首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.  相似文献   

2.
Isotopic data for the Stillwater Complex, Montana, which formed about 2700 Ma (million years ago), were obtained to evaluate the role of magma mixing in the formation of strategic platinum-group element (PGE) ore deposits. Neodymium and osmium isotopic data indicate that the intrusion formed from at least two geochemically distinct magmas. Ultramafic affinity (U-type) magmas had initial epsilon(Nd) of -0.8 to -3.2 and a chondritic initial (187)Os/(186)Os ratio of approximately 0.88, whereas anorthositic affinity (A-type) magmas had epsilon(Nd) of -0.7 to +1.7 and an initial (187)Os/(186)Os ratio of approximately -1.13. These data suggest that U-type magmas were derived from a lithospheric mantle source containing recycled crustal materials whereas A-type magmas originated either by crustal contamination of basaltic magmas or by partial melting of basalt in the lower crust. The Nd and Os isotopic data also suggest that Os, and probably the other PGEs in ore horizons such as the J-M Reef, was derived from A-type magmas. The Nd and Os isotopic heterogeneity observed in rocks below the J-M Reef also suggests that A-type magmas were injected into the Stillwater U-type magma chamber at several stages during the development of the Ultramafic series.  相似文献   

3.
Schmerr N 《Science (New York, N.Y.)》2012,335(6075):1480-1483
The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction.  相似文献   

4.
Subduction and slab detachment in the Mediterranean-Carpathian region   总被引:4,自引:0,他引:4  
Seismic tomography models of the three-dimensional upper mantle velocity structure of the Mediterranean-Carpathian region provide a better understanding of the lithospheric processes governing its geodynamical evolution. Slab detachment, in particular lateral migration of this process along the plate boundary, is a key element in the lithospheric dynamics of the region during the last 20 to 30 million years. It strongly affects arc and trench migration, and causes along-strike variations in vertical motions, stress fields, and magmatism. In a terminal-stage subduction zone, involving collision and suturing, slab detachment is the natural last stage in the gravitational settling of subducted lithosphere.  相似文献   

5.
Volcanism in response to plate flexure   总被引:2,自引:0,他引:2  
Volcanism on Earth is known to occur in three tectonic settings: divergent plate boundaries (such as mid-ocean ridges), convergent plate boundaries (such as island arcs), and hot spots. We report volcanism on the 135 million-year-old Pacific Plate not belonging to any of these categories. Small alkalic volcanoes form from small percent melts and originate in the asthenosphere, as implied by their trace element geochemistry and noble gas isotopic compositions. We propose that these small volcanoes erupt along lithospheric fractures in response to plate flexure during subduction. Minor extents of asthenospheric melting and the volcanoes' tectonic alignment and age progression in the direction opposite to that of plate motion provide evidence for the presence of a small percent melt in the asthenosphere.  相似文献   

6.
The global tectonics of Venus may be dominated by plumes rising from the mantle and impinging on the lithosphere, giving rise to hot spots. Global sea-floor spreading does not take place, but direct convective coupling of mantle flow fields to the lithosphere leads to regional-scale deformation and may allow lithospheric transport on a limited scale. A hot-spot evolutionary sequence comprises (i) a broad domal uplift resulting from a rising mantle plume, (ii) massive partial melting in the plume head and generation of a thickened crust or crustal plateau, (iii) collapse of dynamic topography, and (iv) creep spreading of the crustal plateau. Crust on Venus is produced by gradual vertical differentiation with little recycling rather than by the rapid horizontal creation and consumption characteristic of terrestrial sea-floor spreading.  相似文献   

7.
Serpentine stability to mantle depths and subduction-related magmatism   总被引:14,自引:0,他引:14  
Results of high-pressure experiments on samples of hydrated mantle rocks show that the serpentine mineral antigorite is stable to approximately 720 degrees C at 2 gigapascals, to approximately 690 degrees C at 3 gigapascals, and to approximately 620 degrees C at 5 gigapascals. The breakdown of antigorite to forsterite plus enstatite under these conditions produces 13 percent H(2)O by weight to depths of 150 to 200 kilometers in subduction zones. This H(2)O is in an ideal position for ascent into the hotter, overlying mantle where it can cause partial melting in the source region for calc-alkaline magmas at a depth of 100 to 130 kilometers and a temperature of approximately 1300 degrees C. The breakdown of antigorite in hydrated mantle produces an order of magnitude more H(2)O than does the dehydration of altered oceanic crust.  相似文献   

8.
Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.  相似文献   

9.
Fluid processes in subduction zones   总被引:10,自引:0,他引:10  
Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration.  相似文献   

10.
The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.  相似文献   

11.
A laboratory model of a lithospheric raft is propelled through a viscous asthenospheric layer with constant velocity of scaled magnitude appropriate to continental drift. The propulsion is due to differential heat concentration in the model oceanic and continental crusts.  相似文献   

12.
The Siberian Traps represent one of the most voluminous flood basalt provinces on Earth. Laser-heating (40)Ar/(39)Ar data indicate that the bulk of these basalts was erupted over an extremely short time interval (900,000 +/- 800,000 years) beginning at about 248 million years ago at mean eruption rates of greater than 1.3 cubic kilometers per year. Such rates are consistent with a mantle plume origin. Magmatism was not associated with significant lithospheric rifting; thus, mantle decompression resulting from rifting was probably not the primary cause of widespread melting. Inception of Siberian Traps volcanism coincided (within uncertainty) with a profound faunal mass extinction at the Permo-Triassic boundary 249 +/- 4 million years ago; these data thus leave open the question of a genetic relation between the two events.  相似文献   

13.
Radar imaging and altimetry data from the Magellan mission have revealed a diversity of deformational features at a variety of spatial scales on the Venus surface. The plains record a superposition of different episodes of deformation and volcanism; strain is both areally distributed and concentrated into zones of extension and shortening. The common coherence of strain patterns over hundreds of kilometers implies that many features in the plains reflect a crustal response to mantle dynamic processes. Ridge belts and mountain belts represent successive degrees of lithospheric shortening and crustal thickening; the mountain belts also show widespread evidence for extension and collapse both during and following crustal compression. Venus displays two geometrical patterns of concentrated lithospheric extension: quasi-circular coronae and broad rises with linear rift zones; both are sites of significant volcanism. No long, large-offset strike-slip faults have been observed, although limited local horizontal shear is accommodated across many zones of crustal shortening. In general, tectonic features on Venus are unlike those in Earth's oceanic regions in that strain typically is distributed across broad zones that are one to a few hundred kilometers wide, and separated by stronger and less deformed blocks hundreds of kilometers in width, as in actively deforming continental regions on Earth.  相似文献   

14.
Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range Province, western North America, increase systematically from low crustal values in the east to high mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.  相似文献   

15.
Hall PS  Kincaid C 《Science (New York, N.Y.)》2001,292(5526):2472-2475
Recent geochemical studies of uranium-thorium series disequilibrium in rocks from subduction zones require magmas to be transported through the mantle from just above the subducting slab to the surface in as little as approximately 30,000 years. We present a series of laboratory experiments that investigate the characteristic time scales and flow patterns of the diapiric upwelling model of subduction zone magmatism. Results indicate that the interaction between buoyantly upwelling diapirs and subduction-induced flow in the mantle creates a network of low-density, low-viscosity conduits through which buoyant flow is rapid, yielding transport times commensurate with those indicated by uranium-thorium studies.  相似文献   

16.
The Gilbert Ridge and Tokelau Seamounts are the only seamount trails in the Pacific Ocean with a sharp 60 degrees bend, similar to the Hawaii-Emperor bend (HEB). These two bends should be coeval with the 47-million-year-old HEB if they were formed by stationary hot spots, and assuming Pacific plate motion only. New 40Ar/39Ar ages indicate that the bends in the Gilbert Ridge and Tokelau seamount trail were formed much earlier than the HEB at 67 and 57 million years ago, respectively. Such asynchronous bends cannot be reconciled with the stationary hot spot paradigm, possibly suggesting hot spot motion or magmatism caused by short-term local lithospheric extension.  相似文献   

17.
Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust.  相似文献   

18.
A mass imbalance exists in Earth for Nb, Ta, and possibly Ti: continental crust and depleted mantle both have subchondritic Nb/Ta, Nb/La, and Ti/Zr, which requires the existence of an additional reservoir with superchondritic ratios, such as refractory eclogite produced by slab melting. Trace element compositions of minerals in xenolithic eclogites derived from cratonic lithospheric mantle show that rutile dominates the budget of Nb and Ta in the eclogites and imparts a superchondritic Nb/Ta, Nb/La, and Ti/Zr to the whole rocks. About 1 to 6 percent by weight of eclogite is required to solve the mass imbalance in the silicate Earth, and this reservoir must have an Nb concentration >/= 2 parts per million, Nb/La >/= 1.2, and Nb/Ta between 19 and 37-values that overlap those of the xenolithic eclogites. As the mass of eclogite in the continental lithosphere is significantly lower than this, much of this material may reside in the lower mantle, perhaps as deep as the core-mantle boundary.  相似文献   

19.
The elevation of Earth's surface is among the most difficult environmental variables to reconstruct from the geological record. Here we describe an approach to paleoaltimetry based on independent and simultaneous determinations of soil temperatures and the oxygen isotope compositions of soil waters, constrained by measurements of abundances of 13C-18O bonds in soil carbonates. We use this approach to show that the Altiplano plateau in the Bolivian Andes rose at an average rate of 1.03 +/- 0.12 millimeters per year between approximately 10.3 and approximately 6.7 million years ago. This rate is consistent with the removal of dense lower crust and/or lithospheric mantle as the cause of elevation gain.  相似文献   

20.
A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号