首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Juvenile New Zealand turbot, Colistium nudipinnis (Waite 1910), produced during the first aquaculture development project for this endemic flatfish, were reared at ambient and reduced salinities to determine the effect of salinity on growth and survival and the possible implications for aquaculture. Juveniles aged from 176 days to 17 months showed a high level of salinity tolerance, with minimal mortality attributable to salinity reduction over the range 33–18 g L?1. Growth rate was slightly increased at the slightly reduced salinity of 28 g L?1 (5 g L?1 below ambient) but was significantly decreased at the markedly reduced salinity of 18 g L?1. The growth response at 23 g L?1 was markedly different between ‘new’ water and water that was recycled from a previous set of rearing tanks, with juveniles reared in 23 g L?1‘new’ having a mean growth rate that was 29% lower than that of the control juveniles (in 33 g L?1‘new’ water), whereas juveniles in 23 g L?1‘reused’ water grew 45% faster than the controls. The implications of this novel effect are discussed in relation to the aquaculture potential of the New Zealand turbot.  相似文献   

2.
This study aimed to evaluate the tolerance of common snook Centropomus undecimalis larvae and juveniles exposed to acute concentrations of un-ionized ammonia for 96 h at 35g L?1 salinity, after 24 h starvation. For that, 10 larvae (20.85 ± 1.46 mm) of 47 days post hatch (DPH) per experimental unit (1.5 L) were exposed to 0.00 ± 0.00, 0.65 ± 0.04, 1.29 ± 0.09, 2.59 ± 0.18, 3.88 ± 0.27, 5.17 ± 0.34, and 6.47 ± 0.43 mg L?1 NH3, in triplicates, at 26.72 ± 0.08°C, dissolved oxygen at 5.72 ± 0.10 mg L?1 and pH 8.45 ± 0.06. During this period, no mortalities were observed. Another trial was performed with five juveniles (20.35 ± 6.10 g, 13.90 ± 1.75 cm) per experimental unit (60 L) exposed to 0.00 ± 0.00, 2.26 ± 0.07, 2.68 ± 0.11, 3.20 ± 0.13, 3.68 ± 0.17, and 4.27 ± 0.16 mg L?1 NH3, in triplicates, at 21.90 ± 0.76°C, dissolved oxygen at 6.27 ± 0.21 mg L?1 and pH at 8.38 ± 0.04. Fish mortality increased as ammonia concentrations increased at each day, and LC50 96 h was 3.52 mg L?1 NH3. Larvae were less sensitive than juveniles, demonstrating that the environmental toxicity of ammonia to common snook is influenced by age. Sublethal exposition to ammonia caused histological damages in gills of common snook juveniles and variation on glucose levels, hematocrit, and red blood cells number, showing negative effects on fish homeostasis. Moreover, compared to other species, the common snook has great resistance to ammonia.  相似文献   

3.
The combined effects of temperature and salinity on larval survival and development of the mud crab, Scylla serrata, were investigated in the laboratory. Newly hatched larvae were reared under 20 °C temperature and salinity combinations (i.e. combinations of four temperatures 25, 28, 31, 34 °C with five salinities 15, 20, 25, 30, 35 g L−1). The results showed that temperature and salinity as well as the interaction of the two parameters significantly affected the survival of zoeal larvae. Salinity at 15 g L−1 resulted in no larval survival to the first crab stage, suggesting that the lower salinity tolerance limit for mud crab larvae lies somewhere between salinity 15 and 20 g L−1. However, within the salinity range of 20–35 g L−1, no significant effects on survival of zoeal larvae were detected (P>0.05). The combined effects of temperature and salinity on larval survival were also evident as at low salinities, both high and low temperature led to mass mortality of newly hatched larvae (e.g. 34 °C/15 g L−1, 34 °C/20 g L−1 and 25 °C/15 g L−1 combinations). In contrast, the low temperature and high salinity combination of 25 °C/35 g L−1 resulted in one of the highest survival to the megalopal stage. It was also shown that at optimal 28 °C, larvae could withstand broader salinity conditions. Temperature, salinity and their interaction also significantly affected larval development. At 34 °C, the mean larval development time to megalopa under different salinity conditions ranged from 13.5 to 18.5 days. It increased to between 20.6 and 22.6 days at 25 °C. The effects of salinity on larval development were demonstrated by the fact that for all the temperatures tested, the fastest mean development to megalopa was always recorded at the salinity of 25 g L−1. However, a different trend of salinity effects was shown for megalopae as their duration consistently increased with an increase in salinity from 20 to 35 g L−1. In summary, S. serrata larvae tolerate a broad range of salinity and temperature conditions. Rearing temperature 25–30 °C and salinity 20–35 g L−1 generally result in reasonable survival. However, from an aquaculture point of view, a higher temperature range of 28–30 °C and a salinity range of 20–30 g L−1 are recommended as it shortens the culture cycle.  相似文献   

4.
In this study, we tested the lower salinity tolerance of juvenile shrimps (Litopenaeus vannamei) at a relatively low temperature (20 °C). In the first of two laboratory experiments, we first abruptly transferred shrimps (6.91 ± 0.05 g wet weight, mean ± SE) from the rearing salinity (35 000 mg L?1) to salinities of 5000, 15 000, 25 000, 35 000 (control) and 40 000 mg L?1 at 20 °C. The survival of L. vannamei juvenile was not affected by salinities from 15 000 to 40 000 mg L?1 during the 96‐h exposure periods. Shrimps exposed to 5000 mg L?1 were significantly affected by salinity, with a survival of 12.5% after 96 h. The 24‐, 48‐ and 96‐h lethal salinity for 50% (LS50) were 7020, 8510 and 9540 mg L?1 respectively. In the second experiment, shrimps (5.47 ± 0.09 g wet weight, mean ± SE) were acclimatized to the different salinity levels (5000, 15 000, 25 000, 35 000 and 40 000 mg L?1) and then maintained for 30 days at 20 °C. Results showed that the survival was significantly lower at 5000 mg L?1 than at other salinity levels, but the final wet weight under 5000 mg L?1 treatment was significantly higher than those under other treatments (P<0.05). Feed intake (FI) of shrimp under 5000 mg L?1 was significantly lower than those of shrimp under 150 00–40 000 mg L?1; food conversion efficiency (FCE), however, showed a contrasting change (P<0.05). Furthermore, salinity significantly influenced the oxygen consumption rates, ammonia‐N excretion rates and the O/N ratio of test shrimps (P<0.05). The results obtained in our work provide evidence that L. vannamei juveniles have limited capacity to tolerate salinities <10 000 mg L?1 at a relatively low temperature (20 °C). Results also show that L. vannamei juvenile can recover from the abrupt salinity change between 15 000 and 40 000 mg L?1 within 24 h.  相似文献   

5.
This paper reports on experiments conducted to examine the combined effects of salinity and potassium concentration on survival and growth of juvenile mulloway (Argyrosomus japonicus, Temminck and Schlegel) in inland saline groundwater. Three separate experiments were conducted in 20 (±1)°C water. In the first experiment, mulloway were held in 60 L aquaria (triplicate) with salinities of 5, 15, 25 or 35 g L?1 and potassium concentrations of 20%, 40%, 60% or 80% of the concentration present in oceanic water of the equivalent salinity in a 4 × 4 factorial combination for 7 days. Response surface contour diagrams were generated from survival data to estimate optimal conditions. The results showed that maximum survival of juvenile mulloway occurred at salinities of >14 g L?1 and potassium concentrations of >38%. Survival was lowest at salinities of <7 and >33 g L?1 and potassium concentrations of <25%. The second experiment was conducted with mulloway held in 60 L aquaria at salinities of 15, 25 or 35 g L?1 and potassium concentrations of 40%, 60%, 80% or 100% in a 3 × 4 factorial combination for 44 days. Optimal conditions for maximum survival and growth of mulloway were within a salinity range of 15–35 g L?1 and potassium concentration above 40%. The third experiment was conducted in three 500 L tanks to record the survival and growth of mulloway fingerlings held at 20 (±1)°C, 23 g L?1 salinity and potassium concentrations of 50% for 8 months. Survival and growth of mulloway fingerling in inland saline groundwater were similar to those reported from a semi‐intensive floating tank system in inland saline water and sea cage trials in oceanic water.  相似文献   

6.
Litopenaeus vannamei (Boone) grown in ponds are exposed to salinities of less than 5 g L?1 during inland shrimp culture or to more than 40 g L?1 from evaporation and reduced water exchange in dry, hot climates. However, dietary requirements for shrimp grown in low or high salinities are not well defined, particularly for fatty acids. Feeding shrimp postlarvae with highly unsaturated fatty acids (HUFA) enhances tolerance to acute exposure to low salinity, as a result of better nutritional status, or/and specific effects of HUFA on membrane function and osmoregulation mechanisms. This study analysed the effect of HUFA supplementation (3% vs. 34%) on L. vannamei juveniles reared for 21 days at low (5 g L?1), medium (30 g L?1) and high salinities (50 g L?1). Juveniles grown at 5 g L?1 had lower survival compared with controls (30 g L?1) or shrimp grown at 50 g L?1, but no significant effect on survival was observed as a result of HUFA enrichment. In contrast, growth was significantly lower for shrimp grown at 50 g L?1, but this effect was compensated by the HUFA‐enriched diet. Osmotic pressure in haemolymph was affected by salinity, but not by HUFA enrichment. Shrimp fed HUFA‐enriched diets had significantly higher levels of eicosapentaenoic acid and docosahexaenoic acid in hepatopancreas and gills. These results demonstrate that growth at high salinities is enhanced with diets containing high HUFA levels, but that HUFA‐enriched diets have no effect on shrimp reared at low salinities.  相似文献   

7.
The interactive effects of salinity and temperature on development and hatching success of lingcod, Ophiodon elongatus Girard, were studied by incubating eggs at four temperatures (6, 9, 12 and 15°C) and five salinities (15, 20, 25, 30 and 35 g L?1). Hatch did not occur in any of the 15°C treatments. Degree days (°C days) to first hatch was not influenced by temperature or salinity, however, calendar days to first hatch differed significantly for temperature (P<0.0001, 61±1, 44±1 and 35±1 days for 6, 9 and 12°C respectively). Degree days to 50% (427.1±4.2) hatch was not significantly influenced by temperature but was by salinity (P=0.0324). Viable hatch (live with no deformities, 74.1±4.0%) was greatest at 9°C and 25 g L?1 but not significantly different in the range of 20–30 g L?1. Larval length (9.4±0.13 mm) was greatest at 9°C and 20–30 g L?1. Temperature and salinity significantly influenced all categories of deformities with treatments at the upper (12°C and 35 g L?1) and lower limits (6°C and 15 g L?1) producing the greatest deformities. The optimal temperature and salinity for incubating Puget Sound lingcod eggs was found to be 9°C and 20–30 g L?1.  相似文献   

8.
Experiments were designed to determine the effects of temperature and salinity on the virulence of Edwardsiella tarda to Japanese flounder, Paralichthys olivaceus. In the temperature experiment, a two‐factor design was conducted to evaluate the effects of both pathogen incubation temperature and fish cultivation temperature on pathogen virulence. E. tarda was incubated at 15, 20, 25 and 30±1°C, and the fish (mean weight: 10 g) were reared at 15, 20 and 25±1°C respectively. The fish reared at different temperatures were infected with the E. tarda incubated at different temperatures. The results of a 4‐day LD50 test showed that temperature significantly affected the virulence of E. tarda (P<0.01) and the interaction between the two factors was also significant (P<0.01). For fish reared at 15°C the virulence of E. tarda was the highest at 25°C of pathogen incubation, followed by 20, 15 and 30°C. When the fish rearing temperature was raised to 20 and 25°C, the virulence of E. tarda incubated at all temperatures increased. Isolation testing demonstrated results similar to those of LD50. The higher rearing temperature increased the proliferation rate of the pathogen in fish. In the salinity experiment, the incubation salinity of E. tarda was at 0, 10, 20 and 30 g L?1, respectively, and the fish with mean weight of 50 g were cultured in natural seawater of 30 g L?1. The results of one‐way anova in 4‐day LD50 test showed that incubation salinity significantly affected virulence. Virulence was lower when the salinity of the incubation medium was at 0 and 30 g L?1, higher at 10 and 20 g L?1. The results of isolation test were in accordance with those of LD50. At 20 g L?1E. tarda had a faster proliferation rate than that at 10 g L?1.  相似文献   

9.
First‐feeding halibut larvae (245‐day degrees; 40 days post hatch), reared at 34 g L?1 salinity and 7°C, were subjected to handling and allowed to recover in a range of salinities (0–34 g L?1) and at 10°C. Survival of the unfed larvae was determined daily for 18 days. Mortality rates approached 0 after 4 days in all treatments and presumed starvation‐induced mortality started at about 11 days post handling. By 20 days post treatments, all larvae had died. Salinities in the range of 10–20 g L?1 produced significantly (anova , P<0.01) higher initial survival (71–95%) than salinities above 20 g L?1 (24–48%) or below 10 g L?1 (0–19%) and this survival pattern changed little in unfed larvae for the first 10 days following the stressor. For example, 24 hour post handling, survival of halibut was improved from 28.7±16.5% (mean±standard error, n=3) at 34.0 g L?1 to 95.2±4.8% at 13 g L?1. A second‐order polynomial regression of 4‐day post‐handling survival data (y=?0.002x 2+0.0603x+0.0699, r2=0.3936) predicted a maximum survival at 15.1 g L?1 salinity. These results have important implications for halibut aquaculture and research when handling of larvae is unavoidable. For practical applications, we recommend reducing salinity of receiving waters to 15–20 g L?1 with a slow (3–4 days) reacclimation to ambient conditions.  相似文献   

10.
The respiratory rates of Tawny puffer Takifugu flavidus juvenile were measured at four temperatures (20, 23, 26 and 29 °C) and seven salinities (5, 10, 15, 20, 25, 30 and 35 g L?1). The results showed that both temperature and salinity significantly affected the oxygen consumption of tawny puffer juvenile. The oxygen consumption rate (OCR) increased significantly with an increase in the temperature from 20 to 29 °C. Over the entire experimental temperature range (20–29 °C), the Q10 value was 1.59, and the lowest Q10 value was found between 23 and 26 °C. The optimal temperature for the juvenile lies between 23 °C and 26 °C. The OCR at 25 g L?1 was the highest among all salinity treatments. The OCRs show a parabolic relationship with salinity (5–35 g L?1). From the quadratic relationship, the highest OCR was predicted to occur at 23.56 g L?1. The optimal salinity range for the juvenile is from 23 to 25 g L?1. The results of this study are useful towards facilitating an increase in the production of the species juvenile culture.  相似文献   

11.
Larvae of Metapenaeus monoceros (Fabricius) at protozoea 1 (PZ1) stage were stocked in 2‐L glass flasks to investigate the effects of various salinities (25, 30, 35, 40, 45, 50 and 55 ppt) on growth and survival until the post‐larval (PL) stages. The PZ larvae were not able to tolerate a sudden salinity drop of over 10 ppt. Yet, an abrupt salinity increase of over 10 or even 15 ppt did not cause mortality. The PZ larvae were successfully acclimated to different test salinities at a rate of 4 ppt h?1. The larvae displayed better tolerance to high rather than low salinities. The lowest and highest critical salinities appeared to be 22 and 55 ppt respectively. Taking into account survival, growth and development results, the optimal salinity for the larval culture of M. monoceros inhabiting the Eastern Mediterranean was 40 ppt. At this salinity, the PZ1 larvae were successfully cultured until PL1 stage within 11 days with 68% survival on a feeding regime of Tetraselmis chuii Kylin (Butcher) (20 cells μ L?1), Chaetoceros calcitrans Paulsen (50 cells μ L?1), Isochrysis galbana Parke (30 cells μL?1) and five newly hatched Artemia nauplii mL?1 from M1 onwards at 28 °C.  相似文献   

12.
Lysozyme acts as a non‐specific defence substance and is found in the peripheral blood, cutaneous mucus and certain tissues of marine and freshwater fishes. In the present study, we examined the effect of various environmental factors (water temperature, salinity, pH and suspended sediments) on plasma lysozyme activity in the Nile tilapia, Oreochromis niloticus L. When the fish were reared at different water temperatures (18.4, 23, 28 and 33°C), plasma lysozyme activity increased at 28°C after 2 and 4 weeks. A significant decrease in lysozyme activity was found in the fish reared at 33°C for 4 weeks. These results suggest that there is a water temperature range that affects the amount of plasma lysozyme activity that can be detected. Fish cultured at 24 g L?1 of salinity for 2 and 4 weeks and 12 g L?1 for 4 weeks resulted in significantly increased plasma lysozyme activity, suggesting that environmental salinity also affects the amount of plasma lysozyme that can be detected. Lysozyme activity also significantly increased when the fish were held in acidic water at pH 4.0 and in suspended sediments at 2000 mg L?1 for 2 weeks. It was concluded that changes in some aquatic environmental factors affect the non‐specific immune responses of Nile tilapia.  相似文献   

13.
To determine the optimal salinity, stocking density, and algal density for hatchery culture of the Iwagaki oyster Crassostrea nippona larvae, three experiments with salinities of 14, 18, 22, 26, 30, and 34 practical salinity unit (PSU); stocking densities of 0.5, 1, 2, 4, 8, and 12 larvae ml?1; and algal densities of 10, 20, 40, and 100?×?103 cells ml?1 were designed, which included the developmental stages from newly hatched D-larvae to pediveligers. Results showed that larval growth of C. nippona was the fastest at a salinity of 26 PSU, and when salinity was adjusted to a level that was lower or higher than this salinity, survival and growth rate of larvae declined (P <?0.05), resulting both in a decreased mean shell length and a high mortality. Larval growth decreased significantly with increasing stocking density. Larvae reared at 4 larvae ml?1 had the smallest shell length (198.9 μm) and lowest survival rate (7.9%), whereas larvae reared at 0.5 larvae ml?1 had the largest shell length (245 μm) and highest survival rate (66.3%) on day 13. And the shell length of larvae reared at 0.5 and 1 larvae ml?1 was significantly (P?<?0.05) larger than the values in other treatments, except those reared at 2 larvae ml?1 (P?>?0.05). When feeding the single-algal diet of Isochrysis galbana (clone T-ISO), the shell length of larvae increased markedly as the algal density was increased. Larvae reared at the highest algal density (100?×?103 cells ml?1) had the largest mean shell length; however, under the conditions of our experiment, there was no significant difference (P?>?0.05) in growth and survival rates between the treatments at algal densities of 40?×?103 and 100?×?103 cells ml?1. For a large-scale culture, based on the results of this study, a salinity of 26 PSU, stocking density of 0.5–1 larvae ml?1, and algal density of 40?×?103 cells ml?1 are recommended for an early development of C. nippona.  相似文献   

14.
The metabolic physiological response to body mass, temperature (12–28 °C) and salinity (20–36 g L?1) was examined in this paper. Oxygen consumption rate, which is dependent on environmental conditions, was exponentially related to body mass and varied from 0.045 to 1.11 mg h?1 g?1. Oxygen consumption rate increased as salinity increased from 20 to 36 g L?1, and increased with increasing temperature. The effect of temperature gradient between experimental treatments on oxygen consumption rate was evaluated by calculating Q10 (the Arrehenius relationship for increase with temperature). The Q10 value within the temperature range from 12 to 16 °C was much higher than the value within the temperature range from 16 to 20 °C, 20 to 24 °C and 24 to 28 °C, indicating a reduced temperature dependence of ascidian metabolism at a high temperature.  相似文献   

15.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

16.
Salinity tolerance and growth of Japanese flounder Paralichthys olivaceus at different developmental stages were evaluated, including newly hatched larvae (nhl), yolk sac larvae (ysl), oil droplet larvae (odl), post oil droplet larvae (podl), premetamorphic larvae (preml) and prometamorphic larvae (proml), at 11 salinities from 5 to 55 g L?1 for 96 h. The ontogenesis during the early life of P. olivaceus was investigated under hatchery salinity 35 g L?1. The results showed that suitable salinities for nhl, ysl, odl, podl, preml and proml larvae were 10 to 25 g L?1, 10 to 30 g L?1, 20 to 30 g L?1, 30 g L?1, 10 to 30 g L?1, 15 g L?1, respectively, demonstrating an ontogenetic variation of salinity tolerance. The salinity tolerance of nhl, ysl, preml was higher than that of odl, podl and proml. The ysl and preml larvae displayed wide salinity tolerances. The present findings demonstrate that the suitable salinity for larviculture of P. olivaceus is 20–25 g L?1 before the depletion of oil droplet; after that, higher salinity (30 g L?1) should be ensured for the post‐oil droplet larvae; the premetamorphic larvae can be cultured at a wide salinity range (10–30 g L?1), and the metamorphosed larvae should be reared at salinity about 15 g L?1.  相似文献   

17.
A series of four trials were conducted on inland saline groundwater of 58 g L?1 diluted to lower salinities up to 10 g L?1 and later manipulating its ionic concentrations to enhance the survival and growth of Penaeus monodon postlarvae (PL). In the first experiment, the survival of PL was tested at several salinities (10, 20, 30, 40, 50 and 58 g L?1), and the survival of PL was studied in comparison with natural sea water of similar salinities. Complete mortality of PL was observed at all salinity levels within 144 h. Longest survival for 96 h followed by 72 h was found at 10 and 20 g L?1 salinity respectively. In the second experiment, survival of PL was tested at 10–20 g L?1 salinity at different concentrations of calcium varying between 100 and 300 mg L?1. The survival of PL could be increased to 7 days at 12.5 g L?1 salinity by reducing the calcium level to 200 from 921.8 mg L?1 with magnesium and potassium levels of 208.5 and 30.03 mg L?1 respectively. In the third experiment, the survival of PL could be further enhanced to 18 days at the same salinity by increasing the magnesium level from 208.5 to 400 mg L?1 with potassium held at 30.03 mg L?1. Survival and growth of PL in inland saline water of 12.5 g L?1 salinity similar to performance in sea water of the same salinity was achieved by increasing the potassium concentration from 30.03 to 200 mg L?1 with calcium and magnesium levels of 199.5 and 199.4 mg L?1 respectively.  相似文献   

18.
Marbled spinefoot, Siganus rivulatus, is a herbivorous euryhaline teleost widely distributed in the Eastern Mediterranean. It is an economically valuable species and a suitable candidate for warm water aquaculture. Accordingly, understanding the effects of environmental factors on fish metabolism is important to optimize culture conditions. Two experiments were performed to establish standard metabolic rate and study the effect of salinity on metabolism of marbled spinefoot. In the first experiment, a series of flow‐through respirometry experiments was performed at 27°C and 35 g L?1. The standard metabolic rate of marbled spinefoot juveniles was calculated as 0.57 ± 0.02 mg O2 g?1 h?1 (mean ± SE). In the second experiment, fish were maintained at salinities of 25, 30, 35 and 40 g L?1 for 2 weeks. Flow‐through respirometry was performed to measure respiration rates at the various salinities. Respiration rates were similar among fish in salinities of 30, 35 and 40 g L?1 but increased significantly at 25 g L?1. Results suggest that despite the euryhalinity of marbled spinefoot, farmers should maintain salinity within the optimal range of 30–40 g L?1 in order to improve productivity.  相似文献   

19.
The brown shrimp, Farfantepenaeus californiensis (Holmes), is a species native to north‐west Mexico, where its culture potential is presently being addressed. Because of the climatic conditions prevailing in the region, salinities over 40 g L?1 is a commonly encountered problem. In the present study, the effect of salinity on the growth and mortality of juvenile F. californiensis is described. The change in short‐term routine metabolism at different salinities was also evaluated in order to define the adaptive capacity of the shrimp and to provide insight into the changes in the pathways of energy distribution. Groups of shrimp were exposed to increasing salinity (25, 35, 45 and 55 g L?1), and growth and survival rates after 75 days were determined in duplicate 1.8‐m3 tanks for each salinity level. Significant differences were found in final weight, growth rate and mortality of shrimp as a result of salinity level. Final mean shrimp weights at increasing salinity levels were 10.0, 9.4, 8.6 and 7.8 g. Corresponding mortality was 24.4%, 15.1%, 33.6% and 55.7%. Oxygen consumption was found to depend significantly on salinity and was equivalent to 0.0027, 0.0037, 0.0043 and 0.0053 mg g?1 min?1 respectively for the increasing salinities. The increased rate of oxygen consumption at high salinities reflects the response of the organism to osmoregulatory and ionic imbalances. Increased energy requirements to fulfil basic metabolic function as salinity increased resulted in a reduction in the energy that could be diverted to growth. Consequently, the culture of the brown shrimp at salinities over 35 g L?1 would probably result in reduced yields.  相似文献   

20.
This study aimed to evaluate the effect of low salinity on the water quality, microbial flocs composition and performance of Litopenaeus vannamei juveniles reared over 40 days in a zero‐water‐exchange super‐intensive system at 0, 2, 4 and 25 g L?1. At 0 g L?1, the mortality was total at the 26th day, and consequently, these salinity data were not included in the statistical analysis. Among the water quality parameters, only pH and the total suspended solids concentration were significantly influenced by salinity. However, a trend towards intensification of the nitrification processes was observed as the salinity increased, with the lowest ammonia and the highest nitrite and nitrate concentrations found at 25 g L?1. The concentrations of ciliates and flagellates diminished and increased, respectively, with the increase in salinity. Diatoms predominated at 25 g L?1, whereas at 2 and 4 g L?1, chlorophytes were more abundant. Microbial floc crude protein content was reduced with the increase in salinity, whereas ash content demonstrated the inverse trend. The best overall growth performance and survival were observed at 25 g L?1. However, satisfactory productivity was also found at 4 g L?1, suggesting the viability of rearing L. vannamei at low salinity under zero‐water‐exchange conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号