首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Zeng Q  Sheng H  Ding Y  Wang L  Yang W  Jiang JZ  Mao WL  Mao HK 《Science (New York, N.Y.)》2011,332(6036):1404-1406
Glass lacks the long-range periodic order that characterizes a crystal. In the Ce(75)Al(25) metallic glass (MG), however, we discovered a long-range topological order corresponding to a single crystal of indefinite length. Structural examinations confirm that the MG is truly amorphous, isotropic, and unstrained, yet under 25 gigapascals hydrostatic pressures, every segment of a centimeter-length MG ribbon devitrifies independently into a face-centered cubic (fcc) crystal with the identical orientation. By using molecular dynamics simulations and synchrotron x-ray techniques, we elucidate that the mismatch between the large Ce and small Al atoms frustrates the crystallization and causes amorphization, but a long-range fcc topological order still exists. Pressure induces electronic transition in Ce, which eliminates the mismatch and manifests the topological order by the formation of a single crystal.  相似文献   

2.
Post-perovskite phase transition in MgSiO3   总被引:2,自引:0,他引:2  
In situ x-ray diffraction measurements of MgSiO3 were performed at high pressure and temperature similar to the conditions at Earth's core-mantle boundary. Results demonstrate that MgSiO3 perovskite transforms to a new high-pressure form with stacked SiO6-octahedral sheet structure above 125 gigapascals and 2500 kelvin (2700-kilometer depth near the base of the mantle) with an increase in density of 1.0 to 1.2%. The origin of the D" seismic discontinuity may be attributed to this post-perovskite phase transition. The new phase may have large elastic anisotropy and develop preferred orientation with platy crystal shape in the shear flow that can cause strong seismic anisotropy below the D" discontinuity.  相似文献   

3.
X-ray diffraction measurements have been carried out on cesium iodide (CsI) to 302 gigapascals with a platinum pressure standard. The results indicate that above 200 gigapascals CsI at 300 K has a hexagonal close-packed crystal structure with the ideal c/a ratio of 1.63 +/- 0.01. The crystal structure and pressure-volume relations converge at high pressure with those of solid xenon, which is isoelectronic with CsI. The results indicate a significant loss of ionic bonding in the hexagonal close-packed metallic phase of CsI at ultrahigh pressure.  相似文献   

4.
Meade C  Jeanloz R 《Science (New York, N.Y.)》1988,241(4869):1072-1074
Measurements of the yield strength of SiO(2) glass to pressures as high as 81 gigapascals at room temperature show that the strength of amorphous silica decreases significantly as it is compressed to denser strctures with higher coordination. Above 27 gigapascals, as the silicon in amorphous SiO(2) is continuously transformed from fourfold to sixfold coordination, the strength of the glass decrases by more than an order of magnitude. These data confirm theoretical predictions that the mechanical properties of polymerized amorphous silicates are sensitive to pressure-induced structural transformations and suggest that the viscosity of silica-rich liquids decreases significantly at high pressures. Such a change in melt rheology could enhance the processes of chemical differentiation with depth in the Earth's mantle.  相似文献   

5.
Earth's solid inner core is mainly composed of iron (Fe). Because the relevant ultrahigh pressure and temperature conditions are difficult to produce experimentally, the preferred crystal structure of Fe at the inner core remains uncertain. Static compression experiments showed that the hexagonal close-packed (hcp) structure of Fe is stable up to 377 gigapascals and 5700 kelvin, corresponding to inner core conditions. The observed weak temperature dependence of the c/a axial ratio suggests that hcp Fe is elastically anisotropic at core temperatures. Preferred orientation of the hcp phase may explain previously observed inner core seismic anisotropy.  相似文献   

6.
Strength of diamond   总被引:1,自引:0,他引:1  
The yield strength of diamond is measured under a pressure of 10 gigapascals at temperatures up to 1550 degrees C by the analysis of x-ray peak shapes on diamond diffraction lines in a powdered sample as a function of pressure and temperature. At room temperature, the diamond crystals exhibit elastic behavior with increasing pressure. Significant ductile deformation is observed only at temperatures above 1000 degrees C at this pressure. The differential yield strength of diamond decreases with temperature from 16 gigapascals at 1100 degrees C to 4 gigapascals at 1550 degrees C. Transmission electron microscopy observations on the recovered sample indicate that the dominant deformation mechanism under high pressure and temperature is crystal plasticity.  相似文献   

7.
High-pressure Brillouin spectra of crystalline hydrogen sulfide (H(2)S) have been measured at up to 7 gigapascals at room temperature. The best fit of the angular dependence of Brillouin acoustic velocities between experimental values and calculations based on Every's expression for elastic waves of an arbitrary direction yielded the orientation of an H(2)S cubic crystal grown in the diamond-anvil high-pressure cell. In situ determinations of sound velocities, as a function of pressure, could be made for any direction, the refractive index, the density, and the elastic constants. This method provides a means for the systematic study of elastic properties and phase transitions of condensed gases under ultrahigh pressures.  相似文献   

8.
The hollandite high-pressure polymorph of plagioclase has been identified in shock-induced melt veins of the Sixiangkou L6 chondrite. It is intimately intergrown with feldspathic glass within grains previously thought to be "maskelynite." The crystallographic nature of the mineral was established by laser micro-Raman spectroscopy and x-ray diffraction. The mineral is tetragonal with the unit cell parameters a = 9.263 +/- 0.003 angstroms and c = 2.706 +/- 0.003 angstroms. Its occurrence with the liquidus pair majorite-pyrope solid solution plus magnesiowustite sets constraints on the peak pressures that prevailed in the shock-induced melt veins. The absence of a calcium ferrite-structured phase sets an upper bound for the crystallization of the hollandite polymorph near 23 gigapascals.  相似文献   

9.
In three different experiments up to 100 gigapascals and 3000 kelvin, (Mg,Fe)SiO3-perovskite, the major component of the lower mantle, remained stable and did not decompose to its component oxides (Mg, Fe)O and SiO2. Perovskite was formed from these oxides when heated in a diamond anvil cell at pressures up to 100 gigapascals. Both MgSiO3 crystals and glasses heated to 3000 kelvin at 75 gigapascals also formed perovskite as a single phase, as evident from Raman spectra. Moreover, fluorescence measurements on chromium-doped samples synthesized at these conditions gave no indication of the presence of MgO.  相似文献   

10.
Data from the Voyager II spacecraft showed that Uranus has a large magnetic field with geometry similar to an offset tilted dipole. To interpret the origin of the magnetic field, measurements were made of electrical conductivity and equation-of-state data of the planetary "ices" ammonia, methane, and "synthetic Uranus" at shock pressures and temperatures up to 75 gigapascals and 5000 K. These pressures and temperatures correspond to conditions at the depths at which the surface magnetic field is generated. Above 40 gigapascals the conductivities of synthetic Uranus, water, and ammonia plateau at about 20(ohm-cm)(-1), providing an upper limit for the electrical conductivity used in kinematic or dynamo calculations. The nature of materials at the extreme conditions in the interior is discussed.  相似文献   

11.
As diamond-producing catalysts, 12 transition metals such as iron, cobalt, and nickel were first reported by General Electric researchers more than 30 years ago. Since then, no additional elemental catalyst has been reported. An investigation of the catalytic action of group V elements is of great interest from the viewpoint of producing an n-type semiconducting diamond crystal. In the present study, diamond was synthesized from graphite in the presence of elemental phosphorus at high pressure and temperature (7.7 gigapascals and 1800 degrees C). Furthermore, single-crystal diamond was grown on a diamond seed crystal.  相似文献   

12.
Coordination and local geometry around Si cations in silicate liquids are of primary importance in controlling the chemical and physical properties of magmas. Pressure-induced changes from fourfold to sixfold coordination of Si in silicate glass samples quenched from liquids has been detected with (29)Si magic-angle spinning nuclear magnetic resonance spectrometry. Samples of Na(2)Si(2)O(5) glass quenched from 8 gigapascals and 1500 degrees C contained about 1.5 percent octahedral Si, which was demonstrably part of a homogeneous, amorphous phase. The dominant tetrahedral Si speciation in these glasses became disproportionated to a more random distribution of bridging and nonbridging oxygens with increasing pressure.  相似文献   

13.
A high-pressure phase of TiO(2), which had been observed by shock-wave experiments and remained unresolved, has been studied by in situ x-ray diffraction. The single phase was formed at 20 gigapascals and 770 degrees C with the use of sintered-diamond multianvils; it has the same structure as baddeleyite, the stable phase of ZrO(2) at ambient conditions. The coordination number of Ti increases from six to seven across the rutile to baddeleyite transition, and the volume is reduced by approximately 9 percent.  相似文献   

14.
Protonated and deuterated ices (H2O and D2O) compressed to a maximum pressure of 210 gigapascals at 85 to 300 kelvin exhibit a phase transition at 60 gigapascals in H2O ice (70 gigapascals in D2O ice) on the basis of their infrared reflectance spectra determined with synchrotron radiation. The transition is characterized by soft-mode behavior of the nu3 O-H or O-D stretch below the transition, followed by a hardening (positive pressure shift) above it. This behavior is interpreted as the transformation of ice phase VII to a structure with symmetric hydrogen bonds. The spectroscopic features of the phase persisted to the maximum pressures (210 gigapascals) of the measurements, although changes in vibrational mode coupling were observed at 150 to 160 gigapascals.  相似文献   

15.
A central question in the study of amorphous materials is the extent to which they are ordered. When the crystalline intermetallic R-Al(5)Li(3)Cu is compressed to 23.2 gigapascals at ambient temperature, an amorphous phase is produced whose order can be described as defects in a curved-space crystal. This result supports a structural relation between quasi-crystals and amorphous metals based on icosahedral ordering. This result also shows that a metallic crystal can be made amorphous by compression.  相似文献   

16.
A high-intensity laser was used to shock-compress liquid deuterium to pressures from 22 to 340 gigapascals. In this regime deuterium is predicted to transform from an insulating molecular fluid to an atomic metallic fluid. Shock densities and pressures, determined by radiography, revealed an increase in compressibility near 100 gigapascals indicative of such a transition. Velocity interferometry measurements, obtained by reflecting a laser probe directly off the shock front in flight, demonstrated that deuterium shocked above 55 gigapascals has an electrical conductivity characteristic of a liquid metal and independently confirmed the radiography.  相似文献   

17.
The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer ("sword-in-sheath" failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.  相似文献   

18.
Metallic filaments with submicrometer diametere have been fabricated. Standard diffraction techniques with conventional x-ray sources were unsuccessful in identifying the structure of these materials. However, with the use of synchrotron radiation produced on a wiggler beam line, diffraction data were obtained in measurement periods as short as 10 milliseconds. Two cylindrical single crystals of bismuth were studied, each with a diameter of 0.22 +/- 0.02 micrometer. The volume of sample illuminated for these measurements was 0.38 cubic micrometer, less than 0.5 femtoliter. The crystals are grown in glass capillaries, and, because bismuth expands on solidification, they are under a residual hoop stress. The crystallographic data indicate the presence of a linear compressive strain of about 2 percent, which is assumed to be the result of a residual stress of about 2 gigapascals.  相似文献   

19.
The melting curve of iron, the primary constituent of Earth's core, has been measured to pressures of 250 gigapascals with a combination of static and dynamic techniques. The melting temperature of iron at the pressure of the core-mantle boundary (136 gigapascals) is 4800 +/- 200 K. whereas at the inner core-outer core boundary (330 gigapascals), it is 7600 +/- 500 K. Corrected for melting point depression resulting from the presence of impurities, a melting temperature for iron-rich alloy of 6600 K at the inner core-outer core boundary and a maximum temperature of 6900 K at Earth's center are inferred. This latter value is the first experimental upper bound on the temperature at Earth's center, and these results imply that the temperature of the lower mantle is significantly less than that of the outer core.  相似文献   

20.
Lithium is found to transform from a body-centered cubic (bcc) to a face-centered cubic (fcc) structure at 6.9 gigapascals (69 kilobars) and 296 kelvin. The relative volume of the bcc structured lithium at 6.9 gigapascals is 0.718, and the fcc structure is 0.25 percent denser. The bulk modulus and its pressure derivative for the bcc structure are 11.57 gigapascals and 3.4, and for the fcc structure are 13.1 gigapascals and 2.8. Extrapolation of the bcc-fcc phase boundary and the melting curve indicate a triple point around 15 gigapascals and 500 kelvin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号