首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deformation on nearby faults induced by the 1999 Hector Mine earthquake   总被引:3,自引:0,他引:3  
Interferometric Synthetic Aperture Radar observations of surface deformation due to the 1999 Hector Mine earthquake reveal motion on several nearby faults of the eastern California shear zone. We document both vertical and horizontal displacements of several millimeters to several centimeters across kilometer-wide zones centered on pre-existing faults. Portions of some faults experienced retrograde (that is, opposite to their long-term geologic slip) motion during or shortly after the earthquake. The observed deformation likely represents elastic response of compliant fault zones to the permanent co-seismic stress changes. The induced fault displacements imply decreases in the effective shear modulus within the kilometer-wide fault zones, indicating that the latter are mechanically distinct from the ambient crustal rocks.  相似文献   

2.
Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.  相似文献   

3.
Plafker G 《Science (New York, N.Y.)》1976,193(4259):1201-1208
The locations of surface ruptures and the main shock epicenter indicate that the disastrous Guatemala earthquake of 4 February 1976 was tectonic in origin and generated mainly by slip on the Motagua fault, which has an arcuate roughly east-west trend across central Guatemala. Fault breakage was observed for 230 km. Displacement is predominantly horizontal and sinistral with a maximum measured offset of 340 cm and an average of about 100 cm. Secondary fault breaks trending roughly north-northeast to south-southwest have been found in a zone about 20 km long and 8 km wide extending from the western suburbs of Guatemala City to near Mixco, and similar faults with more subtle surface expression probably occur elsewhere in the Guatemalan Highlands. Displacements on the secondary faults are predominantly extensional and dip-slip, with as much as 15 cm vertical offset on a single fracture. The primary fault that broke during the earthquake involved roughly 10 percent of the length of the great transform fault system that defines the boundary between the Caribbean and North American plates. The observed sinistral displacement is striking confirmation of deductions regarding the late Cenozoic relative motion between these two crustal plates that were based largely on indirect geologic and geophysical evidence. The earthquake-related secondary faulting, together with the complex pattern of geologically young normal faults that occur in the Guatemalan Highlands and elsewhere in western Central America, suggest that the eastern wedge-shaped part of the Caribbean plate, roughly between the Motagua fault system and the volcanic arc, is being pulled apart in tension and left behind as the main mass of the plate moves relatively eastward. Because of their proximity to areas of high population density, shallow-focus earthquakes that originate on the Motagua fault system, on the system of predominantly extensional faults within the western part of the Caribbean plate, and in association with volcanism may pose a more serious seismic hazard than the more numerous (but generally more distant) earthquakes that are generated in the eastward-dipping subduction zone beneath Middle America.  相似文献   

4.
Megasplay faults, very long thrust faults that rise from the subduction plate boundary megathrust and intersect the sea floor at the landward edge of the accretionary prism, are thought to play a role in tsunami genesis. We imaged a megasplay thrust system along the Nankai Trough in three dimensions, which allowed us to map the splay fault geometry and its lateral continuity. The megasplay is continuous from the main plate interface fault upwards to the sea floor, where it cuts older thrust slices of the frontal accretionary prism. The thrust geometry and evidence of large-scale slumping of surficial sediments show that the fault is active and that the activity has evolved toward the landward direction with time, contrary to the usual seaward progression of accretionary thrusts. The megasplay fault has progressively steepened, substantially increasing the potential for vertical uplift of the sea floor with slip. We conclude that slip on the megasplay fault most likely contributed to generating devastating historic tsunamis, such as the 1944 moment magnitude 8.1 Tonankai event, and it is this geometry that makes this margin and others like it particularly prone to tsunami genesis.  相似文献   

5.
High-velocity weakening of faults may drive fault motion during large earthquakes. Experiments on simulated faults in Carrara marble at slip rates up to 1.3 meters per second demonstrate that thermal decomposition of calcite due to frictional heating induces pronounced fault weakening with steady-state friction coefficients as low as 0.06. Decomposition produces particles of tens of nanometers in size, and the ultralow friction appears to be associated with the flash heating on an ultrafine decomposition product. Thus, thermal decomposition may be an important process for the dynamic weakening of faults.  相似文献   

6.
Reexamination of horizontal geodetic data in the region of recently discovered aseismic uplift has demonstrated that equally unusual horizontal crustal deformation accompanied the development of the uplift. During this time interval compressive strains were oriented roughly normal to the San Andreas fault, suggesting that the uplift produced little shear strain accumulation across this fault. On the other hand, the orientation of the anomalous shear straining is consistent with strain accumulation across northdipping range-front thrusts like the San Fernando fault. Accordingly, the horizontal and vertical crustal deformation disclosed by geodetic observation is interpreted as a short epoch of rapid strain accumulation on these frontal faults. If this interpretation is correct, thrust-type earthquakes will eventually release the accumulated strains, but the geodetic data examined here cannot be used to estimate when these events might occur. However, observation of an unusual sequence of tilts prior to 1971 on a level line lying to the north of the magnitude 6.4 San Fernando earthquake offers some promise for precursor monitoring. The data are adequately explained by a simple model of up-dip aseismic slip propagation toward the 1971 epicentral region. These observations and the simple model that accounts for them suggest a conceptually straightforward monitoring scheme to search for similar uplift and tilt precursors within the uplifted region. Such premonitory effects could be detected by a combination of frequenlty repeated short (30 to 70 km in length) level line measurements, precise gravity traverses, and continuously recording gravimeters sited to the north of the active frontal thrust faults. Once identified, such precursors could be closely followed in space and time, and might then provide effective warnings of impending potentially destructive earth-quakes.  相似文献   

7.
The Whittier Narrows earthquake sequence (local magnitude, M(L) = 5.9), which caused over $358-million damage, indicates that assessments of earthquake hazards in the Los Angeles metropolitan area may be underestimated. The sequence ruptured a previously unidentified thrust fault that may be part of a large system of thrust faults that extends across the entire east-west length of the northern margin of the Los Angeles basin. Peak horizontal accelerations from the main shock, which were measured at ground level and in structures, were as high as 0.6g (where g is the acceleration of gravity at sea level) within 50 kilometers of the epicenter. The distribution of the modified Mercalli intensity VII reflects a broad north-south elongated zone of damage that is approximately centered on the main shock epicenter.  相似文献   

8.
Faults in complex tectonic environments interact in various ways, including triggered rupture of one fault by another, that may increase seismic hazard in the surrounding region. We model static and dynamic fault interactions between the strike-slip and thrust fault systems in southern California. We find that rupture of the Sierra Madre-Cucamonga thrust fault system is unlikely to trigger rupture of the San Andreas or San Jacinto strike-slip faults. However, a large northern San Jacinto fault earthquake could trigger a cascading rupture of the Sierra Madre-Cucamonga system, potentially causing a moment magnitude 7.5 to 7.8 earthquake on the edge of the Los Angeles metropolitan region.  相似文献   

9.
船用柴油机故障诊断系统可以提高轮机工作人员的管理水平,达到快速分析、准确判断及迅速排除故障。它以船用柴油机典型故障为基础,应用Visual FoxPro数据库管理系统建立船用柴油机故障诊断系统。通过柴油机拉缸故障典型实例来具体说明该系统的使用方法和特点。该系统具有可修改、插入和删除等功能,以友好的用户界面和易于操作等特点,实现船用柴油机典型故障的快速诊断。该文的创新点是将船员具有的故障处理的经验及知识作为专家系统,供其他船员的学习,以便准确、快速地处理柴油机的故障。  相似文献   

10.
Recent studies show that earthquake faults may rupture at speeds exceeding the shear wave velocity of rocks. This supershear rupture produces in the ground a seismic shock wave similar to the sonic boom produced by a supersonic airplane. This shock wave may increase the destruction caused by the earthquake. We report that supershear earthquakes are characterized by a specific pattern of aftershocks: The fault plane itself is remarkably quiet whereas aftershocks cluster off the fault, on secondary structures that are activated by the supershear rupture. The post-earthquake quiescence of the fault shows that friction is relatively uniform over supershear segments, whereas the activation of off-fault structures is explained by the shock wave radiation, which produces high stresses over a wide zone surrounding the fault.  相似文献   

11.
原廷泽  王旭海 《北京农业》2012,(18):155-156
通过对自动气象站日常工作中的维护与常见故障的详细描述,对故障判断及排除过程做详尽的介绍,使大家对自动站的常见故障有很清楚的认识,对在工作中出现的故障能很容易的判断出来,并对维修人员有一定的指导作用。  相似文献   

12.
校园网网络故障极为普遍,类型也十分繁杂。为了快速诊断和排除故障,应及时地将每次的故障现象、故障类型、诊断方法、排除方法等进行记录。当故障再次发生时,可通过快速查找故障记录,找出故障所在并进行维护,可大大缩短故障恢复时间,从而有利于校园网的稳定运行。同时,对于网络中的一些关键性设备,应做好配置信息的备份工作。  相似文献   

13.
A laboratory experiment shows that ridge-ridge transform faults, inactive fracture zones, and other features characteristic of spreading oceanic ridges can be produced in a variety of paraffins. Although the resultant pattern depends upon the temperature of the wax and the ratio of spreading rate to surface cooling, the characteristic orthogonal ridge transform fault system is a preferred mode of separation. Symmetric spreading occurs under conditions of no tensile strength across the ridge, and the stability of transform faults is a consequence of their lack of shear strength. The experiment also shows that properties characteristic of oceanic ridges occur under conditions of passive convection where upwelling of material at the ridge crest is a result only of hydrostatic forces in the fluid; that is, the plate separation is caused not by large convective forces beneath the ridge but rather by tensile forces in the plate.  相似文献   

14.
Splay fault branching along the Nankai subduction zone   总被引:3,自引:0,他引:3  
Seismic reflection profiles reveal steeply landward-dipping splay faults in the rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai subduction zone. These splay faults branch upward from the plate-boundary interface (that is, the subduction zone) at a depth of approximately 10 kilometers, approximately 50 to 55 kilometers landward of the trough axis, breaking through the upper crustal plate. Slip on the active splay fault may be an important mechanism that accommodates the elastic strain caused by relative plate motion.  相似文献   

15.
Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.  相似文献   

16.
Earthquakes on dipping faults: the effects of broken symmetry   总被引:3,自引:0,他引:3  
Dynamic simulations of earthquakes on dipping faults show asymmetric near-source ground motion caused by the asymmetric geometry of such faults. The ground motion from a thrust or reverse fault is larger than that of a normal fault by a factor of 2 or more, given identical initial stress magnitudes. The motion of the hanging wall is larger than that of the footwall in both thrust (reverse) and normal earthquakes. The asymmetry between normal and thrust (reverse) faults results from time-dependent normal stress caused by the interaction of the earthquake-generated stress field with Earth's free surface. The asymmetry between hanging wall and footwall results from the asymmetric mass and geometry on the two sides of the fault.  相似文献   

17.
The San Gregorio-Hosgri fault trend is a component of the San Andreas fault system on which there may have been about 115 kilometers of post-early Miocene right-lateral strike slip. If so, right slip on the San Andreas and San Gregorio-Hosgri faults accounts for most of the movement between the Pacific and North American plates since mid-Miocene time. Furthermore, the magnitude of right slip on a Paleogene proto-San Andreas fault inferred from the present distribution of granitic basement is reduced considerably when Neogene-Recent San Gregorio-Hosgri right slip is taken into account.  相似文献   

18.
Shear failure is the dominant mode of earthquake-causing rock failure along faults. High fluid pressure can also potentially induce rock failure by opening cavities and cracks, but an active example of this process has not been directly observed in a fault zone. Using borehole array data collected along the low-stress Chelungpu fault zone, Taiwan, we observed several small seismic events (I-type events) in a fluid-rich permeable zone directly below the impermeable slip zone of the 1999 moment magnitude 7.6 Chi-Chi earthquake. Modeling of the events suggests an isotropic, nonshear source mechanism likely associated with natural hydraulic fractures. These seismic events may be associated with the formation of veins and other fluid features often observed in rocks surrounding fault zones and may be similar to artificially induced hydraulic fracturing.  相似文献   

19.
由于地球物理方法本身受分辨率和保真度的限制,其在断层和裂缝识别上的应用也就有精度和尺度上的差异。为此,可采用不同的方法技术来识别不同尺度的断层和裂缝,即在断层识别上,利用地震剖面和水平切片解释大断层,采用相干分析方法识别小断层;在裂缝识别上,主要采用多方位AVO方法识别大尺度裂缝的发育特征,采用成像测井来识别微小裂缝的特征情况。实际应用表明,上述方法在相应尺度断层和裂缝上的识别效果较好。  相似文献   

20.
针对变风量空调系统的故障诊断问题及其特点,提出了一种基于改进角分类神经网络——FDCC的故障诊断模型.该模型克服了CC4角分类神经网络输出结果为二进制的局限,根据故障模式所落入的k最近邻的样本泛化空间来进行故障诊断,并输出结果向量,其各分量为各故障原因可能出现的概率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号