首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.  相似文献   

2.
The Pioneer 11 vector helium magnetometer provided precise, contititious measurements of the magnetic fields in interplanetary space, inside Jupiter's magnetosphere, and in the near vicinity of Jupiter. As with the Pioneer 10 data, evidence was seen of the dynanmic interaction of Jupiter with the solar wind which leads to a variety of phenomena (bow shock, upstream waves, nonlinear magnetosheath impulses) and to changes in the dimension of the dayside magnetosphere by as much as a factor of 2. The magnetosphere clearly appears to be blunt, not disk-shaped, with a well-defined outer boundary. In the outer magnetosphere, the magnetic field is irregular but exhibits a persistent southward component indicative of a closed magnetosphere. The data contain the first clear evidence in the dayside magnetosphere of the current sheet, apparently associated with centrifugal forces, that was a donminatnt feature of the outbound Pionieer 10 data. A modest westward spiraling of the field was again evident inbound but not outbound at higher latitudes and nearer the Sun-Jupiter direction. Measurements near periapsis, which were nearer the planet and provide better latitude and longitude coverage than Pioneer 10, have revealed a 5 percent discrepancy with the Pioneer 10 offset dipole mnodel (D(2)). A revised offset dipole (6-parameter fit) is presented as well as the results of a spherical harmonic analysis (23 parameters) consisting of an interior dipole, quadrupole, and octopole and an external dipole and quadrupole. The dipole moment and the composite field appear moderately larger than inferred from Pioneer 10. Maximum surface fields of 14 and 11 gauss in the northern and southern hemispheres are inferred. Jupiter's planetary field is found to be slightly more irregular than that of Earth.  相似文献   

3.
Hill TW 《Science (New York, N.Y.)》1980,207(4428):301-302
Voyager 1 plasma flow data are compared with a recent theory that predicted measurable departures from rigid corotation in Jupiter's magnetosphere as a consequence of rapid plasma production and weak atmosphere-magnetosphere coupling. The comparison indicates that the theory can account for the observed corotation lag, provided that the plasma mass production rate during the Voyager 1 encounter was rather larger than expected, namely approximately 10(30) atomic mass units per second.  相似文献   

4.
The low-energy charged particle instrument on Voyager 1 measured low-energy electrons and ions (energies >/= 26 and >/= 40 kiloelectron volts, respectively) in Saturn's magnetosphere. The first-order ion anisotropies on the dayside are generally in the corotation direction with the amplitude decreasing with decreasing distance to the planet. The ion pitch-angle distributions generally peak at 90 degrees , whereas the electron distributions tend to have field-aligned bidirectional maxima outside the L shell of Rhea. A large decrease in particle fluxes is seen near the L shell of Titan, while selective particle absorption (least affecting the lowest energy ions) is observed at the L shells of Rhea, Dione, and Tethys. The phase space density of ions with values of the first invariant in the range approximately 300 to 1000 million electron volts per gauss is consistent with a source in the outer magnetosphere. The ion population at higher energies (>/= 200 kiloelectron volts per nucleon) consists primarily of protons, molecular hydrogen, and helium. Spectra of all ion species exhibit an energy cutoff at energies >/= 2 million electron volts. The proton-to-helium ratio at equal energy per nucleon is larger (up to approximately 5 x 10(3)) than seen in other magnetospheres and is consistent with a local (nonsolar wind) proton source. In contrast to the magnetospheres of Jupiter and Earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. Electron pitch-angle distributions are generally bidirectional andfield-aligned, indicating closed field lines at high latitudes. Ions in this region are generally moving toward Saturn, while in the magnetosheath they exhibit strong antisunward streaming which is inconsistent with purely convective flows. Fluxes of magnetospheric ions downstream from the bow shock are present over distances >/= 200 Saturn radii from the planet. Novel features identified in the Saturnian magnetosphere include a mantle of low-energy particles extending inward from the dayside magnetopause to approximately 17 Saturn radii, at least two intensity dropouts occurring approximately 11 hours apart in the nighttime magnetosphere, and a pervasive population of energetic molecular hydrogen.  相似文献   

5.
The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.  相似文献   

6.
Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the >/= 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more variable, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0- million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approximately 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.  相似文献   

7.
Voyager 1 provided the first look at Saturn's magnetotail and magnetosphere during relatively quiet interplanetary conditions. This report discusses the energetic particle populations of the outer magnetosphere of Saturn and absorption features associated with Titan and Rhea, and compares these observations with Pioneer 11 data of a year earlier. The trapped proton fluxes had soft spectra, represented by power laws E(-gamma) in kinetic energy E, with gamma approximately 7 in the outer magnetosphere and gamma approximately 9 in the magnetotail. Structure associated with the magnetotial was observed as close as 10 Saturn radii (R(s)) on the outbound trajectory. The proton and electron fluxes in the outer magnetosphere and in the magnetotail were variable and appeared to respond to changes in interplanetary conditions. Protons with energies >/= 2 million electron volts had free access to the magnetosphere from interplanetary space and were not stably trapped outside approximately 7.5 R(s).  相似文献   

8.
Thermal plasma quantities measured by, the retarding potential analyzer (RPA) are, together with companion Pioneer Venus measurements, the first in situ measurements of the Venus ionosphere. High ionospheric ion and electron temperatures imply significant solar wind heating of the ionosphere. Comparison of the measured altitude profiles of the dominant ions with an initial modlel indicates that the ionosphere is close to diffusive equilibrium. The ionopause height was observed to vary from 400 to 1000 kilometers in early orbits. The ionospheric particle pressure at the ionopause is apparently balanced at a solar zenith angle of about 70 degrees by the magnetic field pressure with little contribution from energetic solar wind particles. The measured ratio of ionospheric scale height to ionopause radius is consistent with that inferred from previously measured bow shock positions.  相似文献   

9.
As part of a continuing effort of ground-based support for Voyager target selection, infrared images in the 5-micrometer wavelength region were acquired in preparation for the Voyager 2 flyby of Jupiter. Observations were made during May 1979 from the Palomar 5-meter telescope and the new 3-meter NASA Infrared Telescope Facility at Mauna Kea and are compared to previous observations. Variations seen in the 5-micrometer flux distribution suggest global patterns of clouding over of some Jovian belts and clearing ofothers. These data were used to predict the Jovian cloud distribution at the time of the Voyager 2 encounter in order to target the imaging and infrared experiments to areas free of high obscuring clouds.  相似文献   

10.
Fluxes of high energy electrons and protons are found to be highly concentrated near the magnetic equatorial plane from distances of ~ 30 to ~ 100 Jovian radii (R(J)). The 10-hour period of planetary rotation is observed as an intensity variation, which indicates that the equatorial zone of high particle fluxes is inclined with respect to the rotation axis of the planet. At radial distances [unknown] 20 R(J) the synchrotron-radiation-producing electrons with energies greater, similar 3 million electron volts rise steeply to a maximum intensity of ~ 5 x 10(8) electrons per square centimeter per second near the periapsis at 2.8 R(J). The flux of protons with energies greater, similar 30 million electron volts reaches a maximum intensity of ~ 4 x 10(6) protons per square centimeter per second at ~ 3.5 R(J) with the intensity decreasing inside this radial distance. Only for radial distances [unknown] 20 R(J) does the radiation behave in a manner which is similar to that at the earth. Burst of electrons with energies up to 30 million electron volts, each lasting about 2 days, were observed in interplanetary space beginning approximately 1 month before encounter. This radiation appears to have escaped from the Jovian bow shock or magnetosphere.  相似文献   

11.
The magnetometer and electron reflectometer investigation (MAG/ER) on the Mars Global Surveyor spacecraft has obtained magnetic field and plasma observations throughout the near-Mars environment, from beyond the influence of Mars to just above the surface (at an altitude of approximately 100 kilometers). The solar wind interaction with Mars is in many ways similar to that at Venus and at an active comet, that is, primarily an ionospheric-atmospheric interaction. No significant planetary magnetic field of global scale has been detected to date (<2 x 10(21) Gauss-cubic centimeter), but here the discovery of multiple magnetic anomalies of small spatial scale in the crust of Mars is reported.  相似文献   

12.
13.
14.
Pioneer 10 images of Jupiter show bright nuclei in the equatorial zone that appear to be thermally driven sources of cloud plume formations.  相似文献   

15.
李承范  姚艳红  张敬东 《安徽农业科学》2011,39(24):14616-14617,14619
[目的]建立红景天提取物中微量元素含量的测定方法。[方法]利用电感耦合等离子体质谱法对野生和种植红景天中的多种微量元素进行测定和分析。[结果]在选定的试验条件下,方法的检出限为0.002~0.092 ng/ml;相对标准偏差在1.87%~4.96%之间;标准样加入回收率在94.0%~104.5%之间。[结论]野生红景天中微量元素总量明显高于种植的,但野生红景天中有害元素铅、砷和镉的含量高于种植红景天。  相似文献   

16.
The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil spectra show evidence for minor carbonates and bound water. Rocks are olivinerich basalts with varying degrees of dust and other coatings. Dark-toned soils observed on disturbed surfaces may be derived from rocks and have derived mineralogy (+/-5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite 45% +/-5 to 10). Two spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. Diurnal temperature data indicate particle sizes from 40 to 80 microm in hollows to approximately 0.5 to 3 mm in soils.  相似文献   

17.
Ion microprobe analyses show that solar wind nitrogen associated with solar wind hydrogen implanted in the first tens of nanometers of lunar regolith grains is depleted in 15N by at least 24% relative to terrestrial atmosphere, whereas a nonsolar component associated with deuterium-rich hydrogen, detected in silicon-bearing coatings at the surface of some ilmenite grains, is enriched in 15N. Systematic enrichment of 15N in terrestrial planets and bulk meteorites relative to the protosolar gas cannot be explained by isotopic fractionation in nebular or planetary environments but requires the contribution of 15N-rich compounds to the total nitrogen in planetary materials. Most of these compounds are possibly of an interstellar origin and never equilibrated with the 15N-depleted protosolar nebula.  相似文献   

18.
A Magnetic Signature at Io: Initial Report from the Galileo Magnetometer   总被引:1,自引:0,他引:1  
During the inbound pass of the Galileo spacecraft, the magnetometer acquired 1 minute averaged measurements of the magnetic field along the trajectory as the spacecraft flew by Io. A field decrease, of nearly 40 percent of the background jovian field at closest approach to Io, was recorded. Plasma sources alone appear incapable of generating perturbations as large as those observed and an induced source for the observed moment implies an amount of free iron in the mantle much greater than expected. On the other hand, an intrinsic magnetic field of amplitude consistent with dynamo action at Io would explain the observations. It seems plausible that Io, like Earth and Mercury, is a magnetized solid planet.  相似文献   

19.
Acquisition measurements of the round-trip travel time of light, from the McDonald Observatory to the Laser Ranging Retro-Reflector deployed on the moon by the Apollo 11 astronauts, were made on 20 August and on 3, 4, and 22 September 1969. The uncertainty in the round-trip travel time was +/- 15 nanoseconds, with the pulsed ruby laser and timing system used for the acquisition. The uncertainty in later measurements of a planned long-term sequence from this observatory is expected to be an order of magnitude smaller. The successful performance of the retro-reflector at several angles of solar illumination, as well as during and after a lunar night, confirms the prediction of thermal design analyses.  相似文献   

20.
A glass filter from Surveyor 3 has a surface density of approximately 1 x 10(6) tracks per square centimeter from heavy solar flare particles. The variation with depth is best fitted with a solar particle spectrum dN/dE = 2.42 x 10(6) E(-2) [in particles per square centimeter per year per steradian per (million electron volts per nucleon)], where E is the energy and N is the number of particles, from 2 million electron volts per nucleon to approximately 7 million electron volts per nucleon and dN/dE = 1.17 x 10(7) E(-3) at higher energies. Not much difference is observed between 0.5 and 5 micrometers, an indication that there is a lack of track-registering particles below 0.5 million electron volts per nucleon. The Surveyor data are compatible with track results in lunar rocks, provided an erosion rate of approximately 10(-7) centimeter per year is assumed for the latter. The results also suggest a small-scale erosion process in lunar rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号