首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Ten forelimbs of five Myrmecophaga tridactyla were examined to study the anatomy of the brachial plexus. The brachial plexuses of the M. tridactyla observed in the present study were formed by the ventral rami of the last four cervical spinal nerves, C5 through C8, and the first thoracic spinal nerve, T1. These primary roots joined to form two trunks: a cranial trunk comprising ventral rami from C5‐C7 and a caudal trunk receiving ventral rami from C8‐T1. The nerves originated from these trunks and their most constant arrangement were as follows: suprascapular (C5‐C7), subscapular (C5‐C7), cranial pectoral (C5‐C8), caudal pectoral (C8‐T1), axillary (C5‐C7), musculocutaneous (C5‐C7), radial (C5‐T1), median (C5‐T1), ulnar (C5‐T1), thoracodorsal (C5‐C8), lateral thoracic (C7‐T1) and long thoracic (C6‐C7). In general, the brachial plexus in the M. tridactyla is similar to the plexuses in mammals, but the number of rami contributing to the formation of each nerve in the M. tridactyla was found to be larger than those of most mammals. This feature may be related to the very distinctive anatomical specializations of the forelimb of the anteaters.  相似文献   

2.
3.
Anatomical variations in lumbosacral plexus or nerves to genitourinary structures in dogs are under described, despite their importance during surgery and potential contributions to neuromuscular syndromes. Gross dissection of 16 female mongrel hound dogs showed frequent variations in lumbosacral plexus classification, sympathetic ganglia, ventral rami input to nerves innervating genitourinary structures and pudendal nerve (PdN) branching. Lumbosacral plexus classification types were mixed, rather than pure, in 13 (82%) of dogs. The genitofemoral nerve (GFN) originated from ventral ramus of L4 in 67% of nerves, differing from the expected L3. Considerable variability was seen in ventral rami origins of pelvic (PN) and Pd nerves, with new findings of L7 contributions to PN, joining S1 and S2 input (23% of sides in 11 dogs) or S1–S3 input (5%), and to PdN, joining S1–S2, unilaterally, in one dog. L7 input was confirmed using retrograde dye tracing methods. The PN also received CG1 contributions, bilaterally, in one dog. The PdN branched unusually in two dogs. Lumbosacral sympathetic ganglia had variant intra‐, inter‐ and multisegmental connectivity in 6 (38%). Thus, the anatomy of mongrel dogs had higher variability than previously described for purebred dogs. Knowledge of this variant innervation during surgery could aid in the preservation of nerves and reduce risk of urinary and sexual dysfunctions.  相似文献   

4.
This study documents the detailed features of the morphological structure and the innervation areas of the plexus brachialis in the chinchilla (Chinchilla lanigera). The animals (5 female and 5 male) were euthanased with ketamine hydrocloride and xylazine hydrocloride combination, 60 mg/kg and 6 mg/kg, respectively. Skin, muscles and nerves were dissected under a stereo-microscope. The brachial plexus of the chinchilla is formed by rami ventrales of C5-C8, T1 and T2, and possesses a single truncus. The subscapular nerve is formed by the rami of the spinal nerves originating from C6 (one thin ramus) and C7 (one thick and 2 thin rami). These nerves innervate the subscapular and teres minor muscles. The long thoracic nerve, before joining with the brachial plexus, obtains branches from C6 and C7 in 5 cadavers (3 male, 2 female), from C7 in 4 cadavers (2 male, 2 female) and from C6-C8 in only 1 female cadaver. These nerves disperse in variable combinations to form the extrinsic and intrinstic named, nerves of the thoracic limb. An undefined nerve branch originates from the rami ventrales of C7, C8 and T1 spinal nerves enter the coracobrachial muscle.  相似文献   

5.
The Mm. scaleni of 20 bovine cadavers were dissected and their attachments and nerve supply are described and illustrated. The literature is reviewed and the principles of subdividing the muscles are discussed. The emerging roots of the brachial plexus rather than the axillary vessels are taken as the dividing line between the middle and ventral scalene muscles. This principle can also be applied to the other domesticated species. Fascicles formerly described as M. iliocostalis cervicis are grouped with the M. scalenus medius as its Pars superficialis on the ground of their nerve supply. The scalene muscles are innervated by the ventral branches of spinal nerves C4—T2. The subdivisions and innervation in the ox are as follows: 1. M. scalenus dorsalis, C5—T2. 2. M. scalenus medius: Pars superficialis, C4—C8; Pars profunda, C8. 3. M. scalenus ventralis, C4—T2.  相似文献   

6.
This study aimed to describe the gross anatomy of the ventral rami of the thoracic spinal nerves in capuchin monkey (Sapajus apella) and compare with humans and other primate species. Eight specimens, prepared in 10% formalin solution and dissected following routine standard techniques, were used. The animals presented 13–14 pairs of thoracic spinal nerves emerging from the intervertebral foramen and divided into dorsal and ventral rami. The ventral rami of the first 12 or 13 pairs represented intercostal nerves and the latter referred to the subcostal nerve. The intercostal and subcostal nerves gave off muscular and cutaneous branches (lateral and ventral), which promote innervation of muscles and skin associated with the chest and abdominal wall. Atypical anatomy was verified for the 1st, 2nd and 7th to 13th intercostal nerves as well as for the subcostal nerve. The morphological characteristics were similar to those observed in humans and some non‐human primates, especially in the absence of collateral branches.  相似文献   

7.
Objective To describe an ultrasound‐guided technique and the anatomical basis for three clinically useful nerve blocks in dogs. Study design Prospective experimental trial. Animals Four hound‐cross dogs aged 2 ± 0 years (mean ± SD) weighing 30 ± 5 kg and four Beagles aged 2 ± 0 years and weighing 8.5 ± 0.5 kg. Methods Axillary brachial plexus, femoral, and sciatic combined ultrasound/electrolocation‐guided nerve blocks were performed sequentially and bilaterally using a lidocaine solution mixed with methylene blue. Sciatic nerve blocks were not performed in the hounds. After the blocks, the dogs were euthanatized and each relevant site dissected. Results Axillary brachial plexus block Landmark blood vessels and the roots of the brachial plexus were identified by ultrasound in all eight dogs. Anatomical examination confirmed the relationship between the four ventral nerve roots (C6, C7, C8, and T1) and the axillary vessels. Three roots (C7, C8, and T1) were adequately stained bilaterally in all dogs. Femoral nerve block Landmark blood vessels (femoral artery and femoral vein), the femoral and saphenous nerves and the medial portion of the rectus femoris muscle were identified by ultrasound in all dogs. Anatomical examination confirmed the relationship between the femoral vessels, femoral nerve, and the rectus femoris muscle. The femoral nerves were adequately stained bilaterally in all dogs. Sciatic nerve block. Ultrasound landmarks (semimembranosus muscle, the fascia of the biceps femoris muscle and the sciatic nerve) could be identified in all of the dogs. In the four Beagles, anatomical examination confirmed the relationship between the biceps femoris muscle, the semimembranosus muscle, and the sciatic nerve. In the Beagles, all but one of the sciatic nerves were stained adequately. Conclusions and clinical relevance Ultrasound‐guided needle insertion is an accurate method for depositing local anesthetic for axillary brachial plexus, femoral, and sciatic nerve blocks.  相似文献   

8.
Patterns of cutaneous anesthesia were determined in 4 dogs referred for evaluation of brachial plexus trauma. Using these patterns in conjunction with other clinical and electrophysiologic data, avulsion of spinal nerve roots contributing to the brachial plexus (brachial plexus avulsion) was diagnosed in each case. Two of the 4 dogs had avulsions of the C7-T1 nerve roots and the T2 branch to T1. One dog had C7 and C8 nerve root avulsion, and one had avulsion of the C8 and T1 nerve roots and the T2 communicating branch to T1. Each dog had a distinct pattern of cutaneous anesthesia.  相似文献   

9.
Knowing the structure and variations of the plexus brachialis is important in neck and shoulder surgery. The knowledge of the brachial plexus reduces the injury rate of the nerves in surgical interventions to the axillary region. The major nerve trunks of the thoracic limb were the suprascapular, subscapular, axillary, radial, musculocutaneous, median and ulnar nerves. In Van cats, the brachial plexus was formed by the ventral branches of the spinal nerves, C6-C7-C8 and T1. The 7th cervical nerve was quite thick compared to the others. The subscapular nerve was the thinnest (on the right side, the average length was 6.55 ± 0.60 mm and on the left side was 6.50 ± 0.60 mm), and the radial nerve was the thickest (the average length on the right side was 28.48 ± 0.44 mm and on the left side was 29.11 ± 0.55 mm). The suprascapular nerve was formed by the ventral branch of the 6th cervical nerve. The subscapular nerves were formed by a branch originating from the 6th cervical nerve and the two medial and caudal branches originating from the 7th cervical nerve. No communicating branch between the ulnar nerve and the median nerve was observed in the palmar region. The axillary nerve was formed by the ventral branches of the 7th nerve, the musculocutaneous nerve was formed by ventral branches of the 6th and 7th cervical nerves, and the ulnar nerve was formed by ventral branches of the 8th cervical and the 1st thoracic nerves. The radial nerve was the thickest branch in the brachial plexus. In Van cats, the origin and distribution of nerves were similar to those reported in the literature for other species of cats, with the exception of the suprascapular, subscapular and axillary nerves.  相似文献   

10.
The anatomy of the brachial plexus in the common hippopotamus (Hippopotamus amphibius), which has not been previously reported, was first examined bilaterally in a newborn hippopotamus. Our observations clarified the following: (1) the brachial plexus comprises the fifth cervical (C5) to first thoracic (T1) nerves. These formed two trunks, C5-C6 and C7-T1; in addition, the axillary artery passed in between C6 and C7, (2) unique branches to the brachialis muscle and those of the lateral cutaneous antebrachii nerves ramified from the median nerve, (3) nerve fibre analysis revealed that these unique nerve branches from the median nerve were closely related and structurally similar to the musculocutaneous (MC) nerve; however, they had changed course from the MC to the median nerve, and (4) this unique branching pattern is likely to be a common morphological feature of the brachial plexus in amphibians, reptiles and certain mammals.  相似文献   

11.
We describe the morphological organization of the deer brachial plexus in order to supply data to veterinary neuroclinics and anaesthesiology. The deer (Mazama gouazoubira) brachial plexus is composed of four roots: three cervical (C6, C7 and C8) and one thoracic (T1). Within each sex group, no variations are observed between the left and the right brachial plexus, though sex-related differences are seen especially in its origin. The origin of axillary and radial nerves was: C6, C7, C8 and T1 in males and C8-T1 (radial nerve) and C7, C8 and T1 (axillary nerve) in females; musculocutaneous nerve was: C6-C7 (males) and C8-T1 (females); median and ulnar nerves was: C8-T1 (males) and T1 (females); long thoracic nerve was: C7 (males) and T1 (females); lateral thoracic nerve was: C6, C7, C8 and T1 (males) and T1 (females); thoracodorsal nerve was: C6, C7, C8 and T1 (males) and C8-T1 (females); suprascapular nerve was: C6-C7 (males) and C6 (females) and subscapular nerve was: C6-C7 (males) and C7 (females). This study suggests that in male deer the origin of the brachial plexus is more cranial than in females and the origin of the brachial plexus is slightly more complex in males, i.e. there is an additional number of roots (from one to three). This sexual dimorphism may be related to specific biomechanical functions of the thoracic limb and electrophysiological studies may be needed to shed light on this morphological feature.  相似文献   

12.
The nerves that innervate the fingertips and wing membrane from the upper arm of the bent-winged bat Miniopterus fuliginosus were examined under a stereomicroscope. The radial, median, ulnar and musculocutaneous nerves were formed by the brachial plexus, which ran to the wing membrane. The two suspected axillary nerves ran to the wing membrane. The radial nerve ran to the end of the first digit, while the median nerve ran along the forearm and subsequently branched-off to run along the second to fifth digits up to the end of the phalanges. The ulnar nerve ran to the plagiopatagium on the extensor side of the elbow joint. Finally, the musculocutaneous nerve passed through the ventral side of the humerus and branched out at the elbow joint to run radially to the propatagium area. In this study, the visible nerves that were distributed from the upper arm to the fingertips of Miniopterus fuliginosus were formed by C6–T1.  相似文献   

13.
This study was carried out to reveal the formation of the sacral plexus in the Eurasian Eagle Owls (Bubo bubo) and the nerves originating from this plexus. Five EEOs, three of them were male and two were female, were provided from Wildlife Rescue and Rehabilitation Center of Kafkas University and used as materials. Following the euthanizing of the animals, abdominal cavity was opened. The nerves of plexus sacrales were dissected and photographed. It was detected that the sacral plexus was formed by the ventral ramus of five synsacral nerves. Moreover, it was determined that the roots of the sacral plexus formed three trunks: the truncus cranialis, the truncus medius and the truncus caudalis in fossa renalis. The availability of the n. ischiofemoralis and the availability of n. parafibularis were detected in the EEOs. Five branches were specified as having segregated from the sacral plexus: the n. cutaneus femoralis caudalis, the mutual root of n. fibularis with n. tibialis (n. ischiadicus), the rami musculares, the n. coxalis caudalis and the ramus muscularis. It was observed that the sacral plexus was linked to the lumbar plexus by the n. furcalis, to the pudendus plexus via the n. bigeminus. Consequently, the anatomic structure of the EEO's sacral plexus, the participating synsacral nerves to plexus and the innervation areas of these nerves were revealed.  相似文献   

14.
The study was conducted for the determination of the main nerves of the lumbosacral plexus in the helmeted guineafowl. Five helmeted guineafowls were used. Fowls were anaesthetised and the a. carotis communis was cut for blood drainage. Body cavities were revealed and were fixated with 10% formaldehyde. Nerves forming the lumbosacral plexus were dissected and photographed. Results were named according to the Nomina Anatomica Avium. It was determined that the lumbosacral plexus forms by 8 synsacral ventral rami from the ventrolateral side of synsacrum which include (2–9) synsacral spinal nerves. It was seen that the lumbar plexus was formed by the ventral rami of the 2nd, 3rd and 4th spinal nerves, and the sacral plexus was formed by the ventral rami of the 5th, 6th, 7th, 8th and 9th synsacral spinal nerves. It was observed that following nerves of n. pubicus (ilioinguinalis), r. cutaneous femoris lateralis, r. cutaneous femoris medialis (n. saphenus), n. femoralis and n. obturatorius originate from the lumbar plexus, and following nerves of n. ischiadicus, the common branch of n. fibularis and n. tibialis originate from the sacral plexus. It was determined that the n. ischiadicus was formed by the truncus cranialis, medianus and caudalis. In conclusion, it was determined that there are macro anatomical differences between different avian species in the quantity, thickness and distribution of the spinal nerves that form the lumbosacral plexus, and in formations of the plexus, and in separations of nerve branches.  相似文献   

15.
A technique for ultrasonography of the brachial plexus and major nerves of the canine thoracic limb is described based on examination of five canine cadavers and three healthy dogs. The ventral branches of the spinal nerves that contribute to the brachial plexus are identifiable at their exit from the intervertebral foramina. These nerves may be followed distally, cranial to the first rib, until they form the brachial plexus. The musculocutaneous, ulnar, and median nerves are identified on the medial aspect of mid‐humerus and followed proximally to the axillary region and distally to the elbow. The radial nerve, formed by multiple nerve components, is seen on the mediocaudal aspect of the humerus. Nerves appear as hypoechoic tubular structures with an internal echotexture of discontinuous hyperechoic bands, surrounded by a thin rim of highly echogenic tissue. Improved understanding of the ultrasonographic anatomy of the brachial plexus and its main branches supports clinical use of this modality.  相似文献   

16.
The ventral spinal root origin of the radial nerve, its muscle branches, and brachial plexus nerves which supply shoulder and thoracic musculature was determined in the dog. Electrophysiological signal averaging techniques measured evoked potential from specific ventral spinal roots to individual muscle nerves. The entire radial nerve received input from the sixth cervical (C6) through the second thoracic (T2) spinal roots. The most significant (p less than .05) input to triceps brachii came from C8 while the deep ramus of the radial nerve received its largest input from C7. The brachiocephalicus, suprascapular, and subscapular nerves all received their most significant (p less than .05) innervation from C6. Approximately 90% of the evoked potential to the axillary nerve originated from C7. The thoracodorsal nerve received most of its innervation from ventral roots C7 and C8. The lateral thoracic nerve which innervates the cutaneous trunci muscle was supplied by ventral roots C8-T2. Examination of innervation patterns suggests that only modest variation of spinal root input to specific nerves occurred between individual dogs.  相似文献   

17.
Magnetic resonance imaging (MRI) examinations from 18 dogs with a histologically confirmed peripheral nerve sheath tumor (PNST) of the brachial plexus were assessed retrospectively. Almost half (8/18) had a diffuse thickening of the brachial plexus nerve(s), six of which extended into the vertebral canal. The other 10/18 dogs had a nodule or mass in the axilla (1.2-338 cm3). Seven of those 10 masses also had diffuse nerve sheath thickening, three of which extended into the vertebral canal. The majority of tumors were hyperintense to muscle on T2-weighted images and isointense on T1-weighted images. Eight of 18 PNSTs had only minimal to mild contrast enhancement and many (13/18) enhanced heterogeneously following gadolinium DTPA administration. Transverse plane images with a large enough field of view (FOV) to include both axillae and the vertebral canal were essential, allowing in-slice comparison to detect lesions by asymmetry of structures. Higher resolution, smaller FOV, multiplanar examination of the cervicothoracic spine was important for appreciating nerve root and foraminal involvement. Short tau inversion recovery, T2-weighted, pre and postcontrast T1-weighted pulse sequences were all useful. Contrast enhancement was critical to detecting subtle diffuse nerve sheath involvement or small isointense nodules, and for accurately identifying the full extent of disease. Some canine brachial plexus tumors can be challenging to detect, requiring a rigorous multiplanar multi-pulse sequence MRI examination.  相似文献   

18.
The aim of the present study is to reveal the anatomical structure of lumbosacral plexus of barn owl. Six barn owls were included in the study. Nerves originating from plexus were dissected individually, and findings of innervation areas of nerves were determined. Lumbosacral plexus of barn owl was observed to be formed by ventral rami of ten synsacral spinal nerves. It was found that while the r. cutaneus femoris lateralis, the n. obturatorius, the n. coxalis cranialis, the r. cutaneus femoris medialis, the n. cutaneus femoris cranialis and the n. femoralis originated from the lumbar plexus, the n. isciofemoralis, the n. cutaneus femoris caudalis, the n. coxalis caudalis and the n. ischiadicus originated from the sacral plexus. Consequently, when the results of the study were compared with information of different avian species, it was observed that differences focused on the formation of the lumbar and sacral plexuses and innervation level of digits.  相似文献   

19.
ObjectiveTo describe an ultrasound-guided lateral quadratus lumborum (LQL) block technique and the spread characteristics of lidocaine–dye injected in the LQL plane using a transversal (LQL-T) or a longitudinal (LQL-L) approach.Study designExperimental anatomic study.AnimalsA total of eight canine cadavers.MethodsBilateral ultrasound-guided injections in the fascial plane lateral to the quadratus lumborum muscle and medial to the thoracolumbar fascia (LQL plane) with the needle directed at the first lumbar (L1) transverse process were performed using lidocaine–dye (0.3 mL kg−1). Anatomical dissection determined the dye distribution, sympathetic trunk staining and number of spinal nerves stained circumferentially >1 cm.ResultsThe LQL fascial plane was ultrasonographically recognized in all cadavers and filled with lidocaine–dye in all eight cadavers with the LQL-T approach and in six with LQL-L. The injectate spread ventral to the lumbar transverse processes, around the quadratus lumborum muscle and dorsal to the transversalis fascia, affecting the ventral branches of the spinal nerves and the sympathetic trunk. A median (range) of 4 (3–5) and 3 (0–4) ventral branches of the thoracolumbar nerves were dyed with LQL-T and LQL-L approaches, respectively (p = 0.04). The most cranial nerve stained was the twelfth thoracic (T12) with the LQL-T approach and T13 with LQL-L, and the most caudal was L3 with both approaches. The incidence of sympathetic trunk staining was significantly higher using LQL-T (six injections) compared with LQL-L (one injection; p = 0.04). Dye was not observed in the lumbar plexus, epidural space or abdominal cavity.Conclusions and clinical relevanceUltrasound-guided LQL-T approach resulted in a more consistent spread toward the spinal nerves and sympathetic trunk compared with LQL-L approach. Further studies are necessary to assess the LQL block effectiveness and success rate in live dogs.  相似文献   

20.
Malignant peripheral nerve sheath tumours (MPNST) of a plexus nerve or nerve root cause significant morbidity and present a treatment challenge. The surgical approach can be complex and information is lacking on outcomes. The objective of this study was to describe surgical complication rates and oncologic outcomes for canine MPNST of the brachial or lumbosacral plexus. Dogs treated for a naïve MPNST with amputation/hemipelvectomy with or without a laminectomy were retrospectively analysed. Oncologic outcomes were disease free interval (DFI), overall survival (OS), and 1- and 2-year survival rates. Thirty dogs were included. The surgery performed was amputation alone in 17 cases (57%), and amputation/hemipelvectomy with laminectomy in 13 cases (43%). Four dogs (13%) had an intraoperative complication, while 11 dogs (37%) had postoperative complications. Histologic margins were reported as R0 in 12 dogs (40%), R1 in 12 dogs (40%), and R2 in five dogs (17%). No association was found between histologic grade and margin nor extent of surgical approach and margin. Thirteen dogs (46%) had recurrence. The median DFI was 511 days (95% CI: 140–882 days). The median disease specific OST was 570 days (95% CI: 467–673 days) with 1- and 2-year survival rates of 82% and 22% respectively. No variables were significantly associated with recurrence, DFI, or disease specific OST. These data show surgical treatment of plexus MPNST was associated with a high intra- and postoperative complication rate but relatively good disease outcomes. This information can guide clinicians in surgical risk management and owner communication regarding realistic outcomes and complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号