首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INDEPTH seismic reflection profiling shows that the decollement beneath which Indian lithosphere underthrusts the Himalaya extends at least 225 kilometers north of the Himalayan deformation front to a depth of approximately 50 kilometers. Prominent reflections appear at depths of 15 to 18 kilometers near where the decollement reflector apparently terminates. These reflections extend north of the Zangbo suture to the Damxung graben of the Tibet Plateau. Some of these reflections have locally anomalous amplitudes (bright spots) and coincident negative polarities implying that they are produced by fluids in the crust. The presence of geothermal activity and high heat flow in the regions of these reflections and the tectonic setting suggest that the bright spots mark granitic magmas derived by partial melting of the tectonically thickened crust.  相似文献   

2.
Chen WP  Yang Z 《Science (New York, N.Y.)》2004,304(5679):1949-1952
Eleven intracontinental earthquakes, with magnitudes ranging from 4.9 to 6, occurred in the mantle beneath the western Himalayan syntaxis, the western Kunlun Mountains, and southern Tibet (near Xigaze) between 1963 and 1999. High-resolution seismic waveforms show that some focal depths exceeded 100 kilometers, indicating that these earthquakes occurred in the mantle portion of the lithosphere, even though the crust has been thickened there. The occurrence of earthquakes in the mantle beneath continental regions where the subduction of oceanic lithosphere ceased tens of millions years ago indicates that the mantle lithosphere is sufficiently strong to accumulate elastic strain.  相似文献   

3.
Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers).  相似文献   

4.
Models for extension-related magmatism based on decompression melting of asthenospheric mantle poorly simulate fluxes and bulk compositions of magmas produced during early stages of continental extension. For the Great Basin of western North America, it is proposed that magmatism proceeded in two stages, the first involving melting of lithospheric mantle sources between 40 and approximately 5 million years ago (Ma), followed (since approximately 5 Ma) by melting of upwelling asthenospheric mantle in areas where extension has exceeded about 100 percent. This transition in magma sources is diachronous, depending on initial variations in lithosphere thickness and on rates of lithospheric thinning.  相似文献   

5.
Dynamical processes in the Earth's mantle, such as cold downwelling at subduction zones, cause deformations of the solid-state phase change that produces a seismic discontinuity near a depth of 660 kilometers. Observations of short-period, shear-to-compressional wave conversions produced at the discontinuity yield a detailed map of deformation beneath the Izu-Bonin subduction zone. The discontinuity is depressed by about 60 kilometers beneath the coldest part of the subducted slab, with a deformation profile consistent with the expected thermal signature of the slab, the experimentally determined Clapeyron slope of the phase transition, and the regional tectonic history.  相似文献   

6.
Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust.  相似文献   

7.
Tomographic imaging indicates that slabs of subducted lithosphere can sink deep into Earth's lower mantle. The view that convective flow is stratified at 660-kilometer depth and preserves a relatively pristine lower mantle is therefore not tenable. However, a range of geophysical evidence indicates that compositionally distinct, hence convectively isolated, mantle domains may exist in the bottom 1000 kilometers of the mantle. Survival of these domains, which are perhaps related to local iron enrichment and silicate-to-oxide transformations, implies that mantle convection is more complex than envisaged by conventional end-member flow models.  相似文献   

8.
Mid-ocean ridge basalts (MORBs) and ocean island basalts (QIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and QIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.  相似文献   

9.
Over 5600 short-period recordings of teleseismic events were used to create deterministic maps of P-wave scatterers in the upper mantle beneath Southern California. Between depths of 50 and 200 kilometers, the southern flank of the slab subducting beneath the Transverse Ranges is marked by strong scattering. The marked scattering indicates that the edge of the slab is a sharp thermal boundary. Such a boundary could be produced by slab shearing or small-scale convection in the surrounding mantle. The northern limb of the slab is not a strong scatterer, consistent with thicker lithosphere north of the Transverse Ranges.  相似文献   

10.
Seismic imaging of the downwelling Indian lithosphere beneath central Tibet   总被引:10,自引:0,他引:10  
A tomographic image of the upper mantle beneath central Tibet from INDEPTH data has revealed a subvertical high-velocity zone from approximately 100- to approximately 400-kilometers depth, located approximately south of the Bangong-Nujiang Suture. We interpret this zone to be downwelling Indian mantle lithosphere. This additional lithosphere would account for the total amount of shortening in the Himalayas and Tibet. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus could explain the presence of warm mantle beneath north-central Tibet.  相似文献   

11.
Relative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magnitudes of the P and S wave anomalies require the presence of retained mantle melt; the melt fraction near the rise exceeds the fraction 300 kilometers off axis by as little as 1%. Seismic anisotropy, induced by mantle flow, is evident in the P wave delays at near-vertical incidence and is consistent with a half-width of mantle upwelling of about 100 km.  相似文献   

12.
The transition zone of Earth's mantle is delineated by globally observed discontinuities in seismic properties at depths of about 410 and 660 kilometers. Here, we investigate the detailed structure between 410 and 660 kilometers depth, by making use of regional stacks of precursors to the SS phase. The previously observed discontinuity at about 520 kilometers depth is confirmed in many regions, but is found to be absent in others. There are a number of regions in which we find two discontinuities at about 500 and 560 kilometers depth, an effect which can be interpreted as a "splitting" of the 520 kilometer discontinuity. These observations provide seismic constraints on the sharpness and observability of mineralogical phase transitions in the mantle transition zone.  相似文献   

13.
Serpentine stability to mantle depths and subduction-related magmatism   总被引:14,自引:0,他引:14  
Results of high-pressure experiments on samples of hydrated mantle rocks show that the serpentine mineral antigorite is stable to approximately 720 degrees C at 2 gigapascals, to approximately 690 degrees C at 3 gigapascals, and to approximately 620 degrees C at 5 gigapascals. The breakdown of antigorite to forsterite plus enstatite under these conditions produces 13 percent H(2)O by weight to depths of 150 to 200 kilometers in subduction zones. This H(2)O is in an ideal position for ascent into the hotter, overlying mantle where it can cause partial melting in the source region for calc-alkaline magmas at a depth of 100 to 130 kilometers and a temperature of approximately 1300 degrees C. The breakdown of antigorite in hydrated mantle produces an order of magnitude more H(2)O than does the dehydration of altered oceanic crust.  相似文献   

14.
Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.  相似文献   

15.
H Thybo  E Perchuc 《Science (New York, N.Y.)》1997,275(5306):1626-1629
Strong, scattered reflections beyond 8 degrees (8degrees) offset are characteristic features of all high-resolution seismic sections from the continents. The reflections identify a low-velocity zone below approximately 100 kilometers depth beneath generally stratified mantle. This zone may be caused by partial melting, globally initiated at equal depth in the continental mantle. Solid state is again attained at the Lehmann discontinuity in cold, stable areas, whereas the zone extends to near the 400-kilometer discontinuity in hot, tectonically active areas. Thus, the depth to the Lehmann discontinuity may be an indicator of the thermal state of the continental mantle.  相似文献   

16.
Wide-angle seismic data along the Mantle Electromagnetic and Tomography (MELT) arrays show that the thickness of 0.5- to 1. 5-million-year-old crust of the Nazca Plate is not resolvably different from that of the Pacific Plate, despite an asymmetry in depth and gravity across this portion of the East Pacific Rise. Crustal thickness on similarly aged crust on the Nazca plate near a magmatically robust part of the East Pacific Rise at 17 degrees15'S is slightly thinner (5.1 to 5.7 kilometers) than at the 15 degrees55'S overlapping spreading center (5.8 to 6.3 kilometers). This small north-south off-axis crustal thickness difference may reflect along-axis temporal variations in magma supply, whereas the across-axis asymmetry in depth and gravity must be caused by density variations in the underlying mantle.  相似文献   

17.
Structure and dynamics of Earth's lower mantle   总被引:1,自引:0,他引:1  
Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.  相似文献   

18.
King SD  Ritsema J 《Science (New York, N.Y.)》2000,290(5494):1137-1140
Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.  相似文献   

19.
Data from two microseismic field experiments in northern Chile revealed an elongated cluster of earthquakes in the subducted Nazca plate at a depth of about 100 kilometers in which down-dip tensional events were consistently shallower than a family of compressional earthquakes. This double seismic zone shows a distribution of stresses of opposite polarity relative to that observed in other double seismic zones in the world. The distribution of stresses in northern Chile supports the notion that at depths of between 90 to 150 kilometers, the basalt to eclogite transformation of the subducting oceanic crust induces tensional deformation in the upper part of the subducted slab and compressional deformation in the underlying mantle.  相似文献   

20.
Oxygen isotope analyses of sanidine phenocrysts from rhyolitic sequences in Nevada, Colorado, and the Yellowstone Plateau volcanic field show that delta(18)O decreased in these magmas as a function of time. This decrease in delta(18)O may have been caused by isotopic exchange between the magma and groundwater low in (18)O. For the Yellowstone Plateau rhyolites, 7000 cubic kilometers of magma could decrease in delta(18)O by 2 per mil in 600,000 years by reacting with water equivalent to 3 millimeters of precipitation per year, which is only 0.3 percent of the present annual precipitation in this region. The possibility of reaction between large magmatic bodies and meteoric water at liquidus temperatures has major implications in the possible differentiation history of the magma and in the generation of ore deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号