首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ atomic force microscope observations were made of the adsorption of anions (1- or 2-) of the organic diacid 5-benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid from aqueous solution onto the (0001) surface of hydrotalcite (HT), a layered clay. This adsorption process is believed to mimic the ion-exchange reactions that occur within the layers of HT and other layered clays. Atomic force microscope images of the (0001) surfaces of HT, acquired in aqueous solutions, reveal an ordered structure with respect to magnesium and aluminum atoms. In the presence of the anions, atomic force microscopy indicates pH-dependent adsorption onto the formally cationic HT surface. The anion coverage is governed by electroneutrality and steric interactions between the bulky anions within the adsorbed layer, whereas the orientation of the anions with respect to the HT surface is dictated by coulombic interactions and hydrogen bonding between the anion's sulfonate moiety and clay hydroxyl triads. These observations reveal that the reversible adsorption of molecular species can be examined directly by in situ atomic force microscopy, providing details of surface stoichiometry and adlayer symmetry on the local, molecular level.  相似文献   

2.
The atomically smooth SrTiO(3) (100) with steps one unit cell in height was obtained by treating the crystal surface with a pH-controlled NH(4)F-HF solution. The homoepitaxy of SrTiO(3) film on the crystal surface proceeds in a perfect layer-by-layer mode as verified by reflection high-energy electron diffraction and atomic force microscopy. Ion scattering spectroscopy revealed that the TiO(2) atomic plane terminated the as-treated clean surface and that the terminating atomic layer could be tuned to the SrO atomic plane by homooepitaxial growth. This technology provides a well-defined substrate surface for atomically regulated epitaxial growth of such perovskite oxide films as YBa(2)Cu(3)O(7-delta).  相似文献   

3.
Crystallization of L-cystine is a critical step in the pathogenesis of cystine kidney stones. Treatments for this disease are somewhat effective but often lead to adverse side effects. Real-time in situ atomic force microscopy (AFM) reveals that L-cystine dimethylester (L-CDME) and L-cystine methylester (L-CME) dramatically reduce the growth velocity of the six symmetry-equivalent {100} steps because of specific binding at the crystal surface, which frustrates the attachment of L-cystine molecules. L-CDME and L-CME produce l-cystine crystals with different habits that reveal distinct binding modes at the crystal surfaces. The AFM observations are mirrored by reduced crystal yield and crystal size in the presence of L-CDME and L-CME, collectively suggesting a new pathway to the prevention of L-cystine stones by rational design of crystal growth inhibitors.  相似文献   

4.
The charge distribution in atoms with closed electron shells is spherically symmetric, whereas atoms with partially filled shells can form covalent bonds with pointed lobes of increased charge density. Covalent bonding in the bulk can also affect surface atoms, leading to four tiny humps spaced by less than 100 picometers in the charge density of adatoms on a (001) tungsten surface. We imaged these charge distributions by means of atomic force microscopy with the use of a light-atom probe (a graphite atom), which directly measured high-order force derivatives of its interaction with a tungsten tip. This process revealed features with a lateral distance of only 77 picometers.  相似文献   

5.
Results of studies on the interaction between the tip of an atomic force microscope and polystyrene molecules in a film spread on a surface are reported. The tip produces a persistent deformation on the film; some of the polymer molecules are eventually pulled up by the tip. Nanometer-size structures are induced, resulting in a pattern that is periodic and is oriented perpendicular to the scan direction.  相似文献   

6.
We have measured the angular dependence of chemical bonding forces between a carbon monoxide molecule that is adsorbed to a copper surface and the terminal atom of the metallic tip of a combined scanning tunneling microscope and atomic force microscope. We provide tomographic maps of force and current as a function of distance that revealed the emergence of strongly directional chemical bonds as tip and sample approach. The force maps show pronounced single, dual, or triple minima depending on the orientation of the tip atom, whereas tunneling current maps showed a single minimum for all three tip conditions. We introduce an angular dependent model for the bonding energy that maps the observed experimental data for all observed orientations and distances.  相似文献   

7.
Feng S  Bein T 《Science (New York, N.Y.)》1994,265(5180):1839-1841
Tubular aluminophosphate molecular sieve crystals were grown at an organic interface with their channels (7 angstroms in cross section) vertical to the substrate. To induce surface nucleation and oriented growth of AIPO(4)-5 crystals, organophosphonate layers cross-linked with Zr(IV) were assembled on a gold substrate and the modified substrate was immersed in a hydrothermal bath containing reagents for the synthesis of the molecular sieve. Reflection-absorption infrared studies demonstrated the stability of the phosphonate layers under these conditions. Drastic changes in the morphology of the surface-grown crystals from spherical agglomerates to vertical needles to thin tilted needles could be achieved by adjusting the water content of the synthesis bath. Nitrogen sorption in these structures on a piezoelectric device confirmed the presence of zeolitic microporosity.  相似文献   

8.
The surface morphology of a diarylethene single crystal [1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene] determined by atomic force microscopy changed reversibly upon photoirradiation. The crystal underwent a thermally irreversible but photochemically reversible color change (colorless to blue) upon alternate irradiation with ultraviolet (wavelength lambda = 366 nm) and visible (lambda > 500 nm) light that drove reversible photocyclization reactions. Upon irradiation with 366-nm light, new steps appeared on the (100) single-crystalline surface that disappeared upon irradiation with visible light (lambda > 500 nm). The step height, about 1 nm, corresponds to one molecular layer. Irradiation with 366-nm light formed valleys on the (010) surface that also disappeared by bleaching upon irradiation with visible light (lambda > 500 nm). The surface morphological changes can be explained by the molecular structural changes of diarylethenes regularly packed in the single crystal. These crystals could potentially be used as photodriven nanometer-scale actuators.  相似文献   

9.
Inelastic helium atom scattering has been used to measure the phonons on a stepped metallic crystalline surface, Ni(977). When the scattering plane is oriented parallel to the step edges and perpendicular to the terraces, two branches of step-induced phonons are observed. These branches are identified as transversely polarized, step-localized modes that propagate along the step edge. Analysis reveals significant anisotropy in the force field near the step edge, with all forces near the step edge being substantially smaller than in the bulk. Such measurements provide valuable information on metallic bonding and interface stability near extended surface defects.  相似文献   

10.
AZ31镁合金扩散焊接实验   总被引:1,自引:0,他引:1  
根据原子扩散理论对AZ31镁合金进行了扩散连接工艺研究。在Gleeble-1500型热/力模拟试验机上,对AZ31镁合金进行了在不同连接工艺条件下的扩散连接,在电子万能试验机上对扩散连接接头进行了剪切强度试验,从而获得了AZ31镁合金的最佳扩散连接工艺参数。利用金相显微镜、扫描电镜(SEM)对扩散连接接头微观组织进行分析,得出了AZ31镁合金主要是通过原子扩散和晶粒长大造成的原始焊接表面晶界的移动,促使接头表面原子充分扩散,形成牢固的连接。  相似文献   

11.
Crushed and etched lanthanum lead manganite (La(0.7)Pb(0.3)MnO(3)) crystals containing as little as 0.005 atomic percent platinum have significantly higher catalytic activity than free platinum crystals. This higher activity is due to an almost 100-fold segregation of platinum on the surface. The surface platinum concentration found, 0.5 atomic percent, is sufficient to account for the enhanced activity provided that the platinum has the same activity as platinum supported on alumina.  相似文献   

12.
The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges <1 nanometer (nm) high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.  相似文献   

13.
Although both tooth enamel and bone are composed of organized assemblies of carbonated apatite crystals, enamel is unusual in that it does not contain collagen nor does it remodel. Self-assembly of amelogenin protein into nanospheres has been recognized as a key factor in controlling the oriented and elongated growth of carbonated apatite crystals during dental enamel biomineralization. We report the in vitro formation of birefringent microribbon structures that were generated through the supramolecular assembly of amelogenin nanospheres. These microribbons have diffraction patterns that indicate a periodic structure of crystalline units along the long axis. The growth of apatite crystals orientated along the c axis and parallel to the long axes of the microribbons was observed in vitro. The linear arrays (chains) of nanospheres observed as intermediate states before the microribbon formation give an important indication as to the function of amelogenin in controlling the oriented growth of apatite crystals during enamel mineralization.  相似文献   

14.
One-sixth of the value of all goods manufactured in the United States involves catalytic processes. However, in spite of this dramatic economic impact, little is known about this broad subject at the molecular level. In the last two decades a variety of techniques have been developed for studying at the atomic level the structure, composition, and chemical bonding at surfaces. These techniques have been used to study adsorption and reaction on metal single crystals in an ultrahigh vacuum environment or to analyze catalysts before and after reaction. An important new development has been the coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis. This approach has demonstrated that metal single crystals can be used to successfully model many important catalytic reactions and has established a direct link between the results of ultrahigh vacuum surface measurements and the chemistry that occurs under typical catalytic-processing conditions.  相似文献   

15.
We report direct force measurements of the formation of a chemical bond. The experiments were performed using a low-temperature atomic force microscope, a silicon tip, and a silicon (111) 7x7 surface. The measured site-dependent attractive short-range force, which attains a maximum value of 2.1 nanonewtons, is in good agreement with first-principles calculations of an incipient covalent bond in an analogous model system. The resolution was sufficient to distinguish differences in the interaction potential between inequivalent adatoms, demonstrating the ability of atomic force microscopy to provide quantitative, atomic-scale information on surface chemical reactivity.  相似文献   

16.
A force field for water has been developed entirely from first principles, without any fitting to experimental data. It contains both pairwise and many-body interactions. This force field predicts the properties of the water dimer and of liquid water in excellent agreement with experiments, a previously elusive objective. Precise knowledge of the intermolecular interactions in water will facilitate a better understanding of this ubiquitous substance.  相似文献   

17.
Adhesion of a biological cell to another cell or the extracellular matrix involves complex couplings between cell biochemistry, structural mechanics, and surface bonding. The interactions are dynamic and act through association and dissociation of bonds between very large molecules at rates that change considerably under stress. Combining molecular cell biology with single-molecule force spectroscopy provides a powerful tool for exploring the complexity of cell adhesion, that is, how cell signaling processes strengthen adhesion bonds and how forces applied to cell-surface bonds act on intracellular sites to catalyze chemical processes or switch molecular interactions on and off. Probing adhesion receptors on strategically engineered cells with force during functional stimulation can reveal key nodes of communication between the mechanical and chemical circuitry of a cell.  相似文献   

18.
Computer simulations of hydrocarbon and related molecules using empirical force fields have become important tools for studying a number of biological and related processes at the atomic scale. Traditional force fields, however, cannot be used to simulate dynamic chemical reactivity that involves changes in atomic hybridization. Application of a many-body potential function allows such reactivity to occur in a computer simulation. Simulations of the reaction of small hydrocarbon molecules adsorbed on a reconstructed diamond {001}(2x1) surface suggest that these hydrocarbons are highly reactive species and that initial stages of diamond growth proceed through a dimer-opening mechanism. Rates estimated from transition state theory of two interconversions between states where the dimer is open and closed are given.  相似文献   

19.
Recent developments in piconewton instrumentation allow the manipulation of single molecules and measurements of intermolecular as well as intramolecular forces. Dextran filaments linked to a gold surface were probed with the atomic force microscope tip by vertical stretching. At low forces the deformation of dextran was found to be dominated by entropic forces and can be described by the Langevin function with a 6 angstrom Kuhn length. At elevated forces the strand elongation was governed by a twist of bond angles. At higher forces the dextran filaments underwent a distinct conformational change. The polymer stiffened and the segment elasticity was dominated by the bending of bond angles. The conformational change was found to be reversible and was corroborated by molecular dynamics calculations.  相似文献   

20.
Madix RJ 《Science (New York, N.Y.)》1986,233(4769):1159-1166
One of the primary objectives of modern surface chemistry of transition metals is the synthesis of surface compounds and complexes and the understanding of their reactivity, structure, and bonding. Such considerations are paramount for advancing understanding of catalysis, adhesion, organic thin-film growth, and electrocatalysis. On selected metals, particularly copper, silver, and gold, selective scission of X-H bonds (where X is oxygen, carbon, nitrogen, or sulfur) by surface-bound atomic oxygen occurs to form moderately stable species that can be isolated for further study. Selective oxidation reactions may occur heterogeneously by means of this novel oxygen- activated route. Furthermore, this selective chemistry offers a paradigm for synthesis of a wide variety of surface organometallic complexes, whose formation can be predicted from acid-base principles. These subjects are discussed in this article with emphasis on their role in catalytic oxidation cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号