首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Karato S  Li P 《Science (New York, N.Y.)》1992,255(5049):1238-1240
High-temperature creep experiments on polycrystalline perovskite (CaTiO(3)), an analog of (Mg,Fe)SiO(3) perovskite of the lower mantle, suggest that (grain size-sensitive) diffusion creep is important in the lower mantle and show that creep rate is enhanced by the transformation from the orthorhombic to the tetragonal structure. These observations suggest that grain-size reduction after a subducting slab passes through the 670-kilometer discontinuity or after a phase transformation from orthorhombic to tetragonal in perovskite will result in rheological softening in the top portions of the lower mantle.  相似文献   

2.
We measured the spin state of iron in magnesium silicate perovskite (Mg(0.9),Fe(0.1))SiO(3) at high pressure and found two electronic transitions occurring at 70 gigapascals and at 120 gigapascals, corresponding to partial and full electron pairing in iron, respectively. The proportion of iron in the low spin state thus grows with depth, increasing the transparency of the mantle in the infrared region, with a maximum at pressures consistent with the D" layer above the core-mantle boundary. The resulting increase in radiative thermal conductivity suggests the existence of nonconvecting layers in the lowermost mantle.  相似文献   

3.
Measurements of the electrical conductivity of silicate perovskite at 25 gigapascals and 1400 degrees to 1600 degreesC show that the conductivity of (Mg,Fe)SiO3 perovskite containing 2.89 weight percent Al2O3 is about 3.5 times greater than that of aluminum-free (Mg0.915Fe0.085)SiO3 perovskite. The conduction mechanism in perovskite between 1400 degrees and 1600 degreesC is most likely by polarons, because Mossbauer studies show that the aluminum-bearing perovskite has about 3.5 times the amount of Fe3+ as the aluminum-free sample. A conductivity-depth profile from 660 to 2900 kilometers based on aluminum-bearing perovskite is consistent with geophysical models.  相似文献   

4.
Optical absorption spectra have been measured at pressures up to 80 gigapascals (GPa) for the lower-mantle oxide magnesiowüstite (Mg,Fe)O. Upon reaching the high-spin to low-spin transition of Fe2+ at about 60 GPa, we observed enhanced absorption in the mid- and near-infrared spectral range, whereas absorption in the visible-ultraviolet was reduced. The observed changes in absorption are in contrast to prediction and are attributed to d-d orbital charge transfer in the Fe2+ ion. The results indicate that low-spin (Mg,Fe)O will exhibit lower radiative thermal conductivity than high-spin (Mg,Fe)O, which needs to be considered in future geodynamic models of convection and plume stabilization in the lower mantle.  相似文献   

5.
The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust.  相似文献   

6.
Recent studies have implied that (Mg, Fe)SiO(3)-perovskite, a likely dominant mineral phase in the lower mantle, may have a high melting temperature. The implications of these findings for the dynamics of the lower mantle were investigated with the use of numerical convection models. The results showed that low homologous temperatures (0.3 to 0.5) would prevail in the modeled lower mantle, regardless of the effective Rayleigh number and internal heating rates. High-temperature ductile creep is possible under relatively cold conditions. In models with low rates of internal heating, local maxima of viscosity developed in the mid-lower mantle that were similar to those obtained from inversion of geoid, topography, and plate velocities.  相似文献   

7.
We measured the spin state of iron in ferropericlase (Mg0.83Fe0.17)O at high pressure and found a high-spin to low-spin transition occurring in the 60- to 70-gigapascal pressure range, corresponding to depths of 2000 kilometers in Earth's lower mantle. This transition implies that the partition coefficient of iron between ferropericlase and magnesium silicate perovskite, the two main constituents of the lower mantle, may increase by several orders of magnitude, depleting the perovskite phase of its iron. The lower mantle may then be composed of two different layers. The upper layer would consist of a phase mixture with about equal partitioning of iron between magnesium silicate perovskite and ferropericlase, whereas the lower layer would consist of almost iron-free perovskite and iron-rich ferropericlase. This stratification is likely to have profound implications for the transport properties of Earth's lowermost mantle.  相似文献   

8.
9.
Secondary ion mass spectrometry measurements show that Earth's representative lower mantle minerals synthesized in a natural peridotitic composition can dissolve considerable amounts of hydrogen. Both MgSiO3-rich perovskite and magnesiowüstite contain about 0.2 weight percent (wt%) H2O, and CaSiO3-rich perovskite contains about 0.4 wt% H2O. The OH absorption bands in Mg-perovskite and magnesiowüstite were also confirmed with the use of infrared microspectroscopic measurements. Earth's lower mantle may store about five times more H2O than the oceans.  相似文献   

10.
Apparent soil electrical conductivity (ECa) has shown promise as a soil survey tool in the Midwestern United States, with a share of this interest coming from the precision agriculture community. To fully utilize the potential of ECa to map soils, a better understanding of temporal changes in ECa is needed. Therefore, this study was undertaken to compare temporal changes in soil ECa between different soils, to investigate the influence of changes in soil water content on soil ECa, and to explore the impacts these ECa changes might have on soil mapping applications. To this end, a 90 m long transect was established. Soil ECa readings were taken in the vertical and horizontal dipoles at five points once every one to two weeks from June until October in 1999 and 2000. At the same time, soil samples were collected to a depth of 0.9 m for volumetric soil water content analysis. Soil ECa readings were compared to soil water content. At four of the five sites linear regression analysis yielded r 2 values of 0.70 or higher. Regression line slopes tended to be greater in lower landscape positions indicating greater ECa changes with a given change in soil water content. Two of the soils had an ECa relationship that changed as the soils became dry. This is an item of concern if ECa is to be used in soil mapping. Results indicated that soil water content has a strong influence on the ECa of these soils, and that ECa has its greatest potential to differentiate between soils when the soils are moist. Soil water content is an important variable to know when conducting ECa surveys and should be recorded as a part of any report on ECa studies.  相似文献   

11.
Ultrasonic interferometric measurements of the shear elastic properties of MgSiO3 perovskite were conducted on three polycrystalline specimens at conditions up to pressures of 8 gigapascals and temperatures of 800 kelvin. The acoustic measurements produced the pressure (P) and temperature (T) derivatives of the shear modulus (G), namely ( partial differentialG/ partial differentialP)T = 1.8 +/- 0.4 and ( partial differentialG/ partial differentialT)P = -2.9 +/- 0.3 x 10(-2) gigapascals per kelvin. Combining these derivatives with the derivatives that were measured for the bulk modulus and thermal expansion of MgSiO3 perovskite provided data that suggest lower mantle compositions between pyrolite and C1 carbonaceous chondrite and a lower mantle potential temperature of 1500 +/- 200 kelvin.  相似文献   

12.
H Mao  G Shen  RJ Hemley 《Science (New York, N.Y.)》1997,278(5346):2098-2100
High-pressure diamond-cell experiments indicate that the iron-magnesium partitioning between (Fe,Mg)SiO3-perovskite and magnesiowustite in Earth's lower mantle depends on the pressure, temperature, bulk iron/magnesium ratio, and ferric iron content. The perovskite stability field expands with increasing pressure and temperature. The ferric iron component preferentially dissolves in perovskite and raises the apparent total iron content but had little effect on the partitioning of the ferrous iron. The ferrous iron depletes in perovskite at the top of the lower mantle and gradually increases at greater depth. These changes in iron-magnesium composition should affect geochemical and geophysical properties of the deep interior.  相似文献   

13.
14.
Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to the high-spin ferropericlase, the observed increase in low-spin (Mg,Fe)O at mid-lower mantle conditions would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-normal density gradient.  相似文献   

15.
Hydrogen in stishovite, with implications for mantle water content   总被引:2,自引:0,他引:2  
Stishovite, the highest pressure polymorph of silicon dioxide, may be an important mineral in some regions of the Earth's mantle. Fourier transform infrared spectroscopy has been used to determine the hydrogen content of synthetic stishovite. The concentration of hydrogen depends on the aluminum content of the sample and reaches a maximum of 549 +/- 23 hydrogen atoms per 10(6) silicon atoms for an Al(2)O(3) content of 1.51 percent by weight. Stishovite could be a storage site for water in deep subducting slabs and in regions of the mantle that are too hot for hydrous minerals to be stable.  相似文献   

16.
17.
We obtained likelihoods in the lower mantle for long-wavelength models of bulk sound and shear wave speed, density, and boundary topography, compatible with gravity constraints, from normal mode splitting functions and surface wave data. Taking into account the large uncertainties in Earth's thermodynamic reference state and the published range of mineral physics data, we converted the tomographic likelihoods into probability density functions for temperature, perovskite, and iron variations. Temperature and composition can be separated, showing that chemical variations contribute to the overall buoyancy and are dominant in the lower 1000 kilometers of the mantle.  相似文献   

18.
One of the principal means of understanding upper mantle dynamics involves inferring mantle flow directions from seismic anisotropy under the assumption that the seismic fast direction (olivine a axis) parallels the regional flow direction. We demonstrate that (i) the presence of melt weakens the alignment of a axes and (ii) when melt segregates and forms networks of weak shear zones, strain partitions between weak and strong zones, resulting in an alignment of a axes 90 degrees from the shear direction in three-dimensional deformation. This orientation of a axes provides a new means of interpreting mantle flow from seismic anisotropy in partially molten deforming regions of Earth.  相似文献   

19.
Mechanical and microstructural evidence indicates that a natural and a synthetic quartzite deformed by Newtonian dislocation (Harper-Dorn) creep at temperatures higher than 1073 K and stresses lower than 300 megapascals. The observation of this creep in these materials suggests that the lower crust may flow like a Newtonian viscous fluid by a dislocation mechanism at stresses much smaller than those previously postulated.  相似文献   

20.
There are various factors that affect soil electrical conductivity (EC) measurements, including soil texture, soil water content, cation exchange capacity (CEC) and others. Temperature is an important environmental variable, and different models can be used to correct for its effect on EC measurements and standardize the measurements to 25°C. It is relevant to analyze these models and to determine whether they are consistent with each other. Some models were wrongly cited. We found that the exponential model of Sheets and Hendrickx as corrected by Corwin and Lesch in 2005 performs the best. The ratio model also performs well between 3°C and 47°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号