首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supercritical fluid extraction of organochlorine pesticides in eggs   总被引:2,自引:0,他引:2  
The efficacy of supercritical fluid extraction (SFE) for the recovery of 16 common organochlorine pesticides (OCPs) from liquid whole eggs was investigated by employing supercritical carbon dioxide (SC-CO(2)) without the use of a solvent modifier to minimize interfering coextractives. The OCPs tested included aldrin; alpha-, beta-, delta-, and gamma-BHCs; p,p'-DDD, -DDE, and -DDT; dieldrin; endosulfans I, II, and sulfate; endrin; endrin aldehyde; heptachlor; and heptachlor epoxide. The SFE conditions were as follows: 10000 psi (680 bar), 40 degrees C, SC-CO(2) flow rate of 3.0 L/min with an extraction time of 40 min for a total of 120 L of CO(2). The OCPs were trapped off-line in an SPE cartridge containing Florisil and then eluted by an acetone/hexane mixture and analyzed by gas chromatography-electron capture detection (GC-ECD). Recovery studies were carried out on homogenized eggs fortified at the 0.05, 0.10, and 0.20 ppm levels. At the lowest level, 0.05 ppm, recoveries ranged from 81.8 to 108.3%, with CVs < 9.8%. All recoveries were significantly higher than those obtained by an AOAC/FDA solvent extraction method. Eggs containing incurred endosulfan I were also effectively extracted by SFE. This study suggests that the application of SFE for the extraction of OCPs from eggs will result in significant savings in analysis time and lower solvent use and disposal costs compared to conventional solvent extraction procedures.  相似文献   

2.
Extraction of oil from almond fruits using supercritical carbon dioxide (SC-CO(2)) was carried out at 50 degrees C and 330 bar on three sets of almonds: raw almond seeds, raw almond kernels, and toasted almond seeds. Three different oil extraction percentages were applied on each set ranging from approximately 15 to 16%, from approximately 27 to 33%, and from approximately 49 to 64%. Although no major changes were detected in the fatty acid composition between fresh and partially defatted samples, carbohydrate analysis of partially defatted materials revealed important changes in cell wall polysaccharides from almond tissues. Thus, at low extraction percentages (up to approximately 33%), pectic polysaccharides and hemicellulosic xyloglucans were the main type of polymers affected, suggesting the modification of the cell wall matrix, although without breakage of the walls. Then, as supercritical fluid extraction (SCFE) continues and higher extraction rates are achieved (up to approximately 64%), a major disruption of the cell wall occurred as indicated by the losses of all major types of cell wall polysaccharides, including cellulose. These results suggest that, under the conditions used for oil extraction using SC-CO(2), fatty acid chains are able to exit the cells through nonbroken walls; the modification of the pectin-hemicellulose network might have increased the porosity of the wall. However, as high pressure is being applied, there is a progressive breakage of the cell walls allowing the free transfer of the fatty acid chains from inside the cells. These findings might contribute to providing the basis for the optimization of SCFE procedures based on plant food sources.  相似文献   

3.
Lycopene and beta-carotene were extracted from tomato paste waste using supercritical carbon dioxide (SC-CO(2)). To optimize supercritical fluid extraction (SFE) results for the isolation of lycopene and beta-carotene, a factorial designed experiment was conducted. The factors assessed were the temperature of the extractor (35, 45, 55, and 65 degrees C), the pressure of the extraction fluid (200, 250, and 300 bar), addition of cosolvent (5, 10, and 15% ethanol), extraction time (1, 2, and 3 h), and CO(2) flow rate (2, 4, and 8 kg/h). The total amounts of lycopene and beta-carotene in the tomato paste waste, extracts, and residues were determined by HPLC. A maximum of 53.93% of lycopene was extracted by SC-CO(2) in 2 h (CO(2) flow rate = 4 kg/h) at 55 degrees C and 300 bar, with the addition of 5% ethanol as a cosolvent. Half of the initially present beta-carotene was extracted in 2 h (flow rate = 4 kg/h), at 65 degrees C and 300 bar, also with the addition of 5% ethanol.  相似文献   

4.
Microwave-assisted extraction (MAE) was carried out for the simultaneous determination of the insecticides thiamethoxam [(EZ)-3-(2-chloro-1,3-thiazol-5-ylmethyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene(nitro)amine], imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine], and the fungicide carbendazim (methyl benzimidazol-2-ylcarbamate) in vegetable samples. Five crop samples consisting of cabbage, tomatoes, chilies, potatoes, and peppers were fortified with the three pesticides and subjected to MAE followed by cleanup to remove coextractives prior to analysis by high-performance liquid chromatography. Using the selected microwave exposure time and power setting, the recoveries of the three pesticides from the fortified vegetable samples ranged from 68.1 to 106%. The corresponding recoveries for samples processed simultaneously but without microwave exposure ranged from 37.2 to 61.4%. The recoveries by MAE were comparable to those obtained by the conventional blender extraction technique. The precision of the MAE method was demonstrated by relative standard deviations of <7% for the three pesticides. The cooked cabbage and tomato samples showed no breakdown of the parent compounds, and the recoveries of three pesticides were comparable to those obtained with the uncooked samples.  相似文献   

5.
Rosemary (Rosmarinus officinalis) leaves possess a variety of bioactivities. Previous studies have shown that the extract of rosemary leaves from supercritical fluid extraction inhibits the expression of inflammatory mediators with apparent dose-dependent responses. In this study, three different extraction conditions (5000 psi at 40, 60, and 80 °C) of supercritical carbon dioxide (SC-CO(2)) toward the extraction of antioxidants from rosemary were investigated. Furthermore, simultaneous comparison of the anti-inflammatory properties between rosemary extract prepared from SC-CO(2) under optimal conditions (5,000 psi and 80 °C) and its purified carnosic acid (CA) using lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophage cells was also presented. Results showed that the yield of 3.92% and total phenolics of 213.5 mg/g extract obtained from the most effective extraction conditions showed a high inhibitory effect on lipid peroxidation (IC(50) 33.4 μg/mL). Both the SC-CO(2) extract and CA markedly suppressed the LPS-induced production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated inhibitor-kappaB (P-IκB), and nuclear factor-kappaB (NF-κB)/p65 in a dose-dependent manner. The five major compounds of verbenone, cirsimaritin, salvigenin, carnosol, and CA existing in the SC-CO(2) extract were isolated by semipreparative HPLC and identified by HPLC-MS/MS analysis. CA was the most abundant recorded compound and the most important photochemical with an anti-inflammatory effect with an IC(50) of 22.5 μM or 7.47 μg/mL presented to the best inhibitory activity on NO production better than that of the 14.50 μg/mL dosage prepared from the SC-CO(2) extract. Nevertheless, the effective inhibition of LPS-induced NF-κB signaling in RAW 264.7 cells from the SC-CO(2) extract extends the potential application of nutraceutical formulation for the prevention of inflammatory diseases.  相似文献   

6.
Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.  相似文献   

7.
A multiresidue solid phase extraction (SPE) method for the isolation and subsequent gas chromatographic determination of nonpolar organochlorine and polar organophosphorus pesticide residues in eggs is described. The method uses an acetonitrile extraction followed by an SPE cleanup using graphitized carbon black and aminopropyl SPE columns. Organophosphorus pesticides are determined by gas chromatography with flame photometric detection. After further cleanup of the extract using Florisil SPE columns, organochlorine pesticides are determined by gas chromatography with electron capture detection. Studies were performed using eggs containing both fortified and incurred pesticide residues. The average recoveries were 86-108% for 8 fortified organochlorine pesticide residues and 61-149% for 28 fortified organophosphorus pesticide residues.  相似文献   

8.
The aim of this work was to optimize a supercritical fluid extraction (SFE)/enzymatic reaction process for the determination of the fatty acid composition of castor seeds. A lipase from Candida antarctica (Novozyme 435) was used to catalyze the methanolysis reaction in supercritical carbon dioxide (SC-CO(2)). A Box-Behnken statistical design was used to evaluate effects of various values of pressure (200-400 bar), temperature (40-80 degrees C), methanol concentration (1-5 vol %), and water concentration (0.02-0.18 vol %) on the yield of methylated castor oil. Response surfaces were plotted, and these together with results from some additional experiments produced optimal extraction/reaction conditions for SC-CO(2) at 300 bar and 80 degrees C, with 7 vol % methanol and 0.02 vol % water. These conditions were used for the determination of the castor oil content expressed as fatty acid methyl esters (FAMEs) in castor seeds. The results obtained were similar to those obtained using conventional methodology based on solvent extraction followed by chemical transmethylation. It was concluded that the methodology developed could be used for the determination of castor oil content as well as composition of individual FAMEs in castor seeds.  相似文献   

9.
Dynamic extraction of carotenoids from a marine strain of Synechococcus sp. (Cyanophyceae) with supercritical CO2 (SC-CO2) was investigated with regard to operation pressure and temperature effects on extraction efficiency. Extraction yield (milligrams of pigment per gram of dry weight) for SC-CO2) was compared with the extraction yield for dimethylformamide (DMF). Carotenoids extracted with SC-CO2 were beta-carotene (Ct), zeaxanthin (Z), beta-cryptoxanthin (Cr), and equinenone; chlorophyll a was poorly extracted, whereas myxoxanthophyll, another major carotenoid, was not extracted under any experimental condition. The highest relative yield, which is defined here as y(r) = [(mg of pigment(SC-CO2)/mg of pigment(DMF))] x 100, was 76.1 +/- 8.6% for Ct, but it rose to 87.0 +/- 3.4% when 15% ethanol was used as cosolvent. The pressure effect on y(r) was found to be significant (p < 0.05) for both Cr and Z, along with total carotenoids, whereas the effect of square T (TT) was significant for only Ct. From empirical correlations, pairwise pressure (bar) and temperature (degrees C), respectively, for optimal extraction were determined to be (358, 50) for Ct, (454, 59) for Cr, and (500, 60) for Z. Cell disruption by sonication or detergent treatment of the biomass did not improve the extraction efficiency. Matrix structure together with material state could explain the low carotenoid extraction yield obtained with SC-CO2 as compared to DMF in Synechococcus sp. However, the process can be applied to selective extraction of different carotenoids.  相似文献   

10.
Antioxidant activities of extracts derived from sesame seed by supercritical carbon dioxide (SC-CO(2)) extraction and by n-hexane were determined using alpha,alpha-diphenyl-beta-picylhydrazyl (DPPH) radical scavenging and linoleic acid system methods. The highest extracted yield was given at 35 degrees C, 40 MPa, and a CO(2) flow rate of 2.5 mL min(-1) by an orthogonal experiment. The yields of extracts increased with increasing pressure, and yields at 40 and 30 MPa were higher than that by solvent extraction at 46.50%. Results from the linoleic acid system showed that the antioxidant activity follows the order: extract at 35 degrees C, 20 MPa > BHT > extract at 55 degrees C, 40 MPa > extract at 55 degrees C, 30 MPa > Trolox > solvent extraction > alpha-tocopherol. The SC-CO(2) extracts exhibited significantly higher antioxidant activities comparable to that by n-hexane extraction. The extracts at 30 MPa presented the highest antioxidant activities assessed in the DPPH method. At 20 MPa, the EC(50) increased with temperature, which indicated that the antioxidant activity was decreased in a temperature-dependent manner. The significant differences of antioxidant activities were found between the extracts by SC-CO(2) extraction and n-hexane. However, no significant differences were exhibited among the extracts by SC-CO(2) extraction. The vitamin E concentrations were also significantly higher in SC-CO(2) extracts than in n-hexane extracts, and its concentrations in extracts corresponded with the antioxidant activity of extracts.  相似文献   

11.
We investigated the effective extraction of monogalactosyldiacylglycerol (MGDG) from dried spinach (Spinacia oleracea) using supercritical fluid carbon dioxide (SC-CO(2)) with a modifier/entrainer. The yield of MGDG in the SC-CO(2) extract was not influenced by increasing temperature at a constant pressure, although the total extract yield was decreased. The total extract yield and MGDG yield in the extract from commercially purchased spinach (unknown subspecies), were greatly influenced by lower pressure. In a modifier (i.e., ethanol) concentration range of 2.5-20%, both the extract and MGDG yield increased as the ethanol concentration rose. The highest total extract yield (69.5 mg/g of spinach) and a good MGDG yield (16.3 mg/g of spinach) were obtained at 80 degrees C, 25 MPa, and 20% ethanol. The highest MGDG concentration (76.0% in the extract) was obtained at 80 degrees C, 25 MPa, and 2.5% ethanol, although the total extract yield under these conditions was low (5.2 mg/g of spinach). The optimal conditions for the extraction of MGDG were 80 degrees C, 20 MPa, and 10% ethanol. Of the 11 subspecies of spinach tested under these conditions, "Ujyou" had the highest concentration of MGDG. The total extract yield and MGDG concentration of Ujyou were 20.4 mg of the extract/g of spinach and 70.5%, respectively. The concentration of MGDG was higher in the SC-CO(2) extract than in the extract obtained using solvents such as methanol and n-hexane. The extract of Ujyou, which was the optimal subspecies for the extraction of MGDG, inhibited the activity of calf DNA polymerase alpha with IC(50) values of 145 microg/mL but was not effective against DNA polymerase beta.  相似文献   

12.
This study examines cosolvent-modified supercritical carbon dioxide (SC-CO2) to remove caffeine from and to retain catechins in green tea powder. The response surface method was adopted to determine the optimal operation conditions in terms of the extraction efficiencies and concentration factors of caffeine and catechins during the extractions. When SC-CO2 was used at 333 K and 300 bar, 91.5% of the caffeine was removed and 80.8% of catechins were retained in the tea: 3600 g of carbon dioxide was used in the extraction of 4 g of tea soaked with 1 g of water. Under the same extraction conditions, 10 g of water was added to <800 g of carbon dioxide in an extraction that completely removed caffeine (that is, the caffeine extraction efficiency was 100%). The optimal result as predicted by three-factor response surface methodology and supported by experimental data was that in 1.5 h of extraction, 640 g of carbon dioxide at 323 K and 275 bar with the addition of 6 g of water extracted 71.9% of the caffeine while leaving 67.8% of the catechins in 8 g of tea. Experimental data indicated that supercritical carbon dioxide decaffeination increased the concentrations of caffeine in the SC-CO2 extracts at 353 K.  相似文献   

13.
Several extraction methods are compared for the simultaneous analysis of organophosphorus pesticides in unpolished rice. Four stationary phases were used for the subsequent gas-liquid chromatographic (GLC) determination of the selected pesticides. Using 3 different GLC columns, 11 pesticides were completely separated and identified. The efficiency of the cleanup and the sensitivity of the analytical method were evaluated by using powdered unpolished rice samples fortified with the pesticides and also wheat and dried bean samples. Average recoveries ranged from 74.7% for disulfoton to 97.4% for malathion in unpolished rice and from 68.1% for disulfoton to 108.3% for malathion in other crops. The method described is applicable to the analysis of selected organophosphorus pesticide residues in unpolished rice, wheat, buckwheat, and dried beans.  相似文献   

14.
In this paper, the use of supercritical fluid extraction (SFE) and micellar electrokinetic capillary chromatography (MEKC) is proposed for the complete analysis of volatile nitrosamines in sausages. The extraction fluid used was CO2 and variables such as density, temperature of thimbles, extraction time, modifier, fluid flow, and kind of traps were investigated. Several experiments were carried out to obtain the most favorable conditions for analysis of volatile nitrosamines in sausages. The recoveries ranged from 21 to 82% for the five nitrosamines studied. The optimal condition of extraction was 0.2 g of sample fortified with 10 mg/kg, using dynamic extraction during 20 min and with adsorbent Florisil in the trap. The solvent selected for the elution of the analytes was methanol.  相似文献   

15.
Ten laboratories analyzed unfortified and fortified samples of lettuce, tomatoes, and strawberries for organochlorine and organophosphorus pesticides by applicable portions of the comprehensive multipesticide method of Luke et al. The 3 crops were fortified with 6 pesticides, alpha-BHC, dieldrin, chlorpyrifos, acephate, omethoate, and monocrotophos, each at 3 levels per crop. Included in the 54 fortifications were 16 pairs of blind duplicates: same pesticide, crop, and level. Recoveries were calculated by area comparisons with known reference materials, using the responses obtained from 2 separate element-specific gas chromatographic (GC) systems. The organochlorine pesticides were chromatographed on a methyl silicone column and detected with a Hall 700A electrolytic conductivity detector, and the organophosphorus pesticides were determined with a flame photometric detector after being chromatographed on a specified DEGS column material. Chlorpyrifos was quantitated on both GC systems. Mean recoveries ranged from 82.6% for acephate fortified at 0.5000 ppm in strawberries to 118.1% for 0.0636 ppm fortification of chlorpyrifos in lettuce. Interlaboratory coefficients of variation ranged from 4.0% for 0.6360 ppm fortification of chlorpyrifos in tomatoes to 17.8% for the 0.0636 ppm chlorpyrifos level in lettuce. The procedure features essentially no cleanup before GC and proved comparable to existing multiresidue methods for pesticides of the class types studied, as evidenced by the intra- and interlaboratory measurements of precision and recoveries obtained. The method with the 2 GC systems has been adopted official first action.  相似文献   

16.
This study investigated the supercritical carbon dioxide (SC-CO(2)) extraction of fat from ground beef and the effects of several factors on the gravimetric determination of fat. The use of ethanol modifier with the SC-CO(2) was not necessary for efficient fat extraction; however, the ethanol did increase the coextraction of water. This coextraction of water caused a significant overestimation of gravimetric fat. Oven-drying ground beef samples prior to extraction inhibited the subsequent extraction of fat, whereas oven-drying the extract after collection decreased the subsequent gas chromatographic fatty acid methyl ester (GC-FAME) fat determination. None of the drying agents tested were able to completely prevent the coextraction of water, and silica gel and molecular sieves inhibited the complete extraction of fat. Measurements of collection vial mass indicated that CO(2) extraction/collection causes an initial increase in mass due to the density of CO(2) (relative to displaced air) followed by a decrease in vial mass due to the removal of adsorbed water from the collection vial. Microwave-drying of the empty collection vials removes approximately 3 mg of adsorbed water, approximately 15-20 min is required for readsorption of the displaced water. For collection vials containing collected fat, microwave-drying effectively removed coextracted water, and the vials reached equilibration after approximately 10-15 min. Silanizing collection vials did not significantly affect weight loss during microwave-drying. SC-CO(2) can be used to accurately determine fat gravimetrically for ground beef, and the presented method can also be followed by GC-FAME analysis to provide specific fatty acid information as well.  相似文献   

17.
A method for the determination of organochlorine pesticides in soil samples combining microwave assisted micellar extraction (MAME) with solid-phase microextraction (SPME) and high-performance liquid chromatography-UV has been developed. A mixture of two nonionic surfactants (polyoxyethylene 10 lauryl ether and polyoxyethylene 10 stearyl ether) was used for the extraction of pesticides from agricultural soils, and different types of SPME fibers were compared. The different parameters which affect extraction efficiency in the SPME procedure were optimized such as extraction time and temperature. The method developed involves extraction and preconcentration for the target analytes in soil samples. The analytical parameters were also studied and good recoveries obtained, RSD being lower than 10% and detection limits ranging between 36 and 164 ng g(-1) for the pesticides studied. The proposed method was successfully applied to the determination of some organochlorine pesticides in several kinds of agricultural soil samples with different characteristics.  相似文献   

18.
The efficiency of a simple mechanical extraction system as applied in veterinary drug analysis has been tested in the field of pesticide residue analysis. As a first application, the system was used for the extraction of organochlorine pesticides from vegetables. The convenience of this simple extraction system consists of performing mechanical extraction in disposable polyethylene-based extraction bags, reducing considerably manual operation and cross-contamination. For the tested compounds and matrix (lettuce), recoveries of the 10 organochlorine pesticides performed at two spiking levels (n = 4 each level and compound) ranging between 0.06 and 3.3 mg/kg were between 60 and 80%, with most standard deviations <5%. The extraction method appeared to be simple and fast with a great potential for the analysis of many pesticide-matrix combinations.  相似文献   

19.
An analytical procedure using accelerated solvent extraction and capillary gas chromatography with electron capture and flame photometric detections was developed to simultaneously determine residues of different pesticides in fruits and vegetables. Single laboratory validation of the method was carried out for 28 compounds selected from eight pesticide classes, in blank and fortified samples of fresh pear, cantaloupe, white potato, and cabbage. The method had to meet specific established validation criteria for regulatory purposes applicable to our laboratory. At each of the two fortification levels studied, 24 of the 28 pesticides gave recoveries of more than 70% with a coefficient of variation of less than 10%. With respect to existing procedures, the method showed acceptable limits of detection (from 0.0019 to 0.14 microg/g depending on the pesticide and matrix) while minimizing environmental concerns, time, and labor.  相似文献   

20.
Natural antimutagens may prevent cancer and are therefore of great interest to oncologists and the public at large. Phytochemicals are potent antimutagen candidates. When the Ames test was applied to examine the antimutagenic potency of supercritical carbon dioxide (SC-CO(2)) extracts of Terminalia catappa leaves at a dose of 0.5 mg/plate, toxicity and mutagenicity were not detected. The antimutagenic activity of SC-CO(2) extracts increased with decreases of temperature (60, 50, and 40 degrees C) and pressure (4000, 3000, and 2000 psi) used for extraction. The most potent antimutagenicity was observed in extracts obtained at 40 degrees C and 2000 psi. At a dose of 0.5 mg of extract/plate, approximately 80% of the mutagenicity of benzo[a]pyrene (B[a]P, with S-9) and 46% of the mutagenicity of N-methyl-N '-nitroguanidine (MNNG, without S-9) were inhibited. Media supplemented with SC-CO(2) extracts at a range of 0-500 microg/mL were used to cultivate human hepatoma (Huh 7) and normal liver (Chang liver) cells. The viability of the cells was assayed by measuring cellular acid phosphatase activity. A dose-dependent growth inhibition of both types of cells was observed. The SC-CO(2) extracts were more cytotoxic to Huh 7 cells than to Chang liver cells. The observation that SC-CO(2) extracts of T. catappa leaves did not induce mutagenicity at the doses tested while exhibiting potent antimutagenicity and were more cytotoxic to human hepatoma cells than to normal liver cells is of merit and warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号