首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
生物质炭对城市污泥堆肥温室气体排放的影响   总被引:1,自引:0,他引:1  
采用城市脱水污泥为研究对象,设置两种堆肥处理(试验组:添加水稻生物质炭;对照组:未添加生物质炭),考察污泥堆肥过程温室气体动态变化特征以及添加生物质炭的影响。结果表明:生物质炭能提高堆体温度、延长堆体高温期、加快堆体腐熟,减少堆体TC(总碳)、TOC(总有机碳)和氮素损失(特别是减少NH_4~+-N的损失),两种处理TC、TOC和TN(总氮)均呈显著性差异(P0.05)。CH_4排放主要集中在高温期和降温期,占CH_4总排放量的76.40%~82.40%,添加生物质炭会促进CH_4排放。CO_2排放主要集中在高温期和降温期,占排放总量的78.77%~78.83%,添加生物质炭能减少CO_2排放。超过84%的N_2O排放集中在腐熟期,添加生物质炭能减少堆肥过程中N_2O排放,试验组N_2O累积排放量比对照组低18.94%。添加生物质炭对污泥堆肥处理具有一定的温室气体减排作用,试验组与对照组CO_2排放当量(以干污泥计)分别为60.21 kg·t~(-1)和67.19 kg·t~(-1),添加生物质炭能减排温室气体10.39%。  相似文献   

2.
生物质炭对伊乐藻堆肥过程氨挥发的作用效应研究   总被引:4,自引:3,他引:1  
针对水生植物堆肥过程中氮素损失严重的现状,探讨以生物质炭为添加剂的堆肥体氨挥发控制技术,以伊乐藻和稻草为供试材料,采用静态高温好氧堆肥的方法,在生物质炭不同添加比例条件下,监测了伊乐藻与稻草混合堆置过程中氨挥发及其影响因素的变化动态。结果表明:整个堆肥过程中,氨累积挥发量与生物质炭添加比例关系密切(P0.01),与不添加生物质炭的常规对照处理相比,添加比例为5%、10%的处理增加了氨的累积挥发量,而添加比例为15%、20%的处理降低了氨的累积挥发量;不同堆肥时间段,生物质炭不同添加比例处理0~3 d的氨累积挥发量均大于对照,4~6 d的氨累积挥发量,除添加比例5%处理外,均小于对照;伊乐藻堆肥体的氨挥发速率与堆温、铵态氮含量具有显著的偏相关性,其偏相关性均达到P0.05的显著水平;增加生物质炭添加比例,不仅提高了堆肥温度,对堆肥体的氨挥发损失具有负向的促进作用,同时也降低了堆肥体的铵态氮含量,对堆肥体的氨挥发损失具有正向的抑制作用,生物质炭对伊乐藻堆肥体氮素的氨挥发损失具有促进与抑制双重性的作用效应。  相似文献   

3.
花生壳生物炭用量对猪粪堆肥温室气体和NH3排放的影响   总被引:3,自引:0,他引:3  
为研究不同花生壳生物炭添加比例对猪粪堆肥过程中温室气体和NH3排放的影响。利用强制通风静态堆肥技术,研究0(对照)、3%、6%和9%花生壳生物炭添加比例(质量比)对猪粪堆肥过程CO_2、CH_4、N_2O和NH_3排放和堆肥性质的影响。结果表明:添加生物炭能够延长堆肥高温期持续天数,使pH提高0.09~0.13个单位,EC提高11.7%~50.6%;各堆肥处理CO_2、CH_4和N_2O排放速率均随发酵时间的延长呈先升高后降低的趋势,且CO_2、CH_4和N_2O排放速率均与pH具有显著的相关性;随生物炭用量的增加,猪粪堆肥过程中CO_2排放速率表现为先升高后降低的变化趋势,其中以3%生物炭添加比例处理最高,其平均CO_2排放速率比对照增加12.9%;N_2O排放和NH_3挥发均以9%生物炭添加比例处理最低,分别比对照降低12.5%和29.9%。综上,在整个堆肥过程中,花生壳生物炭的添加降低了N_2O和CH_4的累积排放量,且随花生壳生物炭添加比例的增加,温室气体减排效应增大。  相似文献   

4.
生物炭添加对猪粪堆肥氮素形态和损失的影响   总被引:2,自引:0,他引:2  
【目的】探讨生物炭添加下猪粪堆肥过程氮素形态的变化,为堆肥过程中氮素损失控制提供科学依据。【方法】本研究利用强制反应箱研究在猪粪堆肥中添加0%、3%、6%和9%的生物炭(重量比,干基计)对氮素形态变化以及氮素损失的影响。【结果】各处理在堆肥过程中全氮和硝态氮含量呈上升趋势,至堆肥结束全氮含量增加了3.68%~5.43%;可溶性总氮和铵态氮呈先上升后下降的趋势,随着生物炭添加量的提高堆料中铵态氮降幅减小。不同堆肥处理氮素损失率介于20.69%~28.18%,3%和6%生物炭添加处理的氨挥发量分别比未添加生物炭处理的高8.98%和46.30%,而9%生物炭添加处理的氮素损失率和氨挥发量最低。【结论】猪粪堆肥过程中添加生物炭可使堆体快速升温,并延长高温期,堆料中铵态氮向硝态氮转化。硝态氮含量随生物炭添加量呈增加的趋势,氮素损失率随着发酵时间延长呈增加的趋势。  相似文献   

5.
生物质炭对蔬菜废弃物堆肥化过程氮素转化的影响   总被引:12,自引:4,他引:8  
为了研究添加生物质炭对蔬菜废弃物堆肥化处理过程中氮素转化特征的影响,分析堆肥过程中氮素的转化及损失规律,用西红柿茎蔓、玉米秸秆和猪粪按一定比例混合后添加不同比例的生物质炭,进行了为期30 d的堆肥发酵试验。结果表明,添加生物质炭能够提高堆体温度,使堆体快速进入高温期,延长高温持续时间,可降低挥发性氨的累积释放量,减少堆肥过程中的氮素损失,从而提高堆肥产品全氮的含量,并可促进堆肥后期NH_4~+-N向NO_3~--N转化,提高非酸水解态氮的含量。添加生物质炭有利于堆肥的腐熟,在堆肥第18 d添加较高比例的生物质炭的处理其NH_4~+-N/NO_3~--N≤0.5,堆肥产品达到腐熟。综合保氮和腐熟效果,蔬菜废弃物在堆肥化过程中以添加10%的生物质炭为最佳。  相似文献   

6.
生物质炭对旱作春玉米农田N2O排放的效应   总被引:5,自引:3,他引:2  
通过田间试验,采用密闭式静态暗箱-气相色谱法研究不同生物质炭添加量(0、10、20、30t·hm-2)对黄土旱塬旱作春玉米农田N2O排放的影响。结果表明:生物质炭添加降低了施氮农田春玉米生长季N2O排放通量峰值和排放总量,添加30、20、10 t·hm-2生物质炭的三个处理N2O排放总量比不添加生物质炭的处理分别降低19.24%、9.89%、3.40%,其中添加30 t·hm-2生物质炭处理降低显著(P0.05),但添加20 t·hm-2的生物质炭未对不施氮农田N2O排放通量和总量产生显著影响。无论添加生物质炭与否,生长季不施氮处理的N2O排放通量和总量均显著低于施氮处理。添加生物质炭不同程度提升了农田0 cm和10 cm土壤温度,减少了施氮处理0~20cm土壤NH+4-N和NO-3-N含量,但对农田0~20 cm土层土壤含水量影响不显著。相关分析表明,试验农田N2O的排放通量与0~20 cm土层土壤NO-3-N和NH+4-N含量、含水量均呈极显著正相关关系(P0.001),与0 cm与10 cm土壤温度呈负相关关系。添加生物质炭后矿质氮含量的减少可能是旱作春玉米农田N2O排放减少的主要原因。  相似文献   

7.
水葫芦高温堆肥过程中氮素损失及控制技术研究   总被引:4,自引:1,他引:3  
为减少水葫芦高温堆肥过程中氮素损失,采用静态高温好氧堆肥的方法,分析了水葫芦堆肥过程中氮素转化规律,研究了添加化学保氮剂对减少堆肥中氮素损失的效果.结果表明,水葫芦堆肥过程中总氮及有机氮含量均呈上升趋势,铵态氮与硝态氮含量均呈先上升后下降的趋势,总氮损失率为12.84%;水葫芦堆肥过程中氮素损失途径主要为以NH3、N2O等气态形式逸出,其中,堆肥前10 d是NH3挥发的高峰期,堆制后第5~9 d的N2O排放速率最大;添加化学保氮剂对水葫芦堆肥过程第4~10 d的氨挥发具有显著的抑制作用,NH3挥发量可减少23.82%,另外,化学保氮剂处理降低了堆制后第0~5 d的N2O排放速率,增加了第9 d以后的N2O排放速率;使用化学保氮剂原位控制水葫芦堆肥过程的氮素损失具有较好的效果,与常规对照相比,化学保氮剂对水葫芦堆体的保氮效率为32.70%.  相似文献   

8.
生物炭对鸡粪堆肥过程中氨气排放的影响   总被引:4,自引:0,他引:4  
通过鸡粪与玉米叶共堆肥试验,研究小麦秸秆生物炭、稻壳生物炭对共堆肥过程中碳氮比(C/N)、铵态氮(NH_4~+-N)及氨气(NH_3)挥发的影响。堆肥中2种生物炭分别以干质量分数的5%、10%、15%添加,结果表明,在堆肥过程中,添加3种比例的小麦秸秆生物炭处理(B_1、B_2、B_3)、稻壳生物炭处理(B_4、B_5、B_6)堆体的C/N减少量比对照的C/N减少量分别多0~2、2~4;NH_3排放浓度较比照分别降低了63.75%、78.44%、91.50%和70.13%、80.75%、92.63%。另外,在堆体NH_3排放高峰期,添加生物炭堆体的NH_4~+-N含量均明显低于对照,且NH_4~+-N含量随生物炭添加量的增加而减少。由结果可知,生物炭的添加可以降低堆肥过程中NH_3的挥发并促进保氮过程,且比表面积更大的稻壳生物炭对抑制NH_3排放的效果更好。  相似文献   

9.
炭基辅料对羊粪好氧堆肥中氮素损失的影响   总被引:4,自引:1,他引:3  
养殖废弃物(羊粪)的堆肥化处置是现代"草-羊-田"农牧循环生产的重要环节,为探讨羊粪高温好氧堆肥中氮素损失的有效控制技术,研制了一种炭基辅料,与羊粪和稻草混合后进行了34 d的堆肥试验。试验设置2个处理:羊粪与稻草高温好氧堆肥(CK)、CK基础上添加质量比15%的炭基辅料(CA)。监测了堆肥体的温度、NH_3挥发速率、N_2O排放通量、各形态氮素含量等参数变化情况,分析了炭基辅料对羊粪堆肥过程中氮素转化及损失的影响。结果表明,与CK处理相比,添加炭基辅料促进了堆肥后第1~7 d堆肥温度快速上升,对堆肥后第8~34 d的堆温影响较小;堆肥34 d后,CK、CA处理的NH_3挥发累积量分别为368.38、175.63 mg·kg-1,N_2O排放累积量分别为50.38、88.94 mg·kg-1,CA处理的NH_3挥发累积量显著小于CK处理(P0.05),而2个处理之间的N_2O排放累积量差异性不显著(P0.05),羊粪堆肥过程中NH_3挥发是氮素损失的主要途径;CK、CA处理的氮素损失率分别为50.49%、32.63%,添加炭基辅料显著降低了羊粪堆肥体的氮素损失率(P0.05),炭基辅料应用于羊粪有机肥生产,氮素损失率可减少35.37%。  相似文献   

10.
过磷酸钙在猪粪堆肥过程中的保氮效果研究   总被引:5,自引:0,他引:5  
翁俊基 《安徽农业科学》2012,40(8):4528-4529,4617
[目的]为减少堆肥过程的氮挥发损失.[方法]采用强制通风静态堆肥反应器,研究过磷酸钙不同添加量对猪粪、米糠堆肥的保氮效果.[结果]添加过磷酸钙可促进堆温的提高,明显降低堆肥初期与高温期的pH,明显提高堆肥的水溶性NH4+-N含量,有效减少NH3的释放量,推迟NH3产生量的高峰期.与对照(CK)相比,添加1%、2%和3%过磷酸钙可分别降低堆肥氮损失率33.56%、49.18%和52.88%,提高堆肥的磷含量.[结论]猪粪、米糠堆肥的过磷酸钙适宜添加量为2% ~3%.  相似文献   

11.
双氰胺和氢醌添加对堆肥温室气体排放的影响   总被引:3,自引:2,他引:1  
为实现畜禽粪便堆肥过程温室气体和NH3的同步减排,在添加一定氢醌的基础上,探究双氰胺添加比例和添加时间对堆肥温室气体和NH3排放的影响。以猪粪和玉米秸秆为堆肥原料,设置5个堆肥处理:对照处理,添加0.03%氢醌处理,在氢醌的基础上第19 d添加0.1%的双氰胺处理、第0 d添加0.2%的双氰胺处理和第0 d与19 d各添加0.1%的双氰胺处理。在60 L的发酵罐中进行40 d的堆肥试验。结果表明:添加干质量0.1%~0.2%的双氰胺和0.03%的氢醌并未对猪粪堆肥腐熟度造成影响;氢醌作为脲酶抑制剂对堆肥NH3和温室气体排放影响较小,在此基础上添加双氰胺可减少8.88%~12.94%的NH3排放、6.79%~13.55%的CH4排放和24.71%~35.83%的N2O排放,总温室效应可降低18.61%~19.97%。考虑到经济成本和减排效果,建议在堆肥降温期添加双氰胺。  相似文献   

12.
畜禽粪便堆肥过程中碳氮损失及温室气体排放综述   总被引:3,自引:1,他引:2  
堆肥是畜禽粪便资源化利用的重要技术,但堆肥过程中碳氮损失会降低产品的农用价值并造成温室气体排放。堆肥过程中的污染气体排放受多种因素影响,本文综述了堆肥原料类型、辅料类型、初始C/N、含水率和通风速率对畜禽粪便堆肥过程碳氮损失和温室气体(CH4、NH3、N2O)排放的影响。结果发现:48.7%的C和27.7%的N在堆肥过程中损失,其中CH4-C损失平均占初始总碳的0.5%,NH3-N和N2O-N损失分别占初始总氮的18.9%和1.1%。不同种类粪便堆肥碳氮损失差异明显,猪粪和鸡粪堆肥的温室气体排放量高于牛粪和羊粪。选择富含C的辅料与畜禽粪便联合堆肥均可促进有机物降解,其中以稻草或锯末为辅料时的温室气体排放量较低。初始C/N对堆肥过程N损失影响较大,总氮、NH3和N2O的损失均随C/N的增加而降低,其中C/N为20~25时最适宜N素保留。初始含水率显著影响CH4和N2O的排放,其排放量随含水率的增加呈显著上升趋势,以含水率为60%~65%最为适宜。通风速率(以堆肥干基计)为0.1~0.2 L·kg-1·min-1时,CH4排放和总碳损失较低;通风速率为0.1~0.3 L·kg-1·min-1时,N2O、NH3和总氮损失较低。因此,为降低畜禽粪便堆肥过程碳氮损失和温室气体排放量,建议采用的工艺参数为:通风速率0.1~0.3 L·kg-1·min-1、含水率60%~65%、C/N为20~25。  相似文献   

13.
为研究畜禽粪便好氧堆肥过程氨气(NH3)与温室气体的排放特征及协同减排机制,以鸡粪与蘑菇渣为原料,设置9组不同条件的好氧堆肥正交实验,并进行为期45 d的跟踪监测,了解好氧堆肥过程基本理化参数变化,分析NH3和温室气体的排放规律及最佳减排条件,探究微生物群落与环境因子、气体排放通量之间的相关性。结果表明:含水率与碳氮比(C/N)变化影响整个堆肥进程,经45 d堆肥后,大多数处理组的堆肥均已经完全腐熟,且添加一定比例的椰壳生物炭与钙镁磷肥可以提高堆肥腐熟度。NH3和4种温室气体(CH4、N2O、CO、CO2)在堆肥前期(1~22 d)排放通量较高,人工翻堆会增加气体排放通量。NH3和温室气体排放的影响因子和最佳减排条件各不相同,存在“此消彼长”的关系。对NH3、CH4、N2O排放影响较大的因子是椰壳生物炭占比、钙镁磷肥占比和通风速率,有利于这3种气体协同减排的条件为含水率...  相似文献   

14.
棉花秸秆及其生物炭对滴灌棉田氨挥发的影响   总被引:10,自引:5,他引:5  
土壤氨挥发是干旱区农田氮肥损失的重要途径之一,通过田间试验研究了施用棉花秸秆及其生物炭对滴灌棉田土壤无机氮含量及氨挥发的影响。试验设对照、施用棉花秸秆(12 t·hm-2)和等碳量生物炭(4.5t·hm-2)三个处理,每个处理设置不施氮肥和施氮450 kg N·hm-2两种条件。试验结果表明,施用棉花秸秆和生物炭可显著降低土壤NH+4-N含量,分别较对照降低8.01%~19.88%和5.49%~9.90%。棉花秸秆及其生物炭处理土壤NO-3-N含量和脲酶活性在不施氮肥条件下显著降低,而在施氮肥条件下显著增加。不施氮肥条件下,棉花秸秆和生物炭处理土壤氨挥发较对照分别降低22.06%和21.27%;而在施氮450 kg N·hm-2条件下,分别降低30.58%和40.59%。因此,棉花秸秆及其生物炭还田都可以减少滴灌棉田氨挥发,其中生物炭还田效果更显著,是一种更好的秸秆利用方式。  相似文献   

15.
化肥减量配施有机肥对早稻田温室气体排放的影响   总被引:5,自引:3,他引:2  
为明确化肥减量配施有机肥对早稻田温室气体排放的影响,在长期定位施肥试验区采用密闭静态箱法采集温室气体,监测了常规施用化肥以及化肥减量配施鲜猪粪、沼液沼渣、猪粪堆肥、紫云英绿肥等不同施肥处理的早季稻田主要温室气体排放动态,探讨了不同施肥措施对稻田温室气体累积排放量、全球增温潜势(GWP)及排放强度(GHGI)的影响。结果表明:不同施肥措施下早稻田温室气体的排放存在明显的差异;与常规施肥相比,各化肥减量配施有机肥处理均促进了早稻田CH_4和CO_2的排放,而化肥减量配施鲜猪粪、猪粪堆肥处理的N_2O排放量分别降低了7.09%、4.89%。在早稻生长季,化肥减量配施有机肥虽引起了稻田GWP值的增加,增幅在5.00%~59.58%之间,但也使稻谷产量增加了6.15%~12.10%,选择适宜的有机肥还可降低稻田的GHGI值;其中化肥减量配施猪粪堆肥是本试验中促进早稻增产和实现温室气体减排的最佳施肥措施。  相似文献   

16.
为探讨不同形态猪粪短期存储和施用全过程的气态氮(N)损失特征,优化猪粪清储模式,以猪粪生浆液(PS)、固液分离液态组分(LF)、固液分离固态组分(SF)和风干猪粪(DM)为研究对象,利用原位气体采集法和盆栽试验,针对粪肥气态氮损失主要形式——NH_3挥发和N_2O排放,开展了不同形态猪粪存储及施用过程中的气态氮损失特征研究,并比较了4种形态猪粪施用后生菜产量和氮素利用效率(NUE)。结果表明:存储和施用全过程中,各形态猪粪的总气态氮损失达12.4%~20.9%,其中PS最高,SF最低;气态氮损失主要发生在存储/风干过程,占总气态氮损失的58.6%~76.3%。不同形态猪粪存储/施用过程的气态氮损失形态差异显著,在存储过程,LF和DM以NH_3挥发为主,分别占存储过程气态氮损失的71.5%和49.8%,而PS(38.0%)和SF(31.4%)的NH_3挥发占比相对较低;在施用过程,LF的气态氮损失依然以NH_3挥发为主,排放系数达到9.7%,其他形态猪粪NH_3挥发排放系数仅为3.3%~3.9%。SF经存储初级发酵后施用的资源化利用模式效果最优,其生菜产量(33.2 t·hm~(-2))及NUE最高,而等N施用下LF和PS对作物生长具有抑制作用。猪粪施用后N_2O排放带来的增温潜势达2.01~4.26 t CO_2e·hm~(-2),具有较高的温室效应。综上,猪粪的清储模式宜选择干清粪或者固液分离模式,液态部分可通过酸化等方式降低NH_3挥发损失,而固态组分可在简单堆肥发酵处理后进行农田资源化利用。  相似文献   

17.
畜禽废弃物堆肥氨气与温室气体协同减排研究   总被引:4,自引:1,他引:3  
畜禽废弃物堆肥过程氨气与温室气体排放机理及减排技术是国内外学者的研究热点。堆肥过程中碳氮转化与氨气和温室气体的排放是相互关联的,而目前的研究主要关注氨气减排,尚缺乏对氨气与温室气体协同减排的系统性研究。因此,本研究通过系统梳理已发表的文献,分析了畜禽废弃物堆肥过程中氨气和温室气体的产排机制和协同关系,阐述了影响因素、调控策略和减排潜力,探讨了氨气和温室气体协同减排的技术途径,展望了氨气和温室气体协同减排机理与策略研究的重点和方向,旨在为畜禽废弃物堆肥过程中氨气和温室气体的协同减排提供理论依据和技术途径。研究表明,畜禽废弃物堆肥过程中氨气和温室气体的协同减排机理和调控途径尚不清楚,应加强在调节物料性质和优化供气策略的基础上,通过使用物理、化学和生物添加剂以实现堆肥过程氨气和温室气体的协同减排机理和技术研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号