首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
One population of pearl millet (Pennisetum glaucum (L.) R. Br.) highly susceptible to downy mildew (Sclerospora graminicola (Sacc.) Schroet.) was subjected to two cycles of recurrent selection for downy mildew resistance using a modified greenhouse screening method. The response to selection was evaluated under greenhouse and field conditions using 50 random S1 progenies and 50 random full-sib progenies from each cycle bulk. Significant progress over cycles of selection was observed in all evaluation trials. These results demonstrated that, in a susceptible population, recurrent selection effectively increased the level of resistance to downy mildew. The modified greenhouse method for assessing resistance to downy mildew effectively differentiated genotypes and had the advantages of greater rapidity and suitability for use throughout the year, independent of season. A rapid decline of genotypic variance was observed in advanced cycles of selection, indicating that a small number of genes controls downy-mildew resistance in this population. The comparison of genotypic and error variance components from S1 progenies and full-sib progenies suggested that full-sib progenies can be used successfully in recurrent selection for increased downy-mildew resistance.  相似文献   

2.
Improvement of maize populations for resistance to downy mildew   总被引:1,自引:0,他引:1  
Upgrading levels of disease resistance are a primary objective of maize breeding programmes. Efficacy of S1 recurrent selection in improving levels of resistance to downy mildew (DM) infection was assessed in Nigeria from 1997 to 2000 in six maize populations. Improvement procedures consisted of evaluating S1 progenies under artificial infection with DM spores and in disease‐free environments and using a selection index to combine selection for reduced DM infection with appropriate agronomic characters from more than one environment. Three to four cycles of selection were completed in each of the populations. Products from the different cycles of selection were evaluated and data collected on DM infection parameters and agronomic traits. Result obtained showed 3–4 cycles of selection were adequate to reduce DM infection levels significantly and increase grain yield. Downy mildew infection decreased by between 58 and 100% while grain yield increases ranged from 10 to 98% for the 2‐4 cycles of selection relative to the C0 (original). Selection increased grain yield with acceptable changes in plant height while maintaining maturity in disease‐free environments.  相似文献   

3.
Choosing germplasm based on elite and diverse genetic sources is essential for the genetic improvement of maize (Zea mays L.) hybrids. The objectives of this research were to evaluate the agronomic and economic potential of maize population and single-cross hybrids and whether significant maternal (ME) and reciprocal effects (RE) reside in elite population hybrids for seed production purposes. Seven elite maize populations currently under recurrent selection at North Dakota State University (NDSU) [NDSCD(M-S)C11, NDSAB(MER-FS)C14, BS21(R)C7, BS22(R)C7, LEAMING(S)C4, CGL(S1-S2)C5 and CGSS(S1-S2)C5] were crossed in a diallel mating design to form 42 population hybrids, including their reciprocals. The 42 population hybrids with eight single-cross hybrids were evaluated at six U.S. North Central locations in 2005. Data collected across locations indicated that differences across genotypes were significant (P ≤ 0.05) for all traits observed, except for grain yield ear components. General combining ability (GCA) effects were on average larger than specific combining ability (SCA) effects. ME and RE were not significant for all traits, except for ear height. The large grain yield differences between macro-environments were reflected in the ranking of genotypes, with BS21(R)C7 × BS22(R)C7 being the top performer in eastern environments and CGSS(S1-S2)C5 × NDSAB(MER-FS)C14 being the top one across western environments where drought is the major limitation. The increased ethanol production and demand from maize make test weight (and grain quality), earliness, lodging resistance, and drought tolerance as important as grain yield for maintaining a sustainable maize-ethanol relationship. Part of the thesis submitted by McDonald B. Jumbo in partial fulfillment of the requirements for a MS degree at North Dakota State University.  相似文献   

4.
Ten trials evaluated the performance of several late tropical maize populations (La Posta Sequía, Pool 26 Sequía and Tuxpeño Sequía) selected for tolerance to drought during flowering and grain filling and also for yield potential. Families (S1 or full-sib) had been selected recurrently for six to eight years on an index of traits. Pattern (clustering and ordination) analysis was used to analyse the relative performance of entries that included cycles of selection for drought tolerance in the populations and non-drought tolerant checks. Mean environment (E) yields ranged from 1.0 to 10.4 t ha-1. Analysis of variance showed that 97.9% of the total sums of squares was accounted for by E, and that, of the remaining sums of squares the G × E (genotype by environment interaction) was almost 3 times that of the contribution of G alone. Cluster analysis separated the checks, the earlier maturing drought tolerant entries and the later maturing drought tolerant entries. This was verified by principal component (PC) analysis of the G × E matrix. Grouping of the environments (i.e. based on entry performance), resulted in the separation of different types of droughts, and of medium and high yielding well-watered environments. The patterns of discrimination observed indicated that the yield gains under drought would have been unlikely to occur if selection had been done only in well-watered environments. Within each population, selection improved broad adaptation (higher mean yield) to both drought and well-watered environments and cycles of selection ‘jumped’ from non-drought-tolerant to drought-tolerant groups as their specific adaptation to drought environments increased.  相似文献   

5.
Response to long-term selection in early maturing maize synthetic varieties   总被引:1,自引:0,他引:1  
A. Hyrkas  M. J. Carena 《Euphytica》2005,143(1-2):43-49
Long-term continuous selection is essential for germplasm improvement. However, choice of germplasm for long-term genetic improvement might limit the success of germplasm enhancement programs. The objective of this research was to report the response to long-term selection in early maturing North Dakota (ND) synthetic varieties. We wanted to determine whether the performance of three ND maize synthetic varieties was improved by long-term mass selection (M) and if the performance of one of them was improved by long-term modified ear-to-row (MER) selection. The evaluation of long-term selection response was performed at two plant densities. An experiment in a randomized complete block design with split-plot arrangement was used to evaluate NDSM(M), NDSAB(M), NDSCD(M), and NDSAB(MER) under 75,000 and 42,500 plants per hectare across seven environments. Long-term mass selection for grain yield and stalk lodging resistance in NDSM(M), NDSAB(M), and NDSCD(M) was not successful, since there were no significant changes in grain yield or stalk lodging in these populations at either low or high densities. On the other hand, long-term modified ear-to-row selection was effective for grain yield improvement in NDSAB(MER). Grain yield increased non-linearly from 3.9 Mg ha−1 in cycle 0 to 5.0 Mg ha−1 in cycle 12 at a rate of 2.5% per cycle. Interaction between plant density and genotype was not detected even though selection was performed at relatively low densities (20,000 plants ha−1 for mass selection and 50,000 plants ha−1 for ear-to-row selection). The confirmation of a lack of interaction between plant density and genotype suggests that selection at low plant densities might still be able to provide high-density stress resistance through density-independent genotypes, allowing progeny testing across multiple locations with better accuracy and fewer resources. Selection methods that emphasize both additive and dominance effects such as full-sib recurrent selection are recommended to maximize genetic improvement of advanced population cycles of early maturing synthetics.  相似文献   

6.
Summary Impressions from a trip through the United States of North America to study maize breeding Under the auspices of the Mutual Security Agency the author made an extended trip to survey the main maize growing regions in the northern and eastern parts of the United States during the summer of 1953.A few recent developments in maize breeding work are desccribed briefly. Among the topics discussed are: the utilization of monoploids to reach homzygozity rapidly: breeding for resistance to various diseases and pests (Gibberella and Diploidia, Helminthosporium, Pyrausta nubilalis); the phytopathological background of cold tolerance and the breeding of cold-resistant types; the use of male sterility in hybrid seed production. New methods such as recurrent selection are referred to, and the procedure for collecting and maintaining germplasm is discussed.  相似文献   

7.
Adaptation of tropical maize germplasm to temperate environments   总被引:1,自引:0,他引:1  
Maize (Zea mays L.) is one of few crops that can offer significant genetic gains with the utilization of genetic diversity. Genetically broad-based germplasm has the potential to contribute useful and unique alleles to U.S. Corn Belt breeding programs not present in current U.S. genome sequences (e.g. B73, NAM, etc.). Our objectives were to determine if unique tropical genetic materials have been effectively adapted to temperate environments and how their agronomic performance was relative to adapted populations. An important long-term objective of the Iowa and North Dakota maize breeding programs has been, in addition to the typical elite by elite line pedigree selection cultivar development process, to adapt exotic and unique germplasm, maximize their genetic improvement, and develop unique products for breeding and commercial uses. Stratified mass selection methodology for earliness has been utilized for the adaptation of tropical and temperate populations to Iowa and North Dakota environments. This method has allowed screening of up to 25,000 genotypes per population cycle at a rate of one cycle per year. In addition, the estimated cost per year our programs had for the adaptation of each population was less than $2,000 which could successfully be applied in any breeding program across the globe. This cost has been less than 1 % of the total cost for finding minor genes on the same trait. Our results showed the successful adaptation of exotic populations was independent from genetic background. We can speculate there are a few major genes responsible for most of flowering date expression. We encourage the use of technology to target traits according to their genetic complexity. Stratified mass selection at the phenotypic level has been successful. Each of the populations with either 25 of 100 % tropical germplasm are available for anyone who may desire to expand the germplasm base of their breeding programs with tropical germplasm adapted to temperate mid- and short-season U.S. Corn Belt environments.  相似文献   

8.
Future maize (Zea mays L.) genetic gains are dependent on the incorporation of unique and useful genetic diversity to breeding programs actively improving germplasm and developing cultivars. Our ultimate goal is to increase the genetic diversity currently available in early maturing maize hybrids by developing novel lines that can be utilized competitively in the northern US Corn Belt. A long-term breeding project (EarlyGEM) was initiated to move US Germplasm Enhancement Maize (GEM) germplasm northward and westward. Nine out of 152 breeding crosses were adapted and data from one breeding cross is presented. Five hundred BC1:S1 lines derived from (AR16026:S17-66-1-B × ND2000) × ND2000 were advanced, selected, and crossed to several commercial testers for early and late generation hybrid testing. Experiments were arranged in various partially balanced lattice designs and grown across 23 North Dakota (ND) environments. Data showed experimental GEM-derived hybrids had better grain yield (10.4 vs. 9.2 t ha?1), test weight (72.5 vs. 70.1 kg h L?1), extractable starch (67.8 vs. 64.2%) and fermentable starch, grain oil (4.3 vs. 3.5%), and grain protein (10.5 vs. 9.4%) when compared to popular hybrids at similar grain moisture at harvest. This is the first research incorporating GEM-derived tropical and late-temperate genetic materials for inbred line development representing a relative maturity (RM) below 90 days. As a consequence of these breeding efforts GEM materials were adapted to the northern US Corn Belt and are not only sources of useful and unique novel genetic diversity but also competitive products for industry use as requests for experimental EarlyGEM lines have been extensive. This research has practical implications with regards to new ways of conducting maize breeding for high latitudes.  相似文献   

9.
Participatory maize breeding for low nitrogen tolerance   总被引:2,自引:0,他引:2  
The local maize variety Sol da Manhã has a broad genetic background. It was identified in 1985 in a participatory evaluation trial as being suitable for cultivation under low soil fertility conditions in Sol da Manhã, situated in Seropédica, State of Rio de Janeiro, Brazil. The variety was then improved for 6 selection cycles by the formal breeding sector at the experimental station of Embrapa Agrobiologia. There were three cycles of mass selection, one selection cycle between and within half-sib families, one selection cycle within full-sib families, and one selection cycle between and within S1 families. Thereafter, the variety was improved in collaboration with the informal sector, viz. a group of farmers of the agricultural community of Sol da Manhã for 6 cycles of mass selection. The variety was evaluated in 1994 in field trials for grain yield and nitrogen use efficiency. Sol da Manhã can be characterised as efficient in nitrogen use, under both favourable and unfavourable growing conditions.  相似文献   

10.
Selection for brown stripe downy mildew resistance in maize   总被引:3,自引:0,他引:3  
Summary The maize (Zea mays L.) cultivar Makki Safed 1 (MS1) with susceptibility to brown stripe downy mildew (BSDM) caused by Sclerophthora rayssiae var. zeae Payak & Renfro, was subjected to two cycles of mass selection and one cycle of full-sib family selection. Selection was carried out primarily for BSDM resistance.The mass selection was practised under artificial epiphytotic conditions in a disease nursery. Full-sib progenies and performance trials on MS1 and its improved versions were grown in diseased and disease free environments.Mass selection resulted in a significant improvement for resistance to BSDM. A cycle of full-sib selection resulted in an additional improvement for resistance to the disease. The disease rating of the improved version was 1.5 against 4.5 for the original population (scale: 1, highly resistant to 5, highly susceptible). The yield of the improved populations of MS1 was significantly greater than that of MS1 in the disease nursery. In disease free experiments, the improved populations showed almost no yield advantage over MS1. There were also no significant differences between the original population and the improved population after three selection cycles for ear length, ear girth, number of kernel rows per ear, number of kernels per row, 1000-kernel weight, plant height, ear height and days to silk.  相似文献   

11.
Progress made in the in situ gynogenesis technique since 1990 now allows production of a high number of maize (Zea mays L.) doubled-haploid (DH) lines. The aim of the study was to compare DH lines versus selfing lines for testcross performance. DH and single-seed descent (SSD) lines were produced from random S1 progenies of a broad-base population. For grain yield, kernel moisture, plant height, ear height and leaf length, the three population means were similar. Except for kernel moisture, the genetic variance of DH lines was nearly twice as high as the genetic variance of S1 families, as expected. On the other hand, genetic variance among SSD lines was only 1.5 times higher than the genetic variance of S1 families. This lower variance could be due to a selection bias in the method of production of SSD lines. However, for all traits, heritability of SSD or DH lines was higher than heritability of S1 families. Epistasis effects in DH progenies were not significant. The consequence was a high correlation between S1 testcross progenies and DH or SSD testcross progenies, meaning that the S1 testcross value can be used to select the best families from which DH lines will be extracted. As a whole, the observed variation in DH lines appeared to be more in accordance with the observed variation among S1 families than with the observed variation among SSD lines.  相似文献   

12.
A potato (Solanum tuberosum Gp Tuberosum) breeding programme is described and analysed in which resistances to late blight [Phytophthora infestans (Mont.) de Bary] and the white potato cyst nematode (Globodera pallida) have been combined with a modest increase in yield and acceptable fry colour for processing. It began in 1991 and has involved cycles of crossing, selection between from 120 to 145 progenies (full-sib families), and clonal selection within the selected progenies. We have shown that the breeding scheme can operate on a 3-year cycle with limited within progeny selection, and on a 5- or 6-year cycle with more extensive within progeny selection. Six years are required when resistance to late blight is assessed in the tubers as well as the foliage. The more extensive within progeny selection is recommended once genes have been combined from sufficient parents to achieve one’s objectives. The yield increase after three cycles of indirect selection through breeders’ visual preference was only modest because it was operating against a decrease which would occur in the absence of selection. A practical improvement in the scheme would be to increase the number of progenies assessed to over 200, given the moderate to high heritabilities of the progeny and clonal tests. But this would require a considerable effort because the success rate achieved with the potato pollinations was typical at just over 30%. In the fourth cycle we showed how new breeding objectives and germplasm could be accommodated whilst continuing to maintain progress, something that is important in any long term breeding strategy.  相似文献   

13.
Improved maize (Zea mays L.) populations and population hybrids can both be profitable alternatives to commercial single-cross hybrids as well as good elite sources of diverse inbred lines. The objective of this research was to compare grain yield and agronomic performance between early maturing maize population hybrids and current early maturing commercial single-cross hybrids. This is a consequence of our research program targeted at identifying alternative heterotic patterns for the northern Corn Belt. Improved maize populations and population hybrids (S0 generations) were evaluated in experiments arranged in randomized complete block and partially balanced lattice designs across 29 environments. Grain yield potential of population hybrids was optimally expressed under irrigated conditions. Data across environments showed that 20% of the population hybrids evaluated were not different (P 0.05) from at least one of the commercial single-cross hybrids for grain yield performance, root lodging, and stalk lodging percentages. The average mid-parent heterosis value across population hybrids from different geographic regions was 20.4% with negative estimates observed in only two population hybrids. Breeding efforts toward elite populations and population hybrids have demonstrated that germplasm improvement is extremely valuable and deserves public funding. These efforts should be supported in order to enable the development of elite sources of diverse inbred lines and the development of improved population hybrids for specific markets (e.g., organic) to increase producer options. Public maize breeding programs utilizing recurrent selection methods for germplasm improvement could address the need. These programs, however, should incorporate extensive testing of population hybrids.  相似文献   

14.
Divergently selected genotypes can be used for detecting the genomic regions affecting the selected trait (selection signature). Moreover, the genetic distances (GDs) among divergently selected lines can be correlated with the agronomic performances of the crosses among them. Using as source the maize F2 of B73?×?IABO78, we previously conducted four cycles of divergent recurrent selection and three cycles of divergent selection in inbreeding for cold tolerance at germination. We finally obtained 10 lines selected for low (L) and 10 lines selected for high (H) cold tolerance, which exhibited a notable divergence for both the selected and associated traits. Herein, we investigated the 20 lines and the 28 single diallel crosses among eight random lines (four L and four H); the main objectives were to identify the putative regions controlling the selected and associated traits and to study the relationships between crosses performances and GDs among their parental lines. Allele frequencies at 932 recombination blocks based on 19,220 polymorphic SNPs were obtained for the two lines’ groups; the F ST calculated across sliding windows indicated 18 regions highly divergent between groups. The increasing alleles for cold tolerance were contributed by both parents, consistently with the transgressive segregations previously found. Several regions associated to DG also affected various agronomic traits. The cross performances showed some relationships with the genetic distances among parental lines for traits affected by dominance, provided that all crosses were considered, while these relationships vanished when only L?×?H crosses were examined.  相似文献   

15.
To improve the abiotic stress tolerance of maize (Zea mays L.), doubled haploid (DH) plants were produced by in vitro selection of microspores exposed to tert‐butyl hydroperoxide (t‐BuOOH) as a powerful prooxidant This study investigated the tolerance of the progenies of t‐BuOOH‐selected DH lines to oxidative stress, cold and drought in controlled environment pot experiments by analyses of photosynthetic electron transport and CO2 assimilation processes, chlorophyll bleaching and lipid peroxidation of leaves. Our results demonstrated that the t‐BuOOH‐selected DH plants exhibited enhanced tolerance not only to oxidative stress‐induced by t‐BuOOH but also to cold and drought stresses. In addition, they showed elevated activities of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase and glutathione S‐transferase when compared with the DH lines derived from microspores that were not exposed to t‐BuOOH and to the original hybrid plants. The results suggest that the simultaneous up‐regulation of several antioxidant enzymes may contribute to the oxidative and cold stress tolerance of the t‐BuOOH‐selected DH lines, and that the in vitro microspore selection represents a potential way to improve abiotic stress tolerance in maize.  相似文献   

16.
Devastating maize grain yield and quality losses are caused by Aspergillus flavus, Fusarium verticillioides and Stenocarpella maydis ear rots especially in tropical countries. Therefore, combining ability of tropical maize populations for ear rot severity and ear rot-related traits was investigated. Ten full-sib progenies, comprising one resistant and one susceptible from each of the five populations, were selected for mating in a 10 × 10 full diallel. The full-sib progeny crosses were evaluated across two environments with two replications in Zambia. To determine resistance across three ear rots that occur together in Zambia, the crosses were artificially inoculated with a mixture of Aspergillus flavus, Fusarium verticillioides and Stenocarpella maydis isolates. There were marked differences between environment main effects and their interaction with GCA and SCA effects were highly significant, suggesting observation of genotype × environment interaction effects. Both additive and non-additive gene effects were significant for ear rot severity. Highly significant reciprocal differences were also revealed, suggesting that cytoplasmic gene effects and their interaction with nuclear genes were responsible in modifying resistance across the three ear rot diseases in the full-sib progenies that were derived from the five tropical maize populations.  相似文献   

17.
Summary Data of planting and plant density are two cultural practices influencing grain yield of maize (Zea mays L.). Our study was designed to evaluate the usefulness of a mass selection scheme to improve cold and density tolerance of the BS2 and BS3 maize populations. Populations were planted at an early planting date and a high plant density, and three cycles of mass selection for well-filled ears on erect plants were conducted at earch of three Corn Belt locations (i.e., Waseca, MN; Ames, IA; Portageville, MO).Results showed that selection improved cold tolerance traits of BS3, but not of BS2. Mass selection did not increase density tolerance of either population at any location. Selection did not improve response to planting dates, although the early planting date did improve agronomic performance and grain yield of all entries. We concluded that mass selection at high plant densities and early planting dates at diverse geographical locations did not produce cycles adapted to specific environmental conditions.  相似文献   

18.
Summary Four cycles of divergent full-sib recurrent selection for the ability to germinate at low temperature were conducted in a maize (Zea mays L.) F2 population. The selection criterion was the high (H) or the low (L) value in algebraic terms of the difference (DG) between germination percentage at 9.5°C (G9.5) detected 19 days after sowing and germination percentage at 25°C (G 25) seven days after sowing; both traits were evaluated in a controlled environment (germinator). Direct and correlated responses estimated during the course of selection were in accordance with those evaluated at the end. Selection for H led to populations with higher DG values, while the reverse was noted for L; differences between H and L populations increased in successive selection cycles, though divergence tended to level off. Selection for H also resulted in higher G 9.5 (day 19), shorter germination time and more flinty kernels, while selection for L led to responses in the opposite direction as well as to a lower G 9.5 detected 37 days after sowing (i.e. at the end of germination). In contrast, responses were negligible for G 25 and varied erratically from one cycle to another for kernel weight.Abbreviations DG (G 9.5–G 25) - FS full sib - GI germination index - G 9.5 germination percentage at 9.5°C - G 25 germination percentage at 25°C - H high DG value in algebraic terms - KT kernel type - KW kernel weight - L low DG value in algebraic terms  相似文献   

19.
玉米耐低温冷害研究进展   总被引:1,自引:0,他引:1  
玉米是典型的喜温C4作物,低温冷害胁迫是影响玉米生产的重要非生物逆境因素。为了研究低温对玉米生长发育的影响,归纳了玉米在低温胁迫条件下生理生化指标、光合作用参数的变化及耐冷遗传机制等方面的研究进展,并介绍了国内外抵御低温冷害所采取的方法,探讨了玉米耐低温研究的方向,提出玉米耐低温研究应更加注重玉米耐冷种质资源的创新及耐冷基因的挖掘利用。  相似文献   

20.
Summary We evaluated cold-tolerance responses of 144 plant introductions (PI) of maize (Zea mays L.), attempting to include in our sample at least one PI adapted to each of the countries or ecological zones respresented in the maize germplasm collection at the North Central Regional Plant Introduction Station at Ames, Iowa, USA. Plant introductions were grown for 42 days in plastic boxes (26 cm long × 19 cm wide × 10 cm deep) in a growth chamber maintained at 10±1 °C. Cold-tolerance responses of each PI were evaluated by three traits: 1) percentage emergence (recorded 30 days after planting), 2) emergence index, an estimate of rate of emergence, and 3) seedling dry weight (sampled 42 days after planting). Estimates of variances and heritabilities for these three traits were large, suggesting that genotypic variation for cold tolerance in the maize germplasm collection would be sufficient to permit selection advance. Furthermore, genotypic correlations among the three traits were high: therefore, improvement by index selection should be possible. Correlations between the cold-tolerance traits and days from planting to 50% silk emergence (an estimate of maturity obtained at Ames. Iowa, USA) were low. Days from planting to 50% silking emergence for the 25 most cold-tolerant PI's ranged from 46 for PI 214279 from Canada to 106 for PI 331440 from Ethiopia. It should be possible, therefore, to develop cold-tolerant genotypes adapted to all latitudes.Contribution from the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011, and the Agricultural Research Service, U.S. Department of Agriculture, cooperating. Journal Paper No. J-8780 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Projects No. 1018 and 2152  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号