations, phase integrals of 0.91 +/- 0.13 and 0.89 +/- 0.09 were derived for Tethys and Enceladus, respectively. The subsolar point temperature of dark material on Iapetus must exceed 110 K. Temperatures (and infrared optical depths) for the A and C rings and for the Cassini division are 69 +/- 1 K (0.40 +/- 0.05), 85 +/- 1 K (0.10 +/- 0.03), and 85 +/- 2 K (0.07 +/- 0.04), respectively.  相似文献   

18.
Data from the Goddard Space Flight Center magnetometers on Voyager 2 have yielded on inbound trajectory observations of multiple crossings of the bow shock and magnetosphere near the Jupiter-sun line at radial distances of 99 to 66 Jupiter radii (RJ) and 72 to 62 RJ, respectively. While outbound at a local hour angle of 0300, these distances increase appreciably so that at the time of writing only the magnetopause has been observed between 160 and 185 RJ. These results and the magnetic field geometry confirm the earlier conclusion from Voyager I studies that Jupiter has an enormous magnetic tail, approximately 300 to 400 RJ in diameter, trailing behind the planet with respect to the supersonic flow of the solar wind. Addi- tional observations of the distortion of the inner magnetosphere by a concentrated plasma show a spatial merging of the equatorial magnetodisk current with the cur- rent sheet in the magnetic tail. The spacecraft passed within 62,000 kilometers of Ganymede (radius = 2,635 kilometers) and observed characteristic fluctuations in- terpreted tentatively as being due to disturbances arising from the interaction of the Jovian magnetosphere with Ganymede.  相似文献   

19.
Magnetic fields measured by Voyager 1 show that the spacecraft crossed or was crossed by the termination shock on about 16 December 2004 at 94.0 astronomical units. An estimate of the compression ratio of the magnetic field strength B (+/- standard error of the mean) across the shock is B2/B1 = 3.05 +/- 0.04, but ratios in the range from 2 to 4 are admissible. The average B in the heliosheath from day 1 through day 110 of 2005 was 0.136 +/- 0.035 nanoteslas, approximately 4.2 times that predicted by Parker's model for B. The magnetic field in the heliosheath from day 361 of 2004 through day 110 of 2005 was pointing away from the Sun along the Parker spiral. The probability distribution of hourly averages of B in the heliosheath is a Gaussian distribution. The cosmic ray intensity increased when B was relatively large in the heliosheath.  相似文献   

20.
Hill TW 《Science (New York, N.Y.)》1980,207(4428):301-302
Voyager 1 plasma flow data are compared with a recent theory that predicted measurable departures from rigid corotation in Jupiter's magnetosphere as a consequence of rapid plasma production and weak atmosphere-magnetosphere coupling. The comparison indicates that the theory can account for the observed corotation lag, provided that the plasma mass production rate during the Voyager 1 encounter was rather larger than expected, namely approximately 10(30) atomic mass units per second.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号