首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
针对稻谷竖箱式干燥段内粮层气流分布不均匀等问题,基于稻谷四向通风混流干燥工艺,设计了一种适用于四向通风混流干燥段的双侧进气变径角状管,用于提高粮层气流分布均匀性和保持稻谷品质。基于计算流体动力学(Computational Fluid Dynamics,CFD)和多孔介质传热传质基本理论,建立稻谷层内热湿耦合传递的数学模型,通过运用Fluent软件对干燥段内稻谷静态流场和温湿度分布情况进行数值模拟。研究表明:采用双侧进气变径角状管的干燥段,有效解决了粮层流场和温湿度沿进气角状管纵向分布不均问题。采用自主研制的四向通风混流干燥试验台,应用二次回归正交旋转组合试验方法进行了参数优化试验,优化参数组合:热风温度43 ℃,角状管进口风速为4.1 m/s,初始含水率值为18.2%时,干燥速率为1.116 %/h,爆腰率增值为1.7%,食味值为80.33,试验结果与优化结果相符合,稻谷干燥不均匀度为0.7%,干燥效果较优,采用双侧进气变径角状管的干燥段和优化干燥参数具有实际应用价值。  相似文献   

2.
气流改善泡沫树莓果浆微波干燥均匀性提高能量利用率   总被引:3,自引:2,他引:1  
为满足浆果低能耗、高品质的生产过程的需要,采用理论分析、数值模拟与台架试验相结合的方法,研究气流与微波协同作用对泡沫果浆干燥均匀性和微波能利用率的影响规律。结果表明:在气流与微波协同干燥中由于物料的介电特性指标及表观导热、气体渗流、气相导热、液相导热等系数变化,从而影响泡沫果浆料层中传热、传质过程。泡沫果浆传热及传质系数变化,影响泡沫果浆内部热传导及水分传递,温度及含水率直接影响泡沫果浆介电特性指标,进而影响物料微波能吸收。气流在料层边界热对流量及料层内的热传导量是表征气流、微波协同作用的主要指标,当料层边界热对流量与内部热传导量比值低于27.79时,气流与微波协同作用产生正向效应,提高微波能利用率;当料层边界热对流量与内部热传导量比值高于27.79时,此协同作用产生负向效应,降低微波能利用率;气流携带泡沫果浆中蒸发出的水蒸气,降低物料表层湿空气压力,导致泡沫果浆气泡的产生和破裂,强化传热传质过程,进而提高料层内温度及含水率分布均匀性。当气流速度小于1.5m/s时,气流速度与干燥均匀性呈显著正相关;当气流速度大于1.5m/s时,气流速度对物料干燥均匀性影响不显著;在气流速度为1.5m/s时,干燥时间短,微波能利用率最高,相比无通风时提高了17.57%,微波能吸收量、温度及含水率分布的均匀度分别提高了20%、19%及27%,符合低能耗、高品质的浆果干燥生产要求,研究结果为浆果微波泡沫干燥工艺优化提供依据。  相似文献   

3.
箱式通风干燥机小麦干燥试验研究   总被引:1,自引:7,他引:1  
为了解小麦平床通风干燥特性,该文以某型号箱式通风干燥机为试验设备,开展小麦收获后干燥试验研究,测试分析了干燥床风场分布、干燥床层含水率分布、温度分布及耗能等特性。研究表明,该设备在水平面和垂直面均存在较明显的干燥速度差异;在干燥6h结束时整个小麦床层的最大含水率差异超过3%,影响整批物料的干燥效率和干燥成本;干燥5h后整批物料含水率达到小麦贮藏要求,每1kg物料含水率下降5%的能耗成本为0.09元。根据试验研究结果,提出在入风口增加导风栅格、干燥仓体4个角采用圆弧过渡处理、采用气流换向机构和交替换向通风干燥工艺等改进措施来改善该设备干燥均匀性。研究结果为该类型干燥机的小麦干燥工艺优化及设备改进设计提供了依据。  相似文献   

4.
在混流干燥机中,因穿过粮层的气流沿通气盒纵向分布不均匀常导致干燥不均匀。为了改善气流分布的均匀性,出现了多种变截面通气盒,但对其作用一直存有争议。该文通过实验研究了混流干燥机内粮层气流沿通气盒纵向分布的特点及影响因素,证实变截面通气盒对改善粮层气流分布均匀性的作用不明显。提出了变开孔率通气盒的型式和设计计算方法,它以增加3~4mm水柱气流阻力为代价,可使粮层气流分布达到均匀一致。  相似文献   

5.
混合通风方式下大型肉鸡舍过渡期通风效果测试   总被引:1,自引:0,他引:1  
随着肉鸡周年饲养环境控制精细化程度的提高,在横向通风和纵向通风系统应用的基础上,借助于横向进风口和纵向排风机进行春秋过渡期通风换气的混合通风方式,近年来在大型养鸡场内开始应用。该研究通过现场试验,研究测试了这种通风方式下肉鸡舍内的换气量、气流速度、温度以及氨气浓度,结果显示这种通风方式可以保证充足的换气量,提供适宜且分布均匀的气流速度和温度分布,有效地抑制舍内氨气浓度,从而可为鸡只的健康生长创造良好的环境条件。  相似文献   

6.
水产饲料在生产过程中经过膨化处理之后的含水率过高,需要进行烘干处理。在饲料烘干过程中,饲料层的厚度是一个重要的参数。料层厚度一方面代表烘干机单位时间内的产能(厚度越大,产能越高),影响烘干机的工作能耗;另一方面,料层厚度影响烘干机中的气流分布,从而对料层表面的风速分布的均匀性产生影响。该文研究料层厚度的变化对料层表面风速分布的影响。首先运用计算流体力学(computationalfluiddynamics,CFD)对3种料层厚度下(20、30、40mm)的烘干机的内部气流分布进行模拟仿真。然后基于实际生产,设计并制造烘干机对3种料层厚度下的烘干机内部气流进行试验验证,并在料层表面9个点利用风速传感器测出风速值,将风速模拟值与试验值进行对比分析。研究结果表明,风速模拟值的分布趋势与风速试验值的分布趋势均一致,且料层厚度的变化影响着烘干机内部的气流分布。当料层厚度为20 mm时,料层表面风速场较不均匀,当料层厚度为40mm时,料层表面的风速分布均匀性较好。该文所做研究为带式烘干机在实际生产中饲料层厚度参数的选择提供了理论指导,降低饲料水分的同时,保持良好的水分均匀性。  相似文献   

7.
为明确增压管结构对油麦兼用型气送式集排器分配均匀性的影响,该文运用DEM-CFD气固耦合方法仿真分析了波纹间距、凹窝深度和增压管长度对种子运动特性、分配均匀性和增压管气流场的影响,台架试验研究了增压管长度和气流压强对分配均匀性的影响.结果表明:增设增压管明显提高种子分布均匀度系数,降低种子速度和分配均匀性变异系数.速度流场分析表明增压管波峰与波谷的气流速度和压强交替变化,增压管中种子速度与受力呈现"正弦形"变化趋势.凹窝深度、波纹间距和增压管长度分别为4.2、15和180 mm时,种子分布均匀度系数和分配均匀性变异系数分别为91.17%和4.91%.台架试验表明,在优化结构参数组合下,排种油菜和小麦的气流压强分别为1200和1600 Pa时,分配均匀性变异系数分别达2.84%和2.89%.该研究为分析增压管中种子运动特性和优化其结构参数提供了参考.  相似文献   

8.
通风改善发芽糙米微波连续干燥均匀性   总被引:4,自引:3,他引:1  
为了提高发芽糙米微波干燥的均匀性,采用台架试验、计算模拟和理论分析相结合的研究方法,分析微波干燥机内料层上微波能分布规律,研究微波干燥时风速对发芽糙米干燥均匀性影响。结果表明:在波导馈口平行的微波干燥机上,馈口间存在耗损和反射,微波能利用率降低;在微波干燥过程中,通入室温空气带走发芽糙米蒸发出的水蒸气:风速低携带水蒸气能力弱,而风速高会导致气流分布不均匀,合适风速在0.5~1.0 m/s。在微波干燥时引入通风方式,可提高微波干燥均匀性,从干燥工艺方面解决因电场分布引起干燥均匀性差的问题。研究结果为微波干燥机的干燥腔结构设计和干燥工艺优化提供依据。  相似文献   

9.
通过对箱式热风穿流干燥室风速场、温度场及其满载物料干燥均匀性的试验研究,指出了干燥室温度场和物料的干燥均匀性规律同空载冷态下风速场均匀性的规律基本一致,为该类干燥设备在研制开发过程中干燥均匀性和与其相关的温度场的测定提供了一种间接的试验方法。  相似文献   

10.
气力式授粉喷气管道参数优化与试验验证   总被引:1,自引:3,他引:1  
杂交水稻制种气力式辅助授粉时,花粉随气流场运动,喷气管道多个喷孔的气流场叠加,表征气流场特性的射流极角、出孔动压对花粉分布均匀性、传播距离起决定性作用,为探索射流极角、出孔动压与管道参数之间的影响关系,获得较理想的气力授粉管道参数组合。该研究首先分析喷气管道气流场的叠加原理,采用消防烟雾弹发出有色气体经喷气管道的喷孔喷射并拍摄气流场图片,选取喷管直径、喷管壁厚、喷孔直径三因素为影响因子,以射流极角、出孔动压为评价指标,进行三因素五水平的单因素和多因素正交试验,通过对试验结果进行极差分析、矩阵分析,获得各因素对气流场特性的影响规律,找出较理想的因素组合并进行验证试验。结果表明,喷孔直径对射流极角和出孔动压的影响显著,3个因素的影响顺序为喷孔直径、喷管直径、喷管壁厚,较优的因素组合为喷管直径63 mm、喷管壁厚5 mm、喷孔直径12 mm,此时的射流极角为13.38°,出孔动压为31.6 Pa。验证试验表明,优化的因素组合明显提高花粉分布均匀性,花粉分布不均匀度(方差)降为1.33,花粉能形成覆盖母本行呈正态分布特性的单峰分布,能够满足气力辅助授粉对授粉管道的作业要求,研究结果为气力式授粉喷气管道的设计提供参考。  相似文献   

11.
油菜小麦兼用气送式直播机集排器参数优化与试验   总被引:12,自引:10,他引:2  
为提高油菜小麦兼用气送式集排器的排种性能,该文针对集排器具有较长导种管和气流扰动影响种子迁移轨迹的问题,通过构建导种过程力学模型确定了影响排种性能的主要因素,分析了导种管材料、直径、长度组合、角度布置、气流压强和供种转速对排种性能的影响。试验结果表明:导种管材料、直径、材料与直径的交互作用、长度组合对平均行排种量和各行排量一致性变异系数均有显著(P0.05)或极显著(P0.01)影响,角度布置影响不显著,导种管材料和直径分别为PVC钢丝软管和20 mm的排种性能较优,且应尽量布置导种管长度一致。气流压强和供种转速对各行排量一致性变异系数影响显著(P0.05);供种转速为20~40 r/min时,排种油菜、小麦时气流压强分别为1 200和1 600 Pa时具有较好的排种均匀性,总排量稳定性变异系数和各行排量一致性变异系数分别低于1.0%和4.00%;油菜、小麦的排种均匀性变异系数分别低于19.0%和12.5%,种子破损率低于0.1%。田间试验表明油菜种植密度为40~68株/m2时,稳定性变异系数低于20%;小麦单位面积植株数量为129和252株/m2时,稳定性变异系数分别为8.34%和8.12%,达到油菜、小麦的农艺种植要求。该研究为气送式集排器结构优化和排种性能提升提供了参考。  相似文献   

12.
植物工厂是当前可控农业环境的最高形式之一,但植物工厂内温度、气流空间分布不均,不同栽培架之间存在一定温差、气流速度差。为解决气流植物工厂内局部环境因子差异大的问题,该研究对植物工厂进风口设置进行改进,在侧进上出气流循环模式下,借鉴均流板原理设计了一款全网孔通风墙型植物工厂,并通过计算流体力学软件(computational fluid dynamics, CFD)进行模拟,分析该类型工厂下温度、气流速度、CO2浓度、相对湿度、适宜风速占比、空气龄、指定流线速度变化情况,以评价全网孔通风墙对植物工厂内局部环境差异的改进效果。该设计平均空气龄为7.5 s,是无全网孔通风墙条件下的1/9,空气更新效率有效提升。研究表明全网孔通风墙型植物工厂能有效提升植物工厂内环境因子分布均匀性。  相似文献   

13.
清选装置是稻麦联合收获机上的重要工作部件,为了提高谷粒的清洁度和降低清选损失,风机出风口的气流流速应分布均匀。目前在稻麦联合收获机上大多采用的是低压中速离心式风机,其气流沿叶轮宽度方向分布的均匀性比较差。现研究的离心—轴流组合式清粮风机,试验得到的风速标准差为0.5727,变异系数为5%,稳定性系数为95%,比普通离心式风机变异系数低,风速的稳定性系数高。同时离心—轴流组合式风机的出风口风速分布情况是两端较低、中间较高,改变了普通离心式风机的出风口风速分布情况两端较高、中间较低的弊端。  相似文献   

14.
冷藏运输厢体结构对流场影响的数值模拟   总被引:1,自引:4,他引:1  
为了研究不同冷藏运输厢体结构对冷藏运输环境均匀性的影响,该文针对3种厢体,冷藏运输中比较常用的“上进上出”式厢体和“上进下出”式厢体以及华南农业大学研制的“差压式”厢体建立了三维紊流数值计算模型,并运用FLUENT软件,采用SIMPLE算法和壁面函数法对3种厢体的空载和满载结构模型进行风速流场的数值计算,得到了3种厢体的风速云图和矢量图。通过厢中不同截面的对比分析,发现“差压式”厢体无论是处于空载还是满载时内部流场都比“上进下出”和“上进上出”式厢体的流场均匀;“上进下出”式厢体满载时的风速流场比空载时和“上进上出”式厢体的流场更均匀;“上进上出”式厢体无论是处于空载还是满载时,厢体内部的风速梯度较大,流场均匀性一般。研究结果对于冷藏运输厢体结构的优化设计具有一定参考价值。  相似文献   

15.
穿流转笼式烘干机设计研究   总被引:2,自引:1,他引:2  
为了解决某些易碎颗粒物料的烘干问题,设计了穿流转笼式烘干机。物料装在转笼内,随着转笼的转动,在重力和内摩擦力的作用下,连续缓慢地交换内外层物料的位置。热风穿过物料层,使物料均匀烘干。比较了敞口式、三段式和栅栏式出风口对风速分布的影响。通过试验表明,栅栏式出风口的轴向风速分布较均匀。并用开口核桃的烘干进行了生产试验,用风温125℃,风量8 511 m3/h,在2 h内将开口核桃的含水率从30%降低到3%,且干湿均匀,品质好,基本无破碎,可满足生产需要。  相似文献   

16.
为解决果蔬保鲜运输用高压雾化加湿系统的设计问题,建立了高压雾化加湿系统试验平台。通过改变保鲜厢体中回风道风速、开孔隔板开孔率、回风道长度等,研究各因素对加湿效率和湿度分布的影响,分析高压雾化加湿系统的湿度调节特性。结果表明:设计的保鲜厢体结构有利于加速液滴雾化,防止果蔬包装箱强度降低;高压雾化加湿系统加湿效率与风速、开孔率呈非线性关系;在风速和开孔率相同的情况下,回风道越长,保鲜室内湿度分布越均匀;确定开孔率为7.56%,风速为8m/s,回风通道长度为1.5m为本试验平台的最优的工作参数组合。研究结果对保鲜运输用高压雾化加湿系统的设计具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号