首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to compare the number of recovered spermatozoa, in different parts of the uterine horn and oviduct in gilts, after insemination with fractionated (experiment) and non-fractionated (control) liquid stored semen. The number of spermatozoa and volume of backflow was also investigated. Twenty three cross-bred gilts were used in the study. They were divided into 2 groups, a control group (non-fractionated liquid stored semen, n=10) which were inseminated with 100 ml of liquid stored semen containing 3,000 million spermatozoa per dose and an experimental group (fractionated liquid stored semen, n=10) which were inseminated with 50 ml of liquid stored semen, with 3,000 million spermatozoa per dose and followed by another 50 ml of semen dilutor (Beltsville Thawing Solution, BTS). Thereafter, backflow semen was collected and measured every 15 min for a period of 1 hr. Three or 12 hr after insemination, 5 gilts from each group had the uterus, the horn of the uterus, the oviducts and the ovaries removed under general anaesthesia. The horn of uterus and the oviducts were seperated by ligation into 6 segments. All 6 segments were flushed with BTS to collect all spermatozoa within the segment. Recovered spermatozoa were counted, using a haemocytometer and the volume recorded. It was seen that the percentage of spermatozoa in the backflow semen in the experimental group was less than in the control group. The difference was not significant in the gilts that were operated on 3 hr after insemination, the mean number of spermatozoa in the uterine horn and the utero-tubular junction (UTJ) was more in the experimental than in the control group, but less in the isthmus and the ampulla of the oviduct. The gilts which were operated on 12 hr after insemination, had relativity more ovulating gilts in the control group than in the experimental group (3 of 4 gilts compare to 3 of 5 gilts). The control group had more spermatozoa in the oviduct than the experimental group, but less in UTJ and in the horn of the uterus. Again the difference was not significant. It can be concluded that fractionated (experimental) or non-fractionated (control) insemination of semen with the same number of spermatozoa provides no significant difference in the number of spermatozoa either in the horn of the uterus, the UTJ or the oviduct of gilts.  相似文献   

2.
The purpose of the present study was to compare the number of spermatozoa obtained from different parts of the oviducts and the uterine horns of sows after intrauterine insemination (IUI) and conventional artificial insemination (AI), 24 h after insemination. Twelve crossbred (Landrace x Yorkshire) multiparous sows were used in the experiment. The sows were examined for standing oestrus using a back pressure test and were examined every 4 h after standing oestrus by real-time B-mode ultrasonography to estimate the time of ovulation. The sows were allocated to two groups, group I sows (n = 6) were inseminated by a conventional AI technique with 3 x 10(9) motile spermatozoa in 100 ml of extended semen, and group II sows (n = 6) were inseminated by an IUI technique using 1 x 10(9) motile spermatozoa in 50 ml of extended semen. A single dose of AI or IUI was given using the same boar, 8-10 h before the expected time of ovulation during the second oestrus after weaning. Twenty four hours after insemination, the sows were ovario-hysterectomized. The oviducts and the uterine horns were removed and divided into seven parts, the cranial, middle and caudal uterine horns, the utero-tubal junction (UTJ), the cranial and caudal isthmus, and the ampulla. All parts of the reproductive tract were flushed and the spermatozoa were counted using a haemocytometer. The results revealed that the spermatozoa were found in both the oviducts and the uterine horns in all animals. The number of flushed spermatozoa in the UTJ of groups I and II, was 142,500 and 131,167 (p > 0.05), and in the caudal isthmus was 1411 and 1280 (p > 0.05), respectively. The proportion of spermatozoa in different parts of the reproductive tract in relation to the total number of spermatozoa within the tract was not significantly different between groups I and II (p > 0.05). It could be concluded that IUI, with a three-time reduction in the number of spermatozoa used resulted in the same number of spermatozoa to be deposited in the sperm reservoir around ovulation time.  相似文献   

3.
The aim of this study was to investigate the expression of progesterone receptor (PR) in the utero‐tubal junction (UTJ) of sows at 24 h after intra‐uterine insemination (IUI) and deep intra‐uterine insemination (DIUI) compared with conventional artificial insemination (AI) in pigs. Fifteen multiparous sows were used: AI (n = 5), IUI (n = 5) and DIUI (n = 5). The sows were inseminated with a single dose of diluted semen during the second oestrus after weaning at 6–8 h prior to ovulation (AI: 3000 × 106 spermatozoa, IUI: 1000 × 106 spermatozoa and DIUI: 150 × 106 spermatozoa). The UTJ was collected and subject to immunohistochemical staining using avidin‐biotin immunoperoxidase technique with mouse monoclonal antibody to PR. In the oviductal part of the UTJ, the intensity of PR in the tunica muscularis and the proportion of PR‐positive cells in the surface epithelium after DIUI were lower than AI (p < 0.05). The intensity and the proportion of PR‐positive cells between AI and IUI in all compartments of the UTJ did not differ significantly (p > 0.05). When comparing between tissue compartments, prominent staining was observed in the muscular layer of the UTJ. It could be concluded that the expression of PR in the UTJ prior to fertilization after DIUI with a reduced number of spermatozoa was lower than that after AI. This might influence sperm transportation and the fertilization process.  相似文献   

4.
The present study was performed to investigate the number of either the spermatozoa or the embryos in the reproductive tracts of sows after unilateral, deep, intra uterine insemination (DIUI). Two experiments were conducted, 10 sows were used in experiment I and eight sows were used in experiment II. Transrectal ultrasonography was used to examine the time when ovulation took place in relation to oestrus behaviour. The sows were inseminated with a single dose of diluted fresh semen 6-8 h prior to expected ovulation, during the second oestrus after weaning. In experimental I, five sows were inseminated by a conventional artificial insemination (AI) technique using 100 ml of diluted fresh semen, containing 3000 x 10(6) motile spermatozoa and five sows were inseminated by the DIUI technique with 5 ml of diluted fresh semen, containing 150 x 10(6) motile spermatozoa. The sows were anesthetized and ovario-hysterectomized approximately 24 h after insemination. The oviducts and the uterine horns on each side of the reproductive tracts were divided into seven segments, namely ampulla, cranial isthmus, caudal isthmus, utero-tubal junction (UTJ), cranial uterine horn, middle uterine horn and caudal uterine horn. Each segment of the reproductive tracts was flushed with Beltsville thawing solution (BTS) through the lumen. The total number of spermatozoa in the flushing from each segment were determined. In experimental II, eight sows were inseminated by the DIUI technique using 5.0 ml diluted fresh semen containing 150 x 10(6) motile spermatozoa. The sows were anesthetized 61.1 +/- 12 h after insemination (48-72 h) and the embryos were flushed from the oviduct through the proximal part of the uterine horn. It was revealed that, in experimental I, the spermatozoa were recovered from both sides of the reproductive tract in the AI-group, and from unilateral side of the reproductive tract in the DIUI-group (three sows from the left and two sows from the right sides). The number of spermatozoa recovered from the reproductive tracts was higher in the AI- than the DIUI-group (p < 0.001). In experiment II, fertilization occurred in five of eight sows (62.5%) after DIUI. The number of ova that ovulated were 16.4 +/- 2.6 per sow and the embryos numbering 11.4 +/- 2.3 per sow were recovered from both sides of the reproductive tract. In conclusion, the spermatozoa given by DIUI could be recovered from only one side of the reproductive tract of sows at approximately 24 h after DIUI via the flushing technique. However, embryos were found in both sides of the oviducts and the proximal part of the uterine horns 48-72 h after insemination, indicating that the fertilization occurred in both sides of the oviducts.  相似文献   

5.
The aim of this study was to investigate the number of spermatozoa in the crypts of the utero‐tubal junction (UTJ) and the oviduct of sows approximately 24 h after intrauterine insemination (IUI) and deep intrauterine insemination (DIUI) and compared with that of conventional artificial insemination (AI). Fifteen crossbred Landrace × Yorkshire (LY) multiparous sows were used in the experiment. Transrectal ultrasonography was performed every 4 h to examine the time of ovulation in relation to oestrous behaviour. The sows were inseminated with a single dose of diluted fresh semen by the AI (n = 5), IUI (n = 5) and DIUI (n = 5) at approximately 6–8 h prior to the expected time of ovulation, during the second oestrus after weaning. The sperm dose contained 3000 × 106 spermatozoa in 100 ml for AI, 1,000 × 106 spermatozoa in 50 ml for IUI and 150 × 106 spermatozoa in 5 ml for DIUI. The sows were anaesthetized and ovario‐hysterectomized approximately 24 h after insemination. The oviducts and the proximal part of the uterine horns (1 cm) on each side of the reproductive tracts were collected. The section was divided into four parts, i.e. UTJ, caudal isthmus, cranial isthmus and ampulla. The spermatozoa in the lumen in each part were flushed several times with phosphate buffer solution. After flushing, the UTJ and all parts of the oviducts were immersed in a 10% neutral buffered formalin solution. The UTJ and each part of the oviducts were cut into four equal parts and embedded in a paraffin block. The tissue sections were transversely sectioned to a thickness of 5 μm. Every fifth serial section was mounted and stained with haematoxylin and eosin. The total number of spermatozoa from 32 sections in each parts of the tissue (16 sections from the left side and 16 sections from the right side) was determined under light microscope. The results reveal that most of the spermatozoa in the histological section were located in groups in the epithelial crypts. The means of the total number of spermatozoa in the sperm reservoir (UTJ and caudal isthmus) were 2296, 729 and 22 cells in AI, IUI and DIUI groups, respectively (p < 0.01). The spermatozoa were found on both sides of the sperm reservoir in all sows in the AI and the IUI groups. For the DIUI group, spermatozoa were not found on any side of the sperm reservoir in three out of five sows, found in unilateral side of the sperm reservoir in one sow and found in both sides of the sperm reservoir in one sow. No spermatozoa were found in the cranial isthmus, while only one spermatozoon was found in the ampulla part of a sow in the IUI group. In conclusion, DIUI resulted in a significantly lower number of spermatozoa in the sperm reservoir approximately 24 h after insemination compared with AI and IUI. Spermatozoa could be obtained from both sides of the sperm reservoir after AI and IUI but in one out of five sows inseminated by DIUI.  相似文献   

6.
Eight animals, 3 heifers and 5 primiparous cows, were artificially inseminated by intrauterine deposition of frozen-thawed semen. The insemination dose comprised 20×106 or 200 × 106 spermatozoa, frozen in French mini straws. Four animals were inseminated at fixed time interval (72 or 84 h) after cloprostenol injection. The remaining 4 animals were inseminated in spontaneous oestrus. Slaughter took place 2 or 12 h after insemination. After fixation the oviducts were cut into segments, which were serial-sectioned and stained. Six sections per segment were examined under the microscope for sperm recovery.The number of spermatozoa recovered from the oviducts varied considerably among animals. Recovery was poor (less than 50 spermatozoa) in 4 animals. Recovery was low when insemination took place in induced oestrus and with the lower sperm number (20×106). In animals in which more than 50 spermatozoa were found the distribution varied both between animals and between oviducts within the same animal. Overall, more spermatozoa were found in the lower (UTJ, isthmus and AIJ) than in the upper (ampulla) parts of the oviducts. In 3 out of 4 animals more spermatozoa were recovered from the left than from the right oviduct. Only in 1 animal were the majority of spermatozoa found in the oviduct ipsilateral to the follicle-bearing ovary.  相似文献   

7.
The main purpose of the present study was to investigate whether boar seminal plasma affects the transport of spermatozoa in the genital tract of oestrous pigs or not, with special reference to the sperm transport into the oviducts. Altogether 17 gilts were used in three experiments.Experiment I. In nine gilts one uterine horn was injected surgically with 1010 spermatozoa suspended in seminal plasma and the other uterine horn with 1010 spermatozoa suspended in TESNaK-glucose buffer solution. The sperm deposition was performed under general anaesthesia. The gilts were slaughtered 1–2 or 4–6 h after insemination. The genital tract was removed and the numbers of spermatozoa determined in oviducts and in uterine horns.Experiment II. The insemination doses were prepared exactly as in Experiment I. Approx. 24 h before insemination Polyvinylchloride cannulas were inserted into the uterine lumen of the horns, drawn via the midventral incision at linea alba subcutaneously to cutaneous incisions ventral to the vulva opening. One cannula was placed in each uterine horn. At standing heat the insemination doses were slowly injected through the cannulas. The gilts were slaughtered 1 h after insemination and the numbers of spermatozoa within the genital tract were counted.Experiment III. In three gilts under general anaesthesia the uterine horns were ligated 10 cm from the uterotubal junction. The semen doses (containing 2 × 109 spermatozoa), prepared as in Experiment I, were deposited into the uterine horns anterior to the ligatures through a cannula. The gilts were slaughtered 1 h after insemination, and the numbers of spermatozoa within the oviducts and ligated part of the uterine horns were counted.In all three experiments more spermatozoa were, on average, recovered in the oviducts connected to uterine horns inseminated with spermatozoa suspended in seminal plasma. In Experiments I andII this was the case for 10 of 14 gilts and in Experiment III for all the three gilts. It is therefore suggested that boar seminal plasma pro¬motes sperm transport into the oviduct of oestrous pigs. The back¬ground mechanism for this is discussed.  相似文献   

8.
Twenty-four gilts were inseminated pair-wise with live or dead spermatozoa from the same ejaculate. The insemination dose was 100 ml undiluted semen containing, on average, 19×109 spermatozoa. The gilts were slaughtered 1, 2, 6 and 12 h after insemination. The numbers of spermatozoa were counted in the uterus, uterotubal junction and in four equally long segments of the oviduct, called I–IV, with a haemocytometer. IV was adjacent to the uterotubal junction. The numbers of spermatozoa recovered in the uterus diminished significantly during the first 12 h after insemination. From gilts inseminated with live spermatozoa more spermatozoa were recovered in the uterotubal junction than from gilts inseminated with dead spermatozoa. Two h after insemination spermatozoa were recovered in all oviducts. Significantly more live than dead spermatozoa were recovered in Segments III and IV of the oviduct, regardless of time. In gilts inseminated with live spermatozoa the sperm count in Segment I varied significantly with time, being hiigest 2 h after insemination. At 6 and 12 h there were no distinct differences in the distribution of live spermatozoa between the various oviduct segments. The numbers of spermatozoa recovered in the oviduct were at these times apparently related to the sperm depots in the uterotubal junction.  相似文献   

9.
This study investigates the distribution of leucocytes, CD2+, CD4+, CD8+ lymphocyte subpopulations and MHC class II expressing cells in the sow endometrium following post-ovulatory insemination in relation to clinical findings and pregnancy outcome. Crossbred multiparous sows were inseminated once either at 15-20 h after ovulation [experiment 1, slaughtered at 20-25 h (5-6 h after artificial insemination (AI), group 1-A, n = 4), at 70 h after ovulation (group 1-B, n = 4), on day 11 (group 1-C, n = 4, first day of standing oestrus = day 1) or on day 19 (group 1-D, n = 4)] or 30 h after ovulation [experiment 2, slaughtered at 5-6 h after AI (group 2-A, n = 4) or on day 19 (group 2-D, n = 3)]. The uterine horns were flushed to control for the presence of spermatozoa and neutrophils and/or for recovery of oocytes and/or embryos. Mesometrial uterine samples were plastic embedded and stained. Cryofixed uterine samples were analysed by immunohistochemistry using mAbs to lymphocyte subpopulations and MHC class II molecules. Light microscopy was used to examine surface (SE) and glandular epithelia (GE), and connective tissue layers, both subepithelially (SL) and glandular (GL). In experiment 1, group 1-A, only one sow had spermatozoa in the utero-tubal junction (UTJ). Marked/moderated numbers of neutrophils and spermatozoa were observed in the flushings of two sows. In group 1-B, altogether 23 of 48 oocytes were cleaved. Day 11 (1-C), embryos with small diameter were observed. Day 19 (1-D), no embryos were found but small pieces of foetal membrane were observed in one of the sows. In group 1-A, large numbers of neutrophils were found within the SE and SL but with high individual variation. For T lymphocyte subpopulations, in the SE, most CD2+ cells were found in group 1-A. For both SE and GE in all groups, the number of CD8+ cells was significantly larger than that of CD4+ cells. In experiment 2, group 2-A, no sow had spermatozoa in the UTJ or in the uterine flushings. At day 19, no sow was pregnant. In group 2-A, large numbers of neutrophils were found within the SE and SL but with high individual variation. At day 19, high E2 levels showed a hormonal prooestrous stage but the endometrial neutrophil infiltration normally expected at pro-oestrus was absent. In conclusion, post-ovulatory insemination (about 18 h after ovulation) resulted in impaired spermatozoa transport within the uterus and embryonic degeneration. In sows post-ovulatory inseminated at a later stage (30 h after ovulation), no sow was pregnant. In both experiments, disturbed immune cell patterns were observed in some individuals.  相似文献   

10.
At the time of AI following Ovsynch protocol, a total of 51 buffaloes were randomly divided in a first group (n = 30) subjected to conventional AI into the uterine body with 20 million non-sex sorted frozen-thawed spermatozoa, while a second group (n = 21) was inseminated near the utero-tubal junction (UTJ) ipsilateral to the ovary carrying the preovulatory follicle with 2.5 million live (4 million total) sex-sorted frozen-thawed spermatozoa. The semen used for flowcytometric sorting was collected and processed on a farm in Italy, and then shipped to a laboratory in Germany. Eleven buffaloes were inseminated with X-chromosome bearing spermatozoa and 10 with Y-chromosome bearing spermatozoa. Conception rates after conventional and UTJ inseminations were 43.3% (n = 13) and 42.8% (n = 9) respectively (p = 0.97). Eight of the nine foetuses obtained after insemination with sexed spermatozoa corresponded to the sex as predicted by the cell sorting procedure (five male and four female foetuses by ultrasound vs six male and three female foetuses by cell sorting). In conclusion, for the first time buffalo semen has been successfully subjected to procedures for flowcytometric sperm sorting and freezing. Low doses of sexed spermatozoa have been deposited near the UTJ giving conception rates similar to those of conventional AI with full dose.  相似文献   

11.
Spermatozoa are known to bind to the epithelial cells lining the uterine tube in various species, but information in canids is conflicting and sparse. The first aim of this study was to measure the epithelial surface outline (ESO) of different regions of the canine uterine tube in the four stages of the oestrous cycle as an indicator of a changing potential reservoir for spermatozoa. The second aim was to identify the site of sperm storage in the bitch after natural mating. Reproductive tracts were collected from bitches undergoing routine ovariohysterectomy.Histological analysis showed that, when corrected for uterine tube size, the ESO of pro-oestrus (P < 0.005) and oestrus (P < 0.05) tubes were larger than anoestrus, but not metoestrus, tubes. The second study examined reproductive tracts from 12 Beagle bitches at 6, 12, 24 and 48 h after mating. Light and electron microscopy revealed large numbers of spermatozoa in the proximal regions of the uterus and particularly the distal utero-tubal junction (UTJ), with few present in the proximal UTJ or uterine tubes. Spermatozoa were bound by their heads to microvilli on the epithelial surface of the uterine lumen and to ciliated cells in the distal UTJ. This is the first report to measure and document differences in potential epithelial attachment sites of the uterine tubes at different stages of the oestrous cycle and to provide compelling evidence that the main spermatozoal storage site in the reproductive tract of the bitch is the distal UTJ.  相似文献   

12.
Yorkshire x Landrace gilts were used to determine the effect of spermatozoa and seminal plasma on postbreeding uterine leukocyte influx. Estrus detection was performed with a boar at 12-h intervals following synchronization with 400 IU eCG and 200 IU of hCG. All gilts were AI once, 24 h after the detection of estrus following random assignment to a 2x2x3 factorial arrangement of treatments (sperm or sperm-free AI doses), AI dose medium (seminal plasma or PBS), and lavage time following AI. Gilts were treated with sperm (5x10(9) spermatozoa; SPZ; n = 30) or sperm-free (SF; n = 30) doses containing either 100 mL of seminal plasma (SP; n = 15/treatment) or PBS (n = 15/treatment). Uterine lavage was performed once on each gilt (n = 20/time) at one of three times after AI (6, 12, or 36 h) to determine the total number of uterine leukocytes. The leukocytes consisted predominately (92 to 99%) of polymorphonuclear neutrophilic granulocytes (PMN). There was an AI x medium interaction on uterine PMN numbers. The number of uterine PMN recovered from gilts inseminated with sperm suspended in PBS was greater than the number of PMN recovered from the uterine lumen of gilts inseminated with sperm in SP, SP alone, or PBS alone (P<.05). Furthermore, SP accelerated the rate of uterine clearance when suspended with sperm cells during the first 36 h following AI (P<.05). These results indicate that seminal plasma suppresses PMN migration into the uterus following breeding and enhances the rate of disappearance of uterine inflammation.  相似文献   

13.
To examine the efficiency of retrograde sperm transport following intraperitoneal insemination, live and dead spermatozoa were used at different concentrations, and sperm recovery from cervical mucus (0.5 ml) 2, 6, 12 and 24 h following insemination was evaluated. Forty lactating Friesian cows, in their second to fourth lactation period, were used in this experiment. Thirty-six cows received intraperitoneally either live or dead spermatozoa. Each group of six cows received one of three total sperm numbers of 30, 45 and 90 million. Four cows were inseminated with 90 million spermatozoa into the uterus and served as a control group. All cows were inseminated towards the end of oestrus. After intrauterine insemination sperm recovery declined, but motile and/or immotile spermatozoa were recovered from all cows at any time. In cows inseminated intraperitoneally, sperm was recovered from the cervix at 6-24 h when 90 million were inseminated. A greater number of spermatozoa was recovered after dead rather than after live sperm inseminations. Only immotile, intact or broken spermatozoa and tail-less heads were recovered after intraperitioneal insemination using either live or dead spermatozoa. No sperm was recovered for 30 and 45 million inseminations. Our results show that, following intraperitoneal insemination, there is passive sperm transport from the peritoneal cavity to the genital tract close to the time of ovulation, and suggest a higher sperm retention in the genital tract when live as opposed to dead spermatozoa are used.  相似文献   

14.
The uterotubal junction (UTJ) and caudal isthmus are recognized as a functional pre-ovulatory sperm reservoir (SR). Spermatozoa are released from the SR in a complex and concerted action. However, whether this functionality is restricted only to the ovulatory period is still open to debate. Our study was aimed to analyze the presence of spermatozoa within the UTJ (SR), isthmus (ISTH) and ampulla (AMP) after laparoscopic intrauterine insemination (LIUI) either in the peri- (PERI) or post-ovulatory (POST) period or at mid cycle (MID). Each uterine horn of estrus synchronized gilts (n=12) was inseminated with 20 ml sperm (29.5×106 cells/ml). Oviducts were recovered 7 h after LIUI and separated into the UTJ, ISTH and AMP, and sections were flushed with 10 ml PBS+EDTA solution. After centrifugation, the sperm pellet was evaluated by Čeřovský staining. The median sperm numbers in the PERI, POST and MID groups were 578, 171 and 789 in the UTJ; 545, 233 and 713 in the ISTH; and 496, 280 and 926 in the AMP, respectively, and there were differences between the POST and MID groups (P<0.05) but not between the oviductal sections of each group (P>0.05). Compared with the MID group, the percent of intact sperm cells was higher (P<0.01) in the PERI and POST groups (32.8 vs. 66.4 and 76.8%). Also, the percentages of aberrations in the acrosome and tail were higher (P<0.05) in the MID group. Based on this, it can be assumed that the sperm reservoir is active during different phases of the estrus cycle. However, the mid-cycle oviduct environment considerably impairs sperm cell quality.  相似文献   

15.
Oestrogen receptor alpha (ERalpha), the main subtype in the uterus, is involved in the regulation of uterine growth/proliferation. A relationship between ERalpha and proliferative activity has been shown in the cyclic sow uterus, but to our knowledge, no study has been carried out on early pregnant sows. Therefore, by means of immunohistochemistry and use of mouse monoclonal antibodies to ERalpha and a proliferative marker, Ki-67, the localization of these proteins was investigated in the sow uterus during early pregnancy. Eighteen crossbred multiparous sows were artificially inseminated once at 20-15 h before expected ovulation. After artificial insemination (AI), they were slaughtered at five different times: at oestrus, 5-6 h after AI (n = 4), 20-25 h after ovulation (n =4), 70 h after ovulation (n = 4), on day 11 (the first day of standing oestrus = day 1, n = 3) and on day 19 (n = 3). Immediately after slaughter, uterine samples were collected at the mesometrial side of the uteri, fixed in 10% formaldehyde and embedded in paraffin. Immunohistochemistry was performed by using mouse monoclonal antibodies to ERalpha (C-311) and Ki-67 (MM1). All sows slaughtered after ovulation were pregnant. In general, positive immunostaining for ERalpha and Ki-67 was found in the nuclei. Variations in staining intensity and proportion of positive nuclei were observed in different uterine compartments and stages of early pregnancy. The highest level of ERalpha presence in the surface epithelium and myometrium was found at oestrus (5-6 h after AI), and low levels of ERalpha in these compartments were observed as early as 20-25 h after ovulation. In the glandular epithelia, presence of ERalpha was highest at 70 h after ovulation. The largest number of ERalpha-positive cells in the stroma was observed at oestrus and early after ovulation. Low proliferation was observed, and with no significant difference in tissue compartments except in the glandular epithelium. High proliferative activity in the glandular epithelium at 70 h after ovulation indicated involvement in preparation for secretory activity and growth during pregnancy establishment. Significant positive correlation was found between the number of ERalpha-positive cells in the stroma and Ki-67-positive cells in the surface epithelium. In conclusion, the present study showed differences in immunolocalization of ERalpha and the proliferative marker Ki-67 in different tissue compartments of the sow uterus at oestrus and early pregnancy. In some uterine compartments, the patterns of ERalpha and Ki-67 immunostaining seemed to be influenced by insemination and the presence of embryos, in addition to the effects of steroid hormones.  相似文献   

16.
The present study investigated the infiltration of leukocyte subpopulations in the utero-tubal junction (UTJ) and each part of the oviducts at about 24 hr after intra-uterine insemination (IUI) and deep intra-uterine insemination (DIUI) compared to conventional artificial insemination (CAI) in sows. Fifteen crossbred Landrace x Yorkshire multiparous sows were used (CAI, n=5; IUI, n=5; DIUI, n=5). The sperm dose contained 3,000 × 10(6) (100 ml), 1,000 × 10(6) (50 ml) and 150 × 10(6) (5 ml) motile spermatozoa for CAI, IUI and DIUI, respectively. The sows were inseminated with extended fresh semen at 6 to 8 hr prior to the expected time of ovulation. At 25.2 ± 1.6 hr after insemination, the oviducts and the UTJ were collected. The tissue samples of UTJ, caudal isthmus, cranial isthmus and ampulla were transversely cut to a thickness of 5 μm and stained with H&E. The total numbers of lymphocytes, neutrophils, macrophages, eosinophils and plasma cells were determined under light microscope. It was found that the numbers of lymphocytes, eosinophils and macrophages after CAI, IUI and DIUI were not significantly different (P>0.1) in both epithelial and sub-epithelial connective tissue layer of the UTJ, caudal isthmus, cranial isthmus and ampulla. Intra-epithelial neutrophils in the UTJ were higher than cranial isthmus (P<0.05) and ampulla (P<0.05). In the UTJ, the intra-epithelial neutrophil in the CAI group was higher than DIUI group (P<0.01). Plasma cells in sub-epithelial layer of the endosalpinx in the CAI group were higher than DIUI group (P<0.05) and tended to be higher than the IUI group (P=0.08). In conclusion, compared to CAI, IUI and DIUI do not influence the infiltration of lymphocytes, macrophages and eosinophils in the UTJ and the oviduct prior to fertilization. But a lower number of neutrophils in the intra-epithelial layer of the UTJ and plasma cells in the sub-epithelial layers of the oviduct was observed in the DIUI group compared to CAI.  相似文献   

17.
New insemination techniques allow a tremendous sperm reduction for successful artificial insemination (AI) if highly diluted semen is deposited in the tip of the uterine horn and close to the utero‐tubal junction. High sperm losses are known to occur during uterine passage and it was the general question whether specific binding mechanisms are involved. Upon arrival in the uterus, spermatozoa are confronted with mainly two different cell types: uterine epithelial cells (UEC) and neutrophilic granulocytes (polymorphonuclear neutrophil, PMN). As cell–sperm interactions can hardly be observed in vivo, an ex vivo system was established to study the interaction between spermatozoa and the UEC. Uterine segments (10 cm) from freshly slaughtered synchronized juvenile gilts were inseminated for 60 min at 38°C. Thereafter spermatozoa were recovered, counted flow cytometrically and examined for changes in viability and mitochondrial membrane potential (MMP). Significantly less spermatozoa with a functioning MMP and intact plasma membranes could be retrieved (55 ± 7%), while the number of damaged spermatozoa hardly changed (93 ± 12%), indicating retention of viable sperm cells in the uterine lumen. The interactions between porcine PMN and spermatozoa (motile, immotile, membrane‐damaged) were studied in coincubation assays in vitro. The binding of membrane‐damaged sperm cells to PMN was virtually non‐existent (3 ± 2%). Viable and motile spermatozoa attached to PMN without being phagocytosed within 60 min (45 ± 3%), whereas binding to sodium fluoride (NaF)‐immobilized spermatozoa was reduced to 20 ± 2%. The binding of viable sperm to PMN is most likely not lectin‐dependent; although both viable cell types were shown to express a broad range of different lectin‐binding sugar residues, none of the lectins tested was able to selectively block PMN‐sperm binding significantly. The results of the study suggest that viable spermatozoa are already subject to selective processes within the uterus before further selection is initiated at the utero‐tubal junction and in the oviductal isthmus.  相似文献   

18.
A new procedure for non-surgical deep intrauterine insemination (DUI) in unrestrained sows hormonally induced to ovulate, has been reported. In comparison with standard artificial insemination (AI), with this procedure, the sperm numbers inseminated can be reduced 20-fold without reducing the reproductive performance of these hormonally treated sows. The present study evaluated, using two experiments, the reproductive performance applying 20-fold different sperm numbers per AI dose using DUI or standard AI in spontaneously ovulating sows, under field conditions. In experiment 1, AI was applied to crossbred sows at 12, 24 and 36 h after onset of spontaneous oestrus using one of the following two regimes: (i) DUI (treatment) with 0.15 x 10(9) fresh boar spermatozoa in 5 ml of Beltsville thawing solution (BTS) extender (n = 95), and (ii) standard cervical AI (control) with 2.85 x 10(9) fresh spermatozoa in 95 ml of BTS extender (n = 95). The farrowing rates of the two groups of sows were statistically similar (NS). However, a decrease (p < 0.002) in litter size and the total number of pigs born alive was observed in sows inseminated with the DUI procedure. In experiment 2, 42 post-weaned oestrus sows were inseminated following the same design described for experiment 1 during spontaneous oestrus. On day 6 after onset of oestrus, the proximal segment of the uterine horns of the sows were flushed under surgery to retrieve eventual embryos and evaluate the success of fertilization per cornua (e.g. occurrence of effective uni- vs bilateral sperm transport rendering uni- or bilateral, complete or partial fertilization). Retrieved embryos were assessed for cleavage and number of accessory spermatozoa. Although identical overall pregnancy rates were achieved in both insemination groups, the percentage of sows with partial bilateral fertilization and unilateral fertilization was markedly higher (p < 0.05) in the DUI group (35%) compared with the control (standard AI) group (5%), with a consequent lower (p < 0.001) percentage of viable early embryos after DUI. The number of accessory spermatozoa in the zona pellucida of the embryos was highly variable, but higher (p < 0.001) in control animals than in DUI-AI. No accessory spermatozoa were found in oocytes retrieved from sows depicting unilateral fertilization. In conclusion, DUI in spontaneously ovulating sows with 0.15 x 10(9) spermatozoa renders similar farrowing rates but a lower litter size compared with use of standard AI with a 20-fold higher sperm dose. The lower litter size ought to be related to a decreased distribution of spermatozoa after DUI leading to a higher incidence of partial bilateral and unilateral fertilization.  相似文献   

19.
A new device (Chapingo device) to deposit semen at the base of the uterine horns of cattle was developed at Universidad Autonoma Chapingo, Mexico. Nine Holstein heifers were inseminated by transvaginal laparoscopy, using a laparoscope for cattle and the Chapingo device. A dose of sexed semen (2.1 × 106 spermatozoa) was deposited at the base of the uterine horn ipsilateral to the ovary where the preovulatory follicle was identified. Insemination was achieved in all the heifers, taking on average 13.7 ± 3.1 min per animal. In all cases, it was possible to see both ovaries, the base of the uterine horns and the oviducts. After the procedure, none of the heifers showed any type of complications such as haemorrhage, adhesions or trauma. On days 21 and 22 after insemination, four of the nine heifers (44.4%) returned into oestrus; on day 30 after insemination, one heifer was found to be pregnant by ultrasound. The results show the feasibility of generating pregnancies by transvaginal laparoscopy in heifers inseminated with sexed semen.  相似文献   

20.
Contents: Blood samples were taken in ten heifers every two hours during prooestrus and oestrus for determination of the LH peak, which was used to calculote the time of expected ovulation. Artificial insemination with frozen/thawed semen was performed at different times from the beginning of oestrus and the animals were slaughtered two, twelve or 24 hours after insemination. The genital tract was flushed and the spermatozoa recovered from the flushing solution by microscopic investigation. Heifers slaughtered two hours after insemination and more than 19 hours before ovulation had more spermatozoa in the uterotubal junction (UTJ) than in the isthmus and ampulla. This sperm distribution differed from that in the other animals. In animals which were slaughtered closer to ovulation and in those who had already ovulated at slaughter, approximately the same number of spermatozoa were recovered from the UTJ and isthmus and only a few spermatozoa were recovered from the ampulla. Motile spermatozoa were found in both the isthmus, UTJ and uterus at two and twelve hours after insemination and approximately ten hours before ovulation. Their number decreased with time but some motile spermatozoa were also recovered 24 hours after insemination and after ovulation. The distribution of spermatozoa in the oviducts ipsi-and contralateral to the corpus haemorrhagicum-bearing ovary was compared in heifers that had ovulated. There were no differences in the number of oviductal segments containing spermatozoa, nor were there any differences within animal in the number of spermatozoa in the oviducts. It was concluded that ovulation does not seem to cause great changes in the distribution of spermatozoa in the oviducts. Inhalt: Spermienverteilung und deren Beziehung zur Ovulation bei kunstlich besamten Jungrindern Von 10 Färsen wurden wahrend des Diöstrus und Östrus Blutproben im Abstand von 2 Std. entnommen, um den LH-Gipfel festzustellen. Dieser wurde jür die Bestimmung des erwarteten Ovulationstermins herangezogen. Inseminationen mit Gefriersperma wurden von Brunstbeginn an in verschiedenen Intervallen vorgenommen. Die Tiere wurden 2, 12 oder 24 Std. nach der Besamung getötet, die Geschlechtsorgane gespült und die Spermien in den Spülflüssigkeiten mikroskopisch nachgewiesen. Färsen, die 2 Std. nach der Besamung und mehr als 19 Std. vor der Ovulation getötet wurden, hat-ten mehr Spermien im Ostium uterinum des Eileiters (OU) als im Isthmus und Ampulle. Diese Verteilung war von jener der anderen Tiere verschieden. Tiere, die kürzere Zeit vor der Ovulation getötet wurden, oder bei der Schlachtung schon ovuliert hatten, zeigten etwa dieselbe Anzahl von Spermien in OU und Isthmus, in der Ampulle wurden nur wenig Spermien gefunden. Bei Färsen, die ovuliert hatten, wurde die Sper-mienverteilung in den ipsi- und contralateralen Eileitern zum Corpus haemowhagicum des Ovars verglichen. Die Spermienxahlen in den Eileitersegmenten waren nicht verschieden und auch im rechten und linken Eileiter gleich. Es wurde gefolgert, daβ die Ovulation keinen groβen Einfluβ auf die Spermienverteilung in den Eileitern bewirkt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号