首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 75‐day experiment was conducted with juvenile gibel carp (Carassius auratus gibelio) (4.80 ± 0.01 g) to evaluate effects of dietary chitosan on fish growth performance, haematology, intestine morphology and immune response. Six isonitrogenous (crude protein: 383 g kg?1), isolipid (97.5 g kg?1) and isocaloric (gross energy: 16.7 kJ g?1) diets were formulated to contain 0, 1800, 4000, 7500, 10 000, 20 000 mg kg?1 chitosan, respectively. The results showed that the growth was depressed when the fish fed with 10 000 mg kg?1 chitosan. Serum cholesterol, triglyceride and low‐density lipoprotein decreased in 10 000 and 20 000 mg kg?1 chitosan. On day 75, blood leucocyte phagocytic activity respiratory burst and alternative pathway of complement haemolytic activity were enhanced in 4000 mg kg?1 chitosan. The number of goblet cell, intraepithelial lymphocyte of mid‐intestine and microvilli height of distal intestine increased at 4000 mg kg?1 dietary chitosan. Dietary chitosan modulated intestine microbiota, depressed pathogen bacteria Aeromonas veronii‐like and improved Cellulomonas hominis‐like, Bacillus oceanisediminis‐like and two uncultured bacterium‐like species on day 75. Dietary 7500 and 10 000 mg kg?1 chitosan enhanced the protection against Aeromonas hydrophila infection. In conclusion, oral administration of dietary 7500 mg kg?1 chitosan for 75 days is recommended for the survival of gibel carp.  相似文献   

2.
Daidzein is widely used in farmed animals as a dietary additive. However, limited information is available about its use in aquaculture. The effects of daidzein inclusion in the diet of gibel carp was assessed in terms of growth performance, immune response, disease resistance, antioxidant activity, hormone levels, daidzein tissue residues, as well as intestinal and liver morphology. The dietary daidzein inclusion levels were 0, 40, 200 and 400 mg kg?1 and six replicates of 30 fish were used for each group. No mortality was observed during the 80day feeding trial. The growth performance of experimental fish was not significantly affected by dietary daidzein supplementation. However, the non‐specific immune responses, resistance to Aeromonas hydrophila, antioxidant activities, 17βoestradiol level, vitellogenin concentration, gonadosomatic index (GSI) and intestinal morphology were significantly affected by dietary daidzein. A dietary dose of 400 mg kg?1 daidzein significantly decreased the GSI, increased 17βoestradiol and vitellogenin concentrations, and impaired the intestinal structure. The daidzein residue in muscle of gibel carp was increased by the high level (400 mg kg?1) of dietary daidzein. Equol was not detected in fish muscle among all treatments. The present study proved that 40 mg kg?1 daidzein was safe to be included in diets of gibel carp, and a safety margin of 5 folds of the use‐level (40 mg kg?1) was determined.  相似文献   

3.
To study the effects of manganese on growth performance, digestive and absorptive abilities, as well as the antioxidative capacity in the hepatopancreas and intestine, young grass carp (Ctenopharyngodon idellus Val.) (264 ± 1 g) were fed diets containing graded levels of manganese at 3.65 (control), 8.62, 13.48, 18.24, 22.97 and 27.86 mg kg?1 diet for 8 weeks. Per cent weight gain (PWG) and feed intake were the poorest in fish fed the basal diet (< 0.05). The activities of trypsin, lipase and alkaline phosphatase in the intestine were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (P < 0.05). Additionally, in the hepatopancreas and intestine, the protein carbonyl and malondialdehyde contents were the lowest in fish fed the diet with dietary manganese level at 13.48 mg kg?1 diet (< 0.05), while the anti‐hydroxyl radical capacities, manganese superoxide dismutase (MnSOD), glutathione peroxidase and glutathione‐S‐transferase activities were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (< 0.05). Moreover, the catalase activity and glutathione content in the intestine were the highest in fish fed the diet with dietary manganese level at 18.24 mg kg?1 diet (< 0.05). These results indicated that optimum dietary manganese promoted growth, enhanced the digestive and absorptive abilities, and improved the antioxidative capacity in young grass carp. Based on the quadratic regression analysis for PWG and intestinal MnSOD activity, the manganese requirements for young grass carp with the initial body weight of 264 g were 16.91 and 18.21 mg kg?1 diet respectively.  相似文献   

4.
Two 8‐week feeding trials were conducted to evaluate dietary carbohydrate utilization by omnivorous gibel carp (Carassius auratus gibelio) (2.4 ± 0.1 g) and herbivorous grass carp (Ctenopharyngodon idellus) (6.5 ± 0.1 g). Five isonitrogenous (370 g kg?1) and isolipid (70 g kg?1) diets were formulated with increasing corn starch levels (60, 140, 220, 300 and 380 g kg?1). Results showed that specific growth rate (SGR), feed efficiency (FE) and protein retention efficiency (PRE) of gibel carp significantly increased from dietary starch of 60 to 300 g kg?1 and then decreased from 300 to 380 g kg?1, but those of grass carp showed no significant differences between treatments. Independent of dietary starch levels, grass carp gained significantly higher FE and PRE than gibel carp. Feeding rate (FR) of gibel carp was significantly higher than that of grass carp. In two fish species, high dietary starch (300 and 380 g kg?1) tended to obtain higher hepatosomatic index (HSI), serum triglyceride, hepatic lipid and body lipid contents. Serum glucose concentration of grass carp was not affected, while that of gibel carp fed the starch of 300 g kg?1 diet was significantly lower than those of the fish fed other four diets (60, 140, 220 and 380 g kg?1). Grass carp showed high tolerance to dietary starch while dietary corn starch should be no more than 300 g kg?1 for gibel carp. High starch contents may cause lipid accumulation in the liver and body.  相似文献   

5.
A 10‐week feeding trial was conducted in a flow‐through system to determine dietary choline requirement for juvenile gibel carp (Carassius auratus gibelio) (5.5 ± 0.1 g). Purified basal diet was formulated using vitamin‐free casein as protein source. Choline chloride was supplemented to the basal diet to formulate seven diets containing 76.1, 163, 356, 969, 1457, 2024 and 4400 mg kg?1 choline. Dietary methionine was 0.58%, less than the requirement (0.69%). The results indicated that specific growth rate (SGR) was higher in the fish fed 2024 mg kg?1 diet than the control group. Feeding rate and feed efficiency were not significantly affected. Protein productive value increased as dietary choline increased from 76.1 to 2024 mg kg?1 diet and was lower in the fish fed the diet containing 4400 mg choline kg?1 diet. Serum high‐density lipoprotein cholesterol (HDL‐C) and total cholesterol significantly increased with increasing dietary choline up to 1457 mg kg?1, and no differences were found with further increase. Fish carcass fat contents decreased significantly with increased dietary choline. Hepatic lipid contents increased with dietary choline up to 1457 mg kg?1 and then decreased. Quadric regression of SGR and plasma HDL‐C indicted dietary choline requirement was 2500 and 2667 mg kg?1 diet, respectively.  相似文献   

6.
A 12‐week growth trial was conducted in a flow‐through system to determine dietary selenium (Se) requirement for on‐growing gibel carp (initial body weight: 76.2 ± 0.05 g, mean ± SEM). Selenomethionine was supplemented to the basal diet to formulate seven semi‐purified diets containing 0.26, 0.58, 0.72, 1.14, 1.34, 1.73 and 2.09 mg Se kg?1 diet. The results showed that plasma superoxide dismutase (SOD) activity significantly increased when fish were fed with 0.58 mg Se kg?1 diet (< 0.05) and then decreased at 2.09 mg Se kg?1 diet (< 0.05). Plasma T‐AOC activity was higher in fish fed with 0.72 mg Se kg?1 diet (< 0.05) and plasma malondialdehyde (MDA) was higher in fish fed with 0.26 mg Se kg?1 diet (< 0.05). When fish were fed 1.14 mg Se kg?1 diet, hepatic GSH‐Px, T‐AOC, GSH and CAT activities were significantly higher than those fed with 0.26 mg Se kg?1 diet (< 0.05). Hepatic superoxide dismutase (SOD) activity was higher at 1.34 mg Se kg?1 diet (< 0.05). Fish liver Se concentrations were significantly higher when fed with 0.72 mg Se kg?1 diet (< 0.05) and then kept constant when Se ≥ 0.72 mg kg?1 (> 0.05). Whole‐body and muscle Se concentrations were higher when fed with 1.34 mg Se kg?1 diet (< 0.05) and kept a plateau when Se ≥ 1.34 mg kg?1 (> 0.05). In conclusion, based on broken‐line regression of hepatic Se concentrations, hepatic SOD activity and hepatic T‐AOC activity, dietary Se requirements for on‐growing gibel carp was 0.73 mg kg?1, 1.12 mg kg?1 and 1.19 mg kg?1 diet respectively.  相似文献   

7.
A growth trial was conducted to estimate the optimum requirement of dietary zinc (Zn) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.97 ± 0.05 g) were fed diets containing graded levels (13, 25, 34, 53, 89 and 135 mg kg?1) of Zn for 8 weeks. Grass carp fed with dietary Zn levels higher than 34 mg kg?1 significantly increased final body weight, weight gain and specific growth rate (P < 0.05). For body composition, fish fed with dietary Zn levels higher than 53 mg kg?1 significantly decreased the moisture contents but increased the lipid contents of whole body and liver. Whole body, scales, vertebrae and liver mineralization were all affected significantly (P < 0.05) by dietary Zn levels. Zn contents in whole body, scales, vertebrae and plasma were linearly increased up to the 53 mg kg?1 dietary Zn and then remained stable beyond this level. Grass carp fed with dietary Zn levels higher than 53 mg kg?1 significantly increased triacyglyceride and total cholesterol contents and plasma alkaline phosphatase activity in plasma (P < 0.05). Broken‐line analysis indicated that 55.1 mg kg?1 dietary Zn was required for maximal tissue storage and mineralization as well as optimal growth of grass carp.  相似文献   

8.
This study investigated the effects of the co‐supplementation of vitamins C (0, 500, and 1000 mg kg?1) and E (0, 62.5, and 125 mg kg?1) on the growth performance, haematology and the modulation of blood stress indicators and immune parameters in hybrid catfish (Clarias macrocephalus × Clarias gariepinus) under combinations of thermal and acidic stress. Supplementation of vitamins C and E influenced the growth, haematological indices, serum chloride, plasma protein and immune parameters (lysozyme, total immunoglobulin and alternative complement haemolytic assay) (< 0.05). Although vitamins C and E did not prevent a significant reduction in serum chloride, they minimized not only the modulation of blood glucose and plasma protein, but also the reduction in immune parameters (< 0.05) owing to stress. Our results demonstrated that co‐supplementation of 500 mg kg?1 vitamin C and 125 mg kg?1 vitamin E, or 1000 mg kg?1 vitamin C alone, for four weeks and co‐supplementation of both vitamins at low levels (vitamins C at 500 mg kg?1 and E at 62.5 mg kg?1) for eight weeks had beneficial effects on the growth, amelioration of stress‐mediated adverse changes in the physiological and immunosuppressive responses of hybrid catfish under stressful conditions.  相似文献   

9.
Two trials were conducted to investigate protein requirements of juvenile (3.18 g in Trial 1) and on‐growing (87.1 g in Trial 2) gibel carp, Carassius auratus gibelio var. CAS III. Six isoenergetic diets containing 250–500 g kg?1 dietary protein were formulated using soy protein concentrate (SPC) and casein as protein sources. The results showed that weight gain (WG) increased when dietary protein increased from 250 to 400 g kg?1 and decreased at 400 to 500 g kg?1 CP in Trial 1, while WG increased when dietary protein increased from 250 to 350 g kg?1 and kept constant at 350 to 500 g kg?1 CP in Trial 2. With increasing dietary protein, feed conversion ratio (FCR) decreased, while protein retention efficiency (PRE) decreased in Trial 1 and was not affected in Trial 2. Apparent digestibility coefficient of protein (ADCp) increased with increasing dietary protein in two trails. Trypsin activity increased with dietary protein in the juveniles and was not affected in on‐growing fish. Hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities increased with dietary protein. Broken‐line and quadratic regression of WG estimated that dietary protein requirements for maximum growth were about 402–427 g kg?1 for the juvenile and 337–418 g kg?1 for on‐growing gibel carp.  相似文献   

10.
An 8‐week feeding trial was conducted to evaluate the effect of dietary cecropin on growth performance, non‐specific immunity and disease resistance of hybrid tilapia (Oreochromis niloticus × O. aureus). A basal diet was supplemented with 0 (control), 75, 150 and 225 mg kg?1 cecropin to formulate four experimental diets. The results showed that final body weight and specific growth rate obtained with diet 150 mg kg?1 cecropin were significantly higher (P < 0.05) than that obtained with diets 0 and 75 mg kg?1, whereas there was no difference between 150 and 225 mg kg?1. Feed conversion efficiency was improved by increasing the dietary cecropin content (P < 0.05). However, feeding intake was reduced as dietary cecropin increased. Serum lysozyme, alkaline phosphatase, catalase and superoxide dismutase activity were significantly increased with the increased levels of dietary cecropin (P < 0.05), and reached a maximum at level of 150 mg kg?1 cecropin, then those values no longer increased. Moreover, the dietary cecropin supplementation level also exhibited a decrease in the cumulative mortality rates compared with the controls when challenged with Aeromonas veronii. The results suggested that the dietary supplementation of cecropin could improve the growth, non‐specific immunity indicators and resistance of hybrid tilapia against A. veronii.  相似文献   

11.
A growth trial was conducted to estimate the optimum concentration of dietary Manganese (Mn) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.97 ± 0.05 g) were fed diets containing graded levels (4.0, 8.9, 13.8, 18.7, 23.6 and 33.3 mg kg?1) of Mn for 8 weeks. Weight gain, specific growth rate and feed efficiency were linearly increased up to the 18.7 mg kg?1 dietary Mn and then levelled off beyond this level. For body composition, lipid contents in whole body, muscle and liver decreased significantly with increasing dietary Mn level. Grass carp fed with dietary Mn levels higher than 19.7 mg kg?1 significantly decreased condition factor. Whole body, vertebrae and scales mineralization were all affected significantly by dietary Mn levels. Mn contents in whole body, vertebrae and scales were linearly increased up to the 18.7 mg kg?1 dietary Mn and then levelled off beyond this level. Contrarily, Ca and P contents seem to be inversely related to dietary Mn. However, dietary Mn levels had no significant effect on body Fe contents. Broken‐line analysis indicated that 20.6 mg kg?1 dietary Mn was required for maximal tissue Mn storage, as well as satisfied for the optimal growth of juvenile grass carp.  相似文献   

12.
This study was conducted to investigate the effect of dietary phosphorus on the intestine and hepatopancreas antioxidant capacity of juvenile Jian carp (Cyprinus carpio var. Jian). Jian carp, with an average initial weight of 7.17 ± 0.01 g, were fed with diets containing graded concentrations of available phosphorus, namely 1.7 (control), 3.6, 5.5, 7.3, 9.2 and 11.0 g kg?1 diet for 9 weeks. Results showed that, in intestine and hepatopancreas, content of malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH), capacity of anti‐superoxide anion (ASA) and anti‐hydroxyl radical (AHR), and glutathione reductase (GR), catalase (CAT), glutathione S‐transferase (GST), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were significantly affected by dietary phosphorus levels (P < 0.05). Regression analysis showed that significant quadratic responses occurred in MDA content and ASA, GST, GPx and AHR activities in intestine, GSH content and CAT and SOD activities in hepatopancreas (P < 0.05). These results indicate that optimal level of dietary phosphorus prevented oxidative damage and increased antioxidant enzyme activities in the intestine and hepatopancreas of juvenile Jian carp. The phosphorus requirement estimated from MDA using quadratic regression analysis was 5.7 g kg?1 diet.  相似文献   

13.
A total of 1400 juvenile Jian carp (Cyprinus carpio var. Jian) (8.93 ± 0.03 g) were fed diets containing graded levels of vitamin K at 0.027 (basal diet), 1.52, 3.02, 4.51, 6.02 and 7.52 mg kg?1 diet for 60 days to investigate the effects of vitamin K on growth, enzyme activities and antioxidant capacity in the hepatopancreas and intestine. Percentage weight gain (PWG), feed intake and feed efficiency of fish were improved by vitamin K. Activities of trypsin, chymotrypsin, amylase and lipase in the intestine and hepatopancreas and Na+, K+‐ATPase, creatine kinase, alkaline phosphatase and gamma‐glutamyl transpeptidase in the intestine were increased by vitamin K. Malondialdehyde and protein carbonyl contents in the hepatopancreas and intestine were decreased with vitamin K supplements. Certain level of vitamin K increased antihydroxyl radical, antisuperoxide anion, superoxide dismutase, catalase, glutathione‐S‐transferase, glutathione peroxidase and glutathione reductase activities and glutathione contents in the hepatopancreas and intestine. Intestinal Lactobacillus, Ecoli and Aeromonas were changed with vitamin K supplements. Together, these results indicate that vitamin K improved fish growth, digestive and absorptive ability, and anti‐oxidant capacity. The dietary vitamin K requirement of juvenile Jian carp (8.93–73.7 g) based on PWG was 3.13 mg kg?1 diet.  相似文献   

14.
An experiment was conducted to determine the effects of different levels of dietary vitamin C (VC) and E (VE) supplementation on fillet quality of red sea bream fed oxidized fish oil (OFO). Fish with an average body weight of 205.0 g were fed four test diets for 9 weeks. Control diet contained fresh fish oil (FFO) with 100 mg kg?1 of VE and 500 mg kg?1 of VC (FFO100E/500C). The other three diets contained OFO with varying levels of VE (mg kg?1) and VC (mg kg?1) (OFO100E/500C, OFO200E/500C and OFO200E/1000C). After feeding trial, two fillets from each fish by hand filleting were stored in a refrigerator at 4°C for 96 h during analyses. Results showed that fish fed OFO increased fillet thiobarbituric acid reactive substances (TBARS) and K‐value, and decreased fillet VC and VE concentrations during storage time. Supplementation of VC did not have any detectable effect on fillet quality. Increasing dietary VE supplementation increased fillet VE concentrations, reduced fillet TBARS and K‐value values of red sea bream. Therefore, we suggest that dietary supplementation of 200 mg kg?1 of vitamin E could improve fillet oxidative stability of red sea bream fed OFO.  相似文献   

15.
A 60‐day feeding trial was conducted to determine the effects of different dietary vitamin C levels on growth performance, immune response and antioxidant capacity of loach juveniles. Six isonitrogenous (58.6% of crude protein), isoenergetic (17.5 kJ g?1) practical diets supplemented with 0 (VC0), 100 (VC100), 200 (VC200), 500 (VC500), 1000 (VC1000) and 5000 mg kg?1 (VC5000) of VC (35% ascorbic acid equivalent) were fed to fish (mean initial weight 0.11 ± 0.02 g) in triplicate. Results showed that fish fed VC0 diet had significantly lower body weight gain (BWG) and survival rate (SR). However, BWG and SR improved significantly in fish fed VC100 and VC200 diet respectively. Whole body ascorbic acid concentration increased with incremental dietary VC levels from 0 to 100 mg kg?1. The activity of mucus alkaline phophatase was significantly increased by the dietary VC level. Incremental levels of VC significantly reduced activities of glutathione peroxidase (GPx) and catalase. Moreover, fish fed diets containing more than 100 mg kg?1 VC significantly down‐regulated the superoxide dismutase and GPx mRNA expression in liver. Meanwhile, the expressions of liver heat shock protein (HSP70) and nuclear factor‐erythroid 2‐related‐2 (Nrf2) were affected by fish fed diets containing VC from 100 to 5000 mg kg?1. In conclusion, VC requirement of loach juveniles for optimum growth and functionally preventing lipid peroxidation was more than 200 mg kg?1 of diet. Moreover, high dose of VC supplementation did not show any detrimental effects on loach growth performance.  相似文献   

16.
A ten‐week feeding trail was conducted to investigate the effects of increasing DL‐methionine (Met) supplementation on the success of fish meal (FM) replacement with plant proteins in practical diets for juvenile gibel carp, Carassius auratus gibelio. Twelve isoenergetic diets were formulated including two 150 g kg?1 FM diets (Diet 1—positive control 1 reflecting a commercial diet and Diet 2—positive control 2 reflecting a commercial diet but with balanced essential amino acid (EAA) profile) and ten 50 g kg?1 FM diets (negative controls) supplemented with graded levels (0–3.0 g kg?1) of DL‐Met (Diets 3–12). Each diet was fed to triplicate groups of gibel carp, near satiation four times daily for 10 weeks. Diet 2 with balanced EAA profile produced better final weight, specific growth rate (SGR) and feed conversion ratio (FCR) than the negative control diet containing no supplemental Met (Diet 3), but did not significantly differ from Diet 1. However, DL‐Met supplementation (0.5–3.0 g kg?1) in the negative control diets (Diets 4–12) produced growth performances similar to those fed the positive control diets (Diets 1 and 2). Based on quadratic regression analysis, the optimal dietary Met level with 5.2 g kg?1 of dietary cysteine (Cys) was found to be 7.1 g kg?1 dry diet for SGR and FCR. The corresponding total sulphur amino acid requirements (Met + Cys) of this species were calculated to be 12.3 g kg?1 dry diet for SGR and FCR. DL‐Met supplementation in 50 g kg?1 FM diets showed a decreasing trend in plasma cholesterol contents (< .05). No significant differences were observed in whole‐body composition, plasma protein, triglyceride and free EAA contents among dietary treatments, while plasma aspartate transaminase, albumin and ammonia contents were significantly influenced by dietary Met levels. Juvenile gibel carp grew equally well on 150 g kg?1 FM diet or 50 g kg?1 FM diets balanced for EAA profile with supplemental amino acids. The results of this study overall indicate that balancing dietary amino acid levels with DL‐Met supplementation is a key strategy in successfully reducing FM levels in the diets of gibel carp.  相似文献   

17.
An 11‐week growth trial was conducted to determine dietary myo‐inositol (MI) requirement for juvenile gibel carp (Carassius auratus gibelio). Myo‐inositol was supplemented to the basal diet to formulate six purified diets containing 1, 56, 107, 146, 194 and 247 mg MI kg?1 diet, respectively. Each diet was fed to triplicate groups of juvenile gibel carp (initial body weight 3.38 ± 0.27 g, mean ± SD) in a flow‐through system. The diets were randomly assigned to different fish tanks. Fish fed ≥ 107 mg MI kg?1 diet had significantly higher weight gain (WG), feed efficiency (FE) and protein efficiency ratio than those fed 1 mg MI kg?1 diet. Fish fed ≥ 56 mg MI kg?1 diet had higher feeding rate and survival compared with fish fed 1 mg MI kg?1 diet. Dietary supplemental inositol did not affect fish liver inositol concentration. Fish fed ≥ 56 mg MI kg?1 diet had higher body dry matter, crude protein and gross energy and lower hepatosomatic index than fish fed 1 mg MI kg?1 diet. Dietary inositol supplementation decreased fish body ash. Quadratic regression of weight gain indicated that the myo‐inositol requirement to maximum growth for juvenile gibel carp was 165.3 mg MI kg?1 diet.  相似文献   

18.
A 62‐day growth trial was conducted to determine the dietary Met requirement of the pre‐adult gibel carp (Carassius auratus gibeilo) (initial weight of 51.0 ± 0.02 g). Six isonitrogenous and isoenergetic diets using fish meal, blood meal and pea protein concentrate as protein sources supplemented with crystalline amino acids were formulated to contain graded levels of dietary Met (4.44, 6.56, 8.55, 10.90, 12.79 and 15.05 g kg?1, respectively) at a constant dietary cystine level of 3.99 g kg?1. The results showed that weight gain rate and protein productive value significantly increased with the dietary Met levels from 4.44 to 8.55 g kg?1, then reached plateau at 10.90 g kg?1. Plasma HDL‐C and TC were increased with dietary Met levels. Fish supplied with 4.44–8.55 g kg?1 Met showed lower plasma AST level than that of other groups. Plasma TG, LDL‐C and ALT levels were stable for all treatments. The activity of intestinal γ‐GT was increased with dietary Met levels. The optimal requirement of Met for pre‐adult gibel carp (>50 g) was a range from 7.86 g kg?1 to 9.84 g kg?1 dry diet or 16.9 g kg?1 to 23.0 g kg?1 of dietary protein with the presence of 3.99 g kg?1 Cys for the satisfied lipid metabolism and maximum growth, respectively.  相似文献   

19.
A feeding trial was conducted to evaluate the effects of dietary magnesium on the growth, carapace strength, tissue and serum Mg concentration of soft‐shelled turtles, Pelodiscus sinensis (Wiegmann). Juvenile soft‐shelled turtles of approximate 5.4 g body weight were fed diets with seven levels of Mg (48, 206, 369, 670, 955, 1195 and 1500 mg Mg kg?1) for eight weeks. No significant difference (P ≥ 0.05) was found in weight gain (WG), feed conversion ratio or protein efficiency ratio among treatments. However, the WG of turtles continued to increase with increasing dietary Mg levels up to 670 mg kg?1, beyond which the WG levelled off. The plasma alkaline phosphatase activity and the muscle, bone Mg concentrations of the turtles increased with the increasing dietary Mg levels between 48 and 955 mg kg?1, beyond which the tissue Mg concentrations remained relatively constant. Furthermore, the carapace strengths of turtles fed with the control diet of 48 mg Mg kg?1 were significantly weaker (P < 0.05) than that of turtles fed with diets containing higher Mg levels. Based on a broken‐line modelling analysis, the required dietary Mg level for the optimal WG of juvenile soft‐shelled turtles was estimated to be approximately 650 mg kg?1. By contrast, the required dietary Mg levels for turtles to reach the optimal muscle and bone Mg concentrations were 1050 and 1000 mg kg?1 respectively. The required dietary Mg level for maximal alkaline phosphatase activity was approximately 980 mg kg?1.  相似文献   

20.
An 8‐week growth trial investigated the effect of dietary lipid level on growth performance of a carnivorous fish, Chinese longsnout catfish (Leiocassis longirostris Günther) and an omnivorous fish, gibel carp (Carassius auratus gibelio). For each species, seven isonitrogenous semi‐purified diets (455 g kg?1 crude protein for Chinese longsnout catfish and 385 g kg?1 crude protein for gibel carp) were formulated to contain 30, 60, 90, 120, 150, 180 or 210 g kg?1 lipid. For Chinese longsnout catfish, feed intake (FI) decreased with increasing dietary lipid and there was no significant difference in feed intake from 90 to 210 g kg?1 lipid. Specific growth rate (SGR) increased with dietary lipid level (P < 0.05) and the 150 and 180 g kg?1 groups were the best. Feed conversion efficiency (FCE), protein retention efficiency (PRE) and energy retention efficiency (ERE) were higher at 180 g kg?1 lipid. For gibel carp, FI decreased with increased dietary lipid and 180 and 210 g kg?1 lipid groups showed lower values. SGR increased with dietary lipid level and the 150 and 180 g kg?1 were the best. FCE was higher at 180 g kg?1 lipid level. PRE increased with dietary lipid level and there was no significant difference in groups from 120 to 210 g kg?1 dietary lipid. ERE increased with increasing dietary lipid level, and groups fed 120, 150 and 180 g kg?1 lipid showed the highest values. In Chinese longsnout catfish, increase in dietary lipid level, resulted in increased carcass dry matter, crude protein, crude lipid and gross energy. In gibel carp, dry matter, crude protein, and crude lipid increased with dietary lipid level. Based on regression between SGR and dietary lipid, dietary lipid requirements for Chinese longsnout catfish and gibel carp were 142.6 and 140.5 g kg?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号