首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 968 毫秒
1.
为建立华山松SRAP-PCR反应体系,研究先采用L16(45)正交设计对影响华山松SRAP反应的5个因子(DNA模板浓度、Mg2+浓度、dNTPs浓度、引物浓度、Taq酶)在4个水平上进行优化试验。结果表明:各因素对SRAP反应的影响依次为:Mg2+>dNTPs>Taq酶>DNA模板>引物;对SRAP反应结果影响较大的3个因子(Mg2+浓度、dNTPs浓度、Taq酶浓度)进行单因素试验;确立华山松SRAP反应最佳体系为:20μL的PCR体系中含有Mg2+2.2mmol/L、dNTPs0.25mmol/L、DNA模板60ng、Taq酶0.8mol/s、引物0.8μmol/L。将该体系用于华山松的SRAP扩增能获得稳定、清晰的多态性条带。  相似文献   

2.
麻疯树SRAP-PCR反应体系的优化   总被引:2,自引:0,他引:2  
采用L9(45)正交设计对影响麻疯树SRAP反应的5个因子(DNA模板浓度、Mg2+浓度、dNTPs浓度、引物浓度、Taq酶)在4个水平上进行优化试验,PCR结果采用SPSS13.0进行分析。结果表明,各因素对SRAP反应的影响依次为:Mg2+dNTPs引物Taq酶DNA模板。对SRAP反应结果影响较大的3个因子(Mg2+浓度、dNTPs浓度、引物浓度)进行单因素试验,确立麻疯树SRAP反应最佳体系为:20μL的PCR体系中含有Mg2+2.5 mmol/L、引物0.4μmol/L、dNTPs150μmol/L、DNA模板60 ng、Taq酶0.5 U。将该体系用于麻疯树的SRAP扩增能获得稳定、清晰的多态性条带。  相似文献   

3.
正交设计优化日本落叶松SRAP-PCR反应体系   总被引:3,自引:1,他引:2  
利用正交设计L16(45)对日本落叶松SRAP-PCR反应体系的模板DNA、Mg2+、dNTPs、引物、Taq酶浓度五因素在四个水平上进行优化试验,PCR结果采用统计软件SPSS13.0进行分析,结果表明:各因素的不同水平对PCR反应结果都有显著的影响,其中模板DNA影响最大;筛选得到日本落叶松SRAP-PCR反应的最佳体系(20μL)为模板DNA浓度为120ng·20μL-1,dNTPs的浓度为0.15mmol·L-1,引物浓度为0.3μmol·L-1,Mg2+浓度为1.5mmol·L-1,Taq酶浓度为0.SU·2μL-1.这一优化体系的建立为今后利用SRAP标记技术对日本落叶松遗传多样性的研究奠定基础.  相似文献   

4.
对姜黄属SRAP反应体系进行了Mg2+、dNTPs、Taq酶、引物及模板DNA浓度等方面的优化,优化后的条件为:反应总体系为26.5μL,包括DNA20 ng、Mg2+ 2.5 mmol/L、dNTPs 0.05 mmol/L、Taq酶0.5 U、引物7.5 μmol/L.  相似文献   

5.
正交设计优化辣椒SRAP-PCR反应体系及引物筛选   总被引:3,自引:0,他引:3  
以辣椒基因组DNA为模板,采用L16(45)正交试验设计,对SRAP反应体系中的5种关键因素(Taq DNA聚合酶、Mg2+、dNTPs、引物、模板DNA)进行优化,结果表明,辣椒SRAP-PCR最佳反应体系为:Taq DNA 聚合酶0.75 U、Mg2+ 0.6 mmol/L、dNTPs 0.2 mmol/L、引物0.8 μmol/L、模板DNA 50 ng,总体积为10 μL.运用该体系对辣椒3份种质材料进行验证,证明该体系稳定可靠,并从198个SRAP引物组合中筛选出扩增条带清晰、多态性丰富的35个引物组合.该体系的建立与多态性引物组合的筛选为SRAP标记技术在辣椒分子遗传学中的应用提供科学依据.  相似文献   

6.
[目的]对辣椒SRAP反应体系进行研究和优化,并利用优化体系对164对多态性引物进行筛选。[方法]采用单因素随机试验设计和L25(65)正交试验设计对辣椒SRAP反应体系中6种关键因素(退火温度、Taq DNA聚合酶、Mg2+、dNTPs、引物、模板DNA)进行体系优化,并以"泡椒"×"青皮大椒"的亲本和F1代为材料,利用聚丙烯胺酰胺凝胶进行筛选。[结果]辣椒SRAP-PCR的最佳反应体系为:退火温度35.5℃,Taq DNA聚合酶1.0 U,模板DNA 2.25 ng/μl,dNTPs 0.2 mmol/L,引物0.4μmoL/L,Mg2+2 mmol/L,总体积为20μl。利用该体系,从164对SRAP引物组合中筛选出扩增条带清晰、多态性丰富、条带稳定的31对引物组合。[结论]该体系的建立与多态性引物组合的筛选为SRAP标记技术在辣椒育种中的应用奠定了基础。  相似文献   

7.
采用L16(45)正交试验设计方法,对影响皱纹盘鲍Haliotis discus hannai SRAP反应体系的Mg2+浓度、dNTPs浓度、引物浓度、模板DNA以及Taq酶活性进行了优化,建立了适用于皱纹盘鲍的SRAP反应体系。优化后的反应体系(10μL)包括Mg2+1.5 mmol/L,dNTPs 0.15 mmol/L,引物0.2μmol/L,Taq酶活性0.25 U,模板DNA 20 ng。采用不同模板和引物对体系进行验证,表明优化后的反应体系能够高效地扩增出可识别条带,为进一步应用SRAP标记对皱纹盘鲍进行遗传分析奠定了基础。  相似文献   

8.
采用L16(45)正交试验设计方法,对影响皱纹盘鲍Haliotis discus hannai SRAP反应体系的Mg2+浓度、dNTPs浓度、引物浓度、模板DNA以及Taq酶活性进行了优化,建立了适用于皱纹盘鲍的SRAP反应体系。优化后的反应体系(10μL)包括Mg2+1.5 mmol/L,dNTPs 0.15 mmol/L,引物0.2μmol/L,Taq酶活性0.25 U,模板DNA 20 ng。采用不同模板和引物对体系进行验证,表明优化后的反应体系能够高效地扩增出可识别条带,为进一步应用SRAP标记对皱纹盘鲍进行遗传分析奠定了基础。  相似文献   

9.
怀地黄SRAP分子标记优化体系的建立   总被引:1,自引:0,他引:1  
为了建立适宜怀地黄的SRAP反应体系,以22个不同类型的怀地黄品种为材料,研究了PCR反应体系的主要成分对SRAP扩增结果的影响.对SRAP反应体系中的DNA模板浓度、TaqDNA聚合酶浓度、Mg2+浓度、引物浓度以及dNTP浓度进行了探索,确立的适合怀地黄SRAP反应的体系为:在25 μL的反应体系中,模板DNA20 ng、2.5 mmol·L-1 Mg2+、0.32 μmol·L-1的上下游引物、0.30 mmol·L-1的dNTPs以及2.5U Taq酶.并利用该反应体系对怀地黄22个不同品种进行了SRAP反应,发现不同品种间的DNA谱带多态性丰富,证实该体系稳定可靠,可以用于怀地黄的分子标记研究.  相似文献   

10.
采用L16(45)正交试验设计,对牡丹SRAP(sequence related amplified polymorphism,序列相关扩增多态性)反应体系中的Mg2+浓度、Taq聚合酶、dNTPs浓度、引物浓度、模板DNA浓度5因素4水平正交优化,建立了适合于牡丹基因组的SRAP-PCR优化扩增反应体系,Mg2+浓度为1.5 mmol/L,dNTPs为0.3 mmol/L,Taq酶1.5 U,引物为0.4μmol/L,模板DNA 1.0 ng/μL,总体积20.0μL。  相似文献   

11.
为亚麻分子标记及分子育种提供可靠的理论依据,利用正交试验设计对亚麻SRAP-PCR反应体系中的4因素(模板DNA、引物浓度、Mg2+浓度、dNTPs浓度)在3个水平上进行正交优化,确立了适合亚麻SRAP-PCR反应的20μL体系:75ng模板DNA、0.75μmol.L-1引物、1.5mmol.L-1 Mg2+、0.40mmol.L-1dNTPs和1.5UTaqDNA聚合酶。  相似文献   

12.
为建立适合沙棘(Hippophae rhamnoides L.)的SRAP-PCR反应体系,对影响SRAP-PCR的Mg2+浓度、Taq DNA聚合酶浓度、引物浓度、dNTPs浓度、模板DNA浓度进行了优化.优化后的反应体系为Mg2+3.0 mmol/L、Taq DNA聚合酶2U/25μL、引物0.8 μmol/L、dNTPs 0.25 mmol/L、模板DNA 30ng/25μL,反应总体系25 μL.利用此体系从30对引物组合中筛选出17对适合沙棘SRAP-PCR的引物,有助于沙棘的分子标记辅助育种研究.  相似文献   

13.
小麦SRAP-PCR体系的正交设计优化(摘要)   总被引:1,自引:0,他引:1  
[目的]优化小麦SRAP-PCR技术体系。[方法]以小麦丰优68为试材,利用正交设计L16(45)对小麦SRAP-PCR反应体系中的5因素(Taq聚合酶、Mg2+、模板DNA、dNTPs、引物)在4个水平上进行优化试验。[结果]不同因素对小麦SRAP反应体系影响的大小顺序为:Mg2+〉Taq聚合酶〉dNTPs〉模板DNA〉引物;优化的小麦SRAP-PCR体系为:在20μl反应体系中,包括10×PCR buffer2.0μl、Mg2+2.0mmol/L、Taq聚合酶2.0U、dNTPs0.2mmol/L、模板DNA40ng、引物0.6μmol/L。[结论]该优化体系为小麦资源SRAP遗传分析奠定了技术基础。  相似文献   

14.
苦瓜SRAP反应体系的建立与优化   总被引:6,自引:0,他引:6  
[目的]分子标记技术的快速发展为在DNA水平上估计苦瓜种质的遗传差异提供了更准确、更高效的方法。[方法]采用正交试验设计,对影响苦瓜SRAP反应体系的5种因素(Mg2+、dNTPs、引物、Taq聚合酶及模板DNA)4个水平进行优化筛选。[结果]确立了适合苦瓜SRAP分析的优化反应体系,即1×buffer,1.0 ng/μl模板DNA,1.5 mmol/L Mg2+,0.3 mmol/L dNTPs,0.5μmol/L引物,0.075 U/μlTaq聚合酶,总体积20μl。[结论]优化的SRAP-PCR反应体系的建立为利用SRAP技术进行苦瓜种质资源分类、遗传图谱构建和基因定位奠定了技术基础。  相似文献   

15.
以宁杞1号为试验材料,探讨Mg2+、dNTPs、Taq DNA聚合酶用量、引物浓度、模板DNA用量对枸杞SRAP-PCR反应的影响.建立20μL反应体系,模版DNA 50 ng,Buffer 1×,Mg2+1.5 mmol.L-1,dNTPs 0.3 mmol.L-1,引物0.3μmol.L-1,Taq DNA聚合酶用量为1 U,并利用该反应体系,两对不同引物组合Me1/Em1和Me3/Em5对12份枸杞样品DNA进行SRAP-PCR扩增,1.8%琼脂糖凝胶电泳检测结果表明,不同品种(系)间DNA谱带多态性丰富,说明该体系稳定可靠.  相似文献   

16.
艾鹏飞  武玉芬  魏景芳 《安徽农业科学》2011,39(17):10121-10123
[目的]优化小麦SRAP-PCR技术体系。[方法]以小麦丰优68为试材,利用正交设计L16(4^5)对小麦SRAP.PCR反应体系中的5因素(细聚合酶、Mg^2、模板DNA、dNTPs、引物)在4个水平上进行优化试验。[结果]不同因素对小麦SRAP反应体系的影响为:Mg^2〉Taq聚合酶〉dNTPs〉模板DNA〉引物;优化的小麦SRAP—PCR体系为:在20山反应体系中,包括10×PCRBuffer2.0山、Mg^2 2.0mmol/L、砌聚合酶2.0U、dNTPs0.2mmol/L、模板DNA40ng、引物0.6μmolVL。[结论]该优化体系为小麦资源SRAP遗传分析奠定了技术基础。  相似文献   

17.
"循化红"线辣椒SRAP-PCR反应体系的优化与建立   总被引:1,自引:1,他引:0  
李园媛  邱丹 《安徽农业科学》2010,38(1):78-79,84
[目的]建立适合于“循化红”线辣椒基因组的SRAP-PCR优化扩增反应体系。[方法]采用L16(4^5)正交试验设计,对“循化红”线辣椒SRAP反应体系中的Mg^2+浓度、Taq聚合酶、dNTPs浓度、引物浓度、模板DNA浓度进行5因素4水平正交优化。[结果]“循化红”线辣椒的最佳SRAP—PCR反应体系为:Mg^2+浓度为2.0mmol/L,dNTPs为0.5mmol/L,Taq酶0.5U,引物浓度为0.4μmol/L,模板DNA浓度为1.0ng/μl,总体积20μl。[结论]该体系的建立为SARP标记技术应用于“循化红”线辣椒种质资源的收集与利用,品种的鉴定、标记辅助育种等方面奠定了良好的试验基础。  相似文献   

18.
正交设计优化莲雾ISSR-PCR反应体系   总被引:1,自引:0,他引:1  
以莲雾品种‘农科一号’为试材,采用经改良的CTAB法提取莲雾叶片的DNA,探讨了Mg2+、dNTPs、引物浓度、Taq聚合酶、模板DNA含量对莲雾ISSR-PCR的影响。建立了总体积为25μL的莲雾ISSR-PCR反应体系:Mg2+浓度为3.0mmol.L-1﹑dNTP浓度为0.2mmol.L-1﹑primer浓度为0.4μmol.L-1﹑Taq DNA聚合酶1.5U﹑模板DNA含量为30ng,并含2.0μL 10×PCR Buffer(Mg2+free)。应用该反应体系对‘农科一号’和‘农科二号’进行ISSR-PCR扩增,共筛选出12条扩增稳定、多态性丰富的ISSR引物。  相似文献   

19.
采用均匀设计对影响猕猴桃SRAP-PCR体系的5种因素(Mg2+、dNTPs、引物、Taq DNA聚合酶、模板DNA)进行5因素5水平和5因素3水平的两轮优化,建立猕猴桃SRAP-PCR的最佳体系(25μL):Mg2+2.50 mmol·L-1,dNTPs 0.25 mmol·L-1,引物0.2μmol·L-1,Taq DNA聚合酶1.25 U,模板DNA 150 ng.扩增程序为:94℃预变性5 min;94℃变性1 min,35℃复性1 min,72℃延伸1 min,5个循环;94℃变性1 min,53℃复性1 min,72℃延伸1 min,33个循环,72℃延伸10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号