首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A theoretical model to explain the negative polarization of moonlight at small lunar phase angles is developed. The model is based on the polarization of light in the diffraction region bordering the geometric shadow of an opaque dielectric obstacle.  相似文献   

2.
Apollo 11 and Apollo 12 lunar rock suites differ in their potassium-uranium abundance systematics. This difference indicates that relatively little exchange of regolith material has occurred between Mare Tranquillitatis and Oceanus Procellarum. The two suites appear to have been derived from materials of identical potassium and uranium content. It appears unlikely that bulk lunar material has the ratio of potassium to uranium found in chondrites. However, systematic differences in the potassium-uranium ratio between Apollo samples and crustal rocks of the earth do not preclude a common potassium-uranium ratio for bulk earth and lunar material.  相似文献   

3.
In the report "Martian relief and the coming opposition" (3 Mar., p. 1100), D. H. Harris stated that, "... the reduced contrast with decreasing (terminator distance) just balances the increase in visibility due to shadow length." This is obviously erroneous. A more careful examination of the problem shows that for favorable values of the Aerocentric EarthSun Sun angle, visibility of relief increases toward the terminator, clouds not withstanding.  相似文献   

4.
Appreciable natural thermoluminescence with glow curve peaks at about 350 degrees centigrade for lunar fines and breccias and above 400 degrees centigrade for crystalline rocks has been recognized in lunar samples. Plagioclase has been identified as the principal carrier of thermoluminescence, and the diference in peak temperatures indicates compositional or structural differences between the feldspars of the different rock types. The present thermoluminescence in the lunar samples is probably the result of a dynamic equilibrium between acquisition from radiation and loss in the lunar thermal environment. A progressive change in the glow curves of core samples with depth below the surface suggests the use of thermoluminescence disequilibrium to detect surfaces buried by recent surface activity, and it also indicates that the lunar diurnal temperature variation penetrates to at least 10.5 centimeters.  相似文献   

5.
The landing dynamics of and soil penetration by Surveyor I indicated that the lunar soil has a porosity in the range 0.35 to 0.45. Experiments with Surveyor III's surface sampler for soil mechanics show that the lunar soil is approximately incompressible (as the word is used in soil mechanics) and that it has an angle of internal friction of 35 to 37 degrees; these results likewise point to a porosity of 0.35 to 0.45 for the lunar soil. Combination of these porosity measurements with the already-determined radar reflectivity fixes limits to the dielectric constant of the grains of the lunar soil. The highest possible value is about 5.9, relative to vacuum; a more plausible value is near 4.3. Either figure is inconsistent with the idea that the lunar surface is covered by chondritic meteorites or other ultrabasic rocks. The data point to acid rocks, or possibly vesicular basalts; carbonaceous chondrites are not excluded.  相似文献   

6.
A clast of spinel troctolite containing 8 percent cordierite (Mg(2)Al(4)Si(5)O(18)) has been identified among the constituents of Apollo 15 regolith breccia 15295. The cordierite and associated anorthite, forsteritic olivine, and pleonaste spinel represent a new, Mg-rich lunar highlands lithology that formed by metamorphism of an igneous spinel cumulate. The cordierite-forsterite pair in the assemblage is stable at a maximum pressure of 2.5 kilobars, equivalent to a depth of 50 kilometers, or 10 kilometers above the lunar crust-mantle boundary. The occurrence of the clast indicates that spinel cumulates are a more important constituent of the lower lunar crust than has been recognized. The rarity of cordierite-spinel troctolite among lunar rock samples suggests that it is excavated only by large impact events, such as the one that formed the adjacent Imbrium Basin.  相似文献   

7.
A one-step, three-component aqueous etchant was developed for revealing the tracks of charged particles in olivine. The etchant reveals tracks of small cone angle, which are equally well developed in all the crystallographic directions. The scope of fossil cosmic-ray track studies in extraterrestrial samples has thus been increased, because olivine is often an abundant constituent and because it has a higher threshold ionization for track registration and has lower uranium, thorium, and trace element concentrations as compared with pyroxenes and feldspars. The etchant does not attack any of the principal rock-forming minerals in normal etching time, which allows a nondestructive study of fossil tracks in thin-section mounts. The study of fossil cosmic-ray tracks in olivine is particularly valuable for investigations of very, very heavy cosmic-ray nuclei and for highly irradiated samples such as those found in the lunar regolith.  相似文献   

8.
Dust samples have been found to luminesce weakly under proton excitation, but not under ultraviolet. Damage, recovery, and heating effects have been investigated. Chips of breccia show luminescence, from white inclusions only, under ultraviolet and protons. Some rock chips show general luminescence, mainly from plagioclase. No natural or excited thermoluminescence has been found for dust or chips. The electron paramagnetic resonance spectrum shows the same broad Fe(3+) dipole resonance for dust and for some chips; other chips show no response. The polarization characteristics of dust are found to be identical to those of the Sea of Tranquillity, independently of proton damage. Chips show characteristics unlike any part of the lunar surface.  相似文献   

9.
The South pole region of the moon as seen by clementine   总被引:2,自引:0,他引:2  
The Clementine mission has provided the first comprehensive set of high-resolution images of the south pole region of the moon. Within 5 degrees of latitude of the pole, an area of an estimated 30,000 square kilometers remained in shadow during a full lunar rotation and is a promising target for future exploration for ice deposits. The Schr?dinger Basin (320 kilometers in diameter), centered at 75 degrees S, is one of the two youngest, least modified, great multiring impact basins on the moon. A large maar-type volcano localized along a graben within the Schr?dinger Basin probably erupted between 1 and 2 billion years ago.  相似文献   

10.
A linear correlation between concentrations of Sm and ratios of Sm to Eu for nine lunar samples suggests that those samples could correspond to liquids from equilibrium partial melting of a common source. On the basis of partition coefficients in terrestrial systems, the fraction of melting would not have exceeded about 15 percent and the immediate source could have been composed of olivine, orthopyroxene, and opaque minerals plus at least 25 percent feldspar, with at most a few percent calcic clinopyroxene and less than 1 percent apatite. The large Eu depletions could also have been produced by fractional crystallization if the ratio of Eu(2+) to Eu(3+) in lunar magmas significantly exceeds the values for terrestrial magmas.  相似文献   

11.
Data on six lunar crystalline rocks give an apparent Rb-Sr isochron age of 4.42 +/- 0.24 x 10(9) years (95 percent confidence limits) and initial (87)Sr/(86)Sr ratio similar to that in a basaltic achondrite. Relationships between K, Rb, Sr, and Ba and depletion of Eu in these samples point to plagioclase separation from the melts that produced these rocks. The abundance of (157)Gd in the three lunar samples is similar to terrestrial abundance within < 0.2 percent, thus setting a limit of < 6 x 10(15) neutrons per square centimeter for the integrated thermal neutron flux difference between lunar and terrestrial materials.  相似文献   

12.
Keen RA 《Science (New York, N.Y.)》1983,222(4627):1011-1013
The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption.  相似文献   

13.
Although only part of the information from the x-ray fluorescence geochemical experiment has been analyzed, it is clear that the experiment was highly successful. Significant compositional differences among and possibly within the maria and highlands have been detected. When viewed in the light of analyzed lunar rocks and soil samples, and the data from other lunar orbital experiments (in particular, the Apollo 15 gamma-ray spectroscopy experiment), the results indicate the existence of a differential lunar highland crust, probably feldspathic. This crust appears to be related to the plagioclase-rich materials previously found in the samples from Apollo 11, Apollo 12, Apollo 14, Apollo 15, and Luna 16.  相似文献   

14.
The efficiency of side-dressing, a more efficient of nitrogen application method than uniform application in either late Fall or early Spring, relies heavily on the capability of nitrogen deficiency detection on a sprayer. To determine the site-specific yield potential for corn, multi-spectral image analysis including aerial- and ground-based images has been used. Some acceptable calibration relationships between the multi-spectral reflectance and SPAD readings have been found from previous study. In sunny weather conditions there was a shadow in the image made by corn leaf itself. This research investigated the shadow effect on the image for detecting corn nitrogen deficiency based on corn canopy reflectance information. The results indicated that the reflectance of red channel in shadow area showed strong inverse correlation, so the vegetation index NDVI using red and NIR channels also showed strong correlation (R2 = 77) compared to the whole leaf and bright area. And the reflectance (green and red) and vegetation index(G_NDVI, NDVI, and ratio) in shadow area showed more consistent correlations than others using these image analysis methods.  相似文献   

15.
Ancient multiring basins on the moon revealed by clementine laser altimetry   总被引:2,自引:0,他引:2  
Analysis of laser altimetry data from Clementine has confirmed and extended our knowledge of nearly obliterated multiring basins on the moon. These basins were formed during the early bombardment phase of lunar history, have been filled to varying degrees by mare lavas and regional ejecta blankets, and have been degraded by the superposition of large impact craters. The Mendel-Rydberg Basin, a degraded three-ring feature over 600 kilometers in diameter on the lunar western limb, is about 6 kilometers deep from rim to floor, only slightly less deep than the nearby younger and much better preserved Orientale Basin (8 kilometers deep). The South Pole-Aitken Basin, the oldest discernible impact feature on the moon, is revealed as a basin 2500 kilometers in diameter with an average depth of more than 13 kilometers, rim crest to floor. This feature is the largest, deepest impact crater yet discovered in the solar system. Several additional depressions seen in the data may represent previously unmapped ancient impact basins.  相似文献   

16.
The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter gamma=(kpC-(1/2) for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.  相似文献   

17.
Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle.  相似文献   

18.
科学地制定施肥方案是提高施肥效果、降低施肥成本、实现增产增收的有效途径。影子价格和灵敏度分析可以为施肥方案的制定及调整提供有效的帮助。以实例说明了化肥的影子价格在施肥方案调整中的应用,分析了化肥影子价格的经济意义,从限额系数、价格系数、价值系数等方面研究了有效地应用灵敏度分析调整施肥方案的方法,并以实例进行了详细的实证分析,为科学种田、节约成本、增产增收提供了科学的决策依据。  相似文献   

19.
The lunar ranging measurements now being made at the McDonald Observatory have an accuracy of 1 nsec in round-trip travel time. This corresponds to 15 cm in the one-way distance. The use of lasers with pulse-lengths of less than 1 nsec is expected to give an accuracy of 2 to 3 cm in the next few years. A new station is under construction in Hawaii, and additional stations in other countries are either in operation or under development. It is hoped that these stations will form the basis for a worldwide network to determine polar motion and earth rotation on a regular basis, and will assist in providing information about movement of the tectonic plates making up the earth's surface. Several mobile lunar ranging stations with telescopes having diameters of 1.0 m or less could, in the future, greatly extend the information obtainable about motions within and between the tectonic plates. The data obtained so far by the McDonald Observatory have been used to generate a new lunar ephemeris based on direct numerical integration of the equations of motion for the moon and planets. With this ephemeris, the range to the three Apollo retro-reflectors can be fit to an accuracy of 5 m by adjusting the differences in moments of inertia of the moon about its principal axes, the selenocentric coordinates of the reflectors, and the McDonald longitude. The accuracy of fitting the results is limited currently by errors of the order of an arc second in the angular orientation of the moon, as derived from the best available theory of how the moon rotates in response to the torques acting on it. Both a new calculation of the moon's orientation as a function of time based on direct numerical integration of the torque equations and a new analytic theory of the moon's orientation are expected to be available soon, and to improve considerably the accuracy of fitting the data. The accuracy already achieved routinely in lunar laser ranging represents a hundredfold improvement over any previously available knowledge of the distance to points on the lunar surface. Already, extremely complex structure has been observed in the lunar rotation and significant improvement has been achieved in our knowledge of lunar orbit. The selenocentric coordinates of the retroreflectors give improved reference points for use in lunar mapping, and new information on the lunar mass distribution has been obtained. Beyond the applications discussed in this article, however, the history of science shows many cases of previously unknown, phenomena discovered as a consequence of major improvements in the accuracy of measurements. It will be interesting to see whether this once again proves the case as we acquire an extended series of lunar distance observations with decimetric and then centimetric accuracy.  相似文献   

20.
Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface for hundreds of millions of years. Future work will require sampling distinctly different regions of the moon in order to provide data concerning other important lunar events, such as the time of formation of the highland regions and of the mare basins, and of the extent to which lunar volcanism has persisted subsequent to the first third of lunar history. This work will require a sufficient number of Apollo landings, and any further cancellation of Apollo missions will jeopardize this unique opportunity to study the development of a planetary body from its beginning. Such a study is fundamental to our understanding of the earth and other planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号