首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bone morphogenetic protein‐4 (BMP‐4) and BMP‐7, theca cell‐derived growth factors, directly affect the granulosa cell function. The aim of this study was to examine the involvement of BMP‐4 or BMP‐7 in vascular endothelial growth factor (VEGF) expression in bovine granulosa cells. Granulosa cells were collected from small follicles (4–6 mm) and seeded at a density of 2–5 × 105 cells per well in Dulbecco's modified Eagle's medium (DMEM)/F12 medium with BMP‐4 or BMP‐7. The expression of VEGF messenger RNA and protein was the maximum when 1.0 ng/mL of BMP‐4 was added to the culture medium. On the other hand, 10 ng/mL of BMP‐7 significantly increased the expression of the VEGF gene and protein. In addition, BMP‐4 stimulated the expression of Smad1 and Smad5 genes in granulosa cells, whereas BMP‐7 stimulated the expression of Smad5 gene. These results suggested that BMP‐4 and BMP‐7 may be associated with VEGF expression via several specific Smads in bovine granulosa cells: BMP‐4 via Smad1/Smad5 and BMP‐7 via Smad5. In conclusion, theca cell‐derived BMP‐4 and BMP‐7 might contribute to follicular vasculature and development by inducing VEGF expression in granulosa cells.  相似文献   

2.
Ovarian physiology is controlled by endocrine and paracrine signals, and the transforming growth factor β (TGFβ) superfamily has a pivotal role in this control. The Bone morphogenetic protein 15 (BMP15) and Growth differentiation factor 9 (GDF9) genes are relevant members of the TGFβ superfamily that encode proteins secreted by the oocytes into the ovarian follicles. Through a paracrine signalling pathway, these factors induce the follicular somatic cells to undergo mitosis and differentiation during follicular development. These events are controlled by a mutually dependent and coordinated fashion during the formation of the granulosa cell layers. Many studies have contributed to our knowledge concerning the paracrine factors acting within the follicular environment, especially regarding GDF9 and BMP15. We aimed to review the relevant contributions of these two genes to animal reproductive physiology.  相似文献   

3.
4.
5.
6.
Mammalian oogenesis occurs concomitantly with folliculogenesis in a coordinated manner in the ovaries. In vitro growth (IVG) culture systems of the oocytes have been developed as a new technology for utilizing incompetent oocytes in the ovary as a source of mature oocytes as well as for studying oogenesis, folliculogenesis, and oocyte-somatic cell interactions. The results of IVG experiments have suggested that direct association of oocytes and surrounding granulosa cells supports oocyte viability and growth through the gap junctions, which are efficient conduits for low molecular weight substances. It has been revealed that granulosa cells metabolize some molecules which are in turn transported into the oocytes. IVG systems have also provided evidence that FSH promotes the development of follicles at secondary or later stages by its stimulation of proliferation and differentiation of granulosa cells, and perhaps by its anti-apoptotic effects. In addition, interactions between granulosa cell-derived KIT ligands and oocyte KIT receptors have been suggested as initiating oocyte growth and follicular development. Furthermore, recent findings suggest there are growth factors derived from oocytes such as GDF-9 and BMP-15. With such factors, oocytes participate in follicular development by regulating the differentiation of surrounding somatic cells. These bidirectional communications between oocytes and somatic cells are important for oocyte growth and follicular development. IVG systems should provide further information regarding oogenesis and folliculogenesis in the ovary.  相似文献   

7.
卵母细胞及其紧密连接的卵泡细胞之间的精细调节,促使卵母细胞成熟、受精和胚胎发育.在卵泡发育过程中,除了下丘脑-垂体-性腺轴间的内分泌调节外,卵母细胞源旁分泌或自分泌因子维持发育卵泡内微环境稳态,调节卵母细胞成熟和颗粒细胞增殖.目前发现,这些关键的调控因子主要是TGFβ超家族成员中的生长分化因子-9 (GDF9)和骨形态发生蛋白(BMP15).GDF9/BMP15主要表达于卵母细胞,是卵泡发育必需的细胞因子.论文综述了GDF9/BMP15的结构特点、表达特性、信号通路及其在卵巢中的生物学作用等研究进展.  相似文献   

8.
Involvement of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied during the last decade. In all mammalian species, IGF-I stimulates granulosa cell proliferation and steroidogenesis. The concentrations of IGF-I and -II do not vary during terminal follicular growth and atresia. In contrast, the levels of IGFBP-2 and -4, as well as IGFBP-5 in ruminants, dramatically decrease and increase during terminal follicular growth and atresia, respectively. These changes are responsible for an increase and a decrease in IGF bioavailability during follicular growth and atresia, respectively. They are partly explained by changes in ovarian expression. In particular, expression of IGFBP-2 mRNA decreases during follicular growth in ovine, bovine and porcine ovaries, and expression of IGFBP-5 mRNA dramatically increases in granulosa cells of bovine and ovine atretic follicles. Changes in IGFBP-2 and -4 levels are also due to changes in intrafollicular levels of specific proteases. Recently, we have shown that the pregnancy-associated plasma protein-A (PAPP-A) is responsible for the degradation of IGFBP-4 in preovulatory follicles of domestic animals. Expression of PAPP-A mRNA is restricted to the granulosa cell compartment, and is positively correlated to expression of aromatase and LH receptor. From recent evidence, the bone morphogenetic protein (BMP) family would also play a key role in ovarian physiology of domestic animals. In particular, we and others have recently shown that a non-conservative substitution (Q249R) in the bone morphogenetic protein-receptor type IB (BMPR-IB) coding sequence is fully associated with the hyperprolific phenotype of FecB(B)/FecB(B) Booroola ewes. BMP-4 and GDF-5, natural ligands of BMPR-IB, strongly inhibit secretion of progesterone by ovine granulosa cells in vitro, but granulosa cells from FecB(B)/FecB(B) ewes are less responsive than those from FecB(+)/FecB(+) to the action of these peptides. It is suggested that in FecB(B)/FecB(B) ewes, Q249R substitution would impair the function of BMPR-IB, leading to a precocious differentiation of granulosa cells and of follicular maturation. Interestingly, recent findings have described mutations in BMP-15 gene associated with hyperprolific phenotypes in Inverdale and Hanna ewes, suggesting that the BMP pathway plays a crucial role in the control of ovulation rate.  相似文献   

9.
Oocyte-somatic cell-endocrine interactions in pigs   总被引:1,自引:0,他引:1  
Oocyte-somatic cell communication is bi-directional and essential for both oocyte and follicular granulosa and theca cell function and development. We have shown that the oocyte secretes factors that stimulate porcine granulosa cell proliferation in serum-free culture, and suppress progesterone production, thereby preventing premature luteinisation. Possible candidates for mediating some of these effects are the bone morphogenetic proteins (BMPs) that belong to the transforming growth factor beta family. They are emerging as a family of proteins critical for fertility and ovulation rate in several mammals, and they are expressed in various cell types in the ovary. We have evidence for a functional BMP system in the porcine ovary and BMP receptors are present in the egg nests in the fetal ovary and in the granulosa cells, oocytes and occasional theca cells throughout subsequent development. In addition to paracrine interactions in the ovary, the porcine oocyte and its developmental potential can also be influenced by nutritional manipulation in vivo. We have demonstrated that feeding a high plane of nutrition to gilts for 19 days prior to ovulation increased oocyte quality compared to control animals fed a maintenance diet, as determined by oocyte maturation in vitro. This was associated with a number of changes in circulating reproductive and metabolic hormones and also in the follicular fluid in which the oocyte is nurtured. Further studies showed a similar increase in prenatal survival on Day 30 of gestation, demonstrating a direct link between oocyte quality/maturation and embryo survival. Collectively, these studies emphasise the importance of the interactions that occur between the oocyte and somatic cells and also with endocrine hormones for ovarian development, and ultimately for the production of oocytes with optimal developmental potential.  相似文献   

10.
Several hundred thousand primordial follicles are present in the mammalian ovary, however, only 1% develop to the preovulatory stage and finally ovulate. The remainder will be eliminated via a degenerative process called ‘atresia’. The endocrinological regulatory mechanisms involved in follicular development and atresia have largely been characterized but the precise temporal and molecular mechanisms involved in the regulation of these events remain unknown. Many recent studies suggest that apoptosis in ovarian granulosa cells plays a crucial role in follicular atresia. Notably, death ligand‐receptor interaction and subsequent intracellular signaling have been demonstrated to be the key mechanisms regulating granulosa cell apoptosis. In this review we provide an overview of granulosa cell apoptosis regulated by death ligand‐receptor signaling. The roles of death ligands and receptors [Fas ligand (FasL)]‐Fas, tumor necrosis factor α (TNFα)‐TNF receptor and TNFα‐related apoptosis‐inducing ligand (TRAIL)‐TRAIL receptor (TRAILR)] and intracellular death‐signal mediating molecules (Fas‐associated death domain protein), TNF receptor 1‐associated death domain protein, caspases, apoptotic protease‐activating factor 1, TNFR‐associated factor 2 and cellular FLICE‐like inhibitory protein in granulosa cells are discussed.  相似文献   

11.
The objectives of the present study were (experiment 1) to characterized development and dynamics of the dominant follicles (DF) and the corpus luteum (CL) to determine patterns of two (W2) and three (W3) follicular waves in beef heifers, and (experiment 2) to determine gene expression of growth factors gene expression in follicular cells of W2 and W3 heifer. Twenty-eight Braford heifers were used. Dominant follicular and CL were monitored daily by ultrasonography to identify the development W2 and W3 in heifers. Pre-ovulatory DF were aspirated on day 19 in W2 and on day 22 in W3 heifers. In W2 and W3, follicular cells (FC) of gene expression of growth differentiation factor 9, bone morphogenetic protein 15 (BMP15), fibroblast growth factor basic, transforming growth factor beta receptor 1, bone morphogenetic protein receptor type IB and fibroblast growth factor receptor 2 were evaluated. The regression of the DF of the first follicular wave and the emergency of the DF of the second follicular wave began later in the heifers W2 than in W3 (p = .02 and p < .01). The regression of the CL began earlier in the W2 than in W3 group (p < .01). Gene expression of growth factors and receptors was similar between groups. However, higher relative levels of BMP15 was observed in W2 group (p = .07). Results propose that wave patterns were regulated by the development time of the DF in the first wave and the life of the CL. Furthermore, higher levels of BMP15 could produce shorter life of CL. The present work suggest that ultrasonography associated with molecular assays could be used as an easy and effective tool to characterize follicular wave patterns.  相似文献   

12.
卵巢是家禽的重要繁殖器官,会产生大量卵泡,而卵泡在生长发育的各个阶段中都可能因为不同因素的调控而发生闭锁,最终导致繁殖性能衰退。颗粒细胞对卵泡的生长发育有重要调控作用,其凋亡会诱导卵泡发生闭锁。诱导颗粒细胞发生凋亡的因素较多,包括激素、细胞因子、氧化应激、线粒体及其他体外因素。颗粒细胞凋亡主要由线粒体途径导致,其涉及到半胱天冬酶(Caspase)家族参与,当线粒体裂解时会释放细胞色素C (Cyt-C),随后形成凋亡小体激活Caspase-3和Caspase-8,最终激活Caspase-9导致颗粒细胞凋亡;当颗粒细胞发生凋亡,家禽体内卵泡丧失生物功能并且卵泡细胞之间的调控失衡,促使卵泡内卵母细胞和膜细胞凋亡,最终导致卵泡发生闭锁;颗粒细胞在存活状态下所分泌的生长因子、性腺类固醇、细胞因子能减少卵母细胞氧化损伤,防止细胞内活性氧(ROS)水平过高导致的线粒体DNA损伤,从而避免线粒体功能障碍而造成的颗粒细胞凋亡。作者从颗粒细胞凋亡及其影响因素、颗粒细胞凋亡和卵泡闭锁的关系、颗粒细胞凋亡对卵泡闭锁的影响3个方面进行阐述,以期为减少卵泡闭锁、提高家禽繁殖性能提供理论依据。  相似文献   

13.
It has been hypothesized that the physiological basis of follicle selection is the differential expression of factors, which modulate the action of gonadotrophins on follicular cells, at key points during the process of follicle development. The aim of this research was to test this hypothesis by identifying factors that can enhance or attenuate the action of the gonadotrophins in stimulating follicle development using both in vivo and in vitro models. Experiments in vivo utilized sheep with an ovarian autotransplant to allow intra-arterial infusion of putative local factors and exposure of the ovary to high local concentrations. Experiments in vitro utilized physiological serum-free cell culture systems for both granulosa and theca cells that allow gonadotrophin-induced differentiation in vitro. The putative local factors tested included insulin-like growth factor-I (IGF-I LR3 analogue), transforming growth factor alpha (TGF alpha) or epidermal growth factor (EGF) and inhibin A. IGF-I stimulated both cellular proliferation and hormone production by both granulosa and theca cells in vitro and similarly stimulated ovarian follicle development and ovarian androgen and oestradiol secretion in vivo. Both TGF alpha and EGF stimulated granulosa and thecal cell proliferation in vitro in a dose-responsive manner and concomitantly inhibited hormone production, whereas intra-arterial infusion of TGF alpha in vivo resulted in induction of atresia in large antral follicles and an acute fall in ovarian hormone secretion. Inhibin A in vitro augmented gonadotrophin stimulated androgen and oestradiol production by thecal and granulosa cells, respectively, but had no effect on cell number. Paradoxically, intra-arterial infusion of inhibin A resulted in an acute depression in ovarian steroid secretion. This depression, however, was also associated with an acute depression in circulating FSH concentrations. In conclusion, these data provide strong support for the hypothesis that factors can modulate the action of gonadotrophins on follicular cells to augment (IGF-I, inhibin A) or inhibit (TGF alpha/EGF) granulosa and thecal cell differentiation. The challenge for the future in this area of research is to understand how these factors interact to enable one follicle to be selected from an ovulatory cohort.  相似文献   

14.
Angiogenesis in Developing Follicle and Corpus Luteum   总被引:7,自引:0,他引:7  
Angiogenesis is a process of vascular growth that is mainly limited to the reproductive system in healthy adult animals. The development of new blood vessels in the ovary is essential to guarantee the necessary supply of nutrients and hormones to promote follicular growth and corpus luteum formation. In developing follicles, the pre-existing endothelial cells that form the vascular network in the theca layer markedly develop in response to the stimulus of several growth factors, mainly produced by granulosa cells, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). The angiogenic factors also promote vessel permeability, thus favouring the antrum formation and the events inducing follicle rupture. After ovulation, newly formed blood vessels cross the basement membrane between theca and granulosa layers and continue a rapid growth to sustain corpus luteum development and function. The length of luteal vascular growth varies in cycling and pregnant animals and among species; both angiogenesis and subsequent angioregression are finely regulated by systemic and local factors. The control of angiogenic development in the ovary could be a useful tool to improve animal reproductive performances.  相似文献   

15.
To improve the reproductive performance of water buffalo to level can satisfy our needs, the mechanisms controlling ovarian follicular growth and development should be thoroughly investigated. Therefore, in this study, the expressions of growth differentiation factor‐9 (GDF‐9) in buffalo ovaries were examined by immunohistochemistry, and the effects of GDF‐9 treatment on follicle progression were investigated using a buffalo ovary organ culture system. Frozen–thawed buffalo ovarian follicles within slices of ovarian cortical tissue were cultured for 14 days in the presence or absence of GDF‐9. After culture, ovarian slices were fixed, sectioned and stained. The follicles were morphologically analysed and counted. Expression pattern of GDF‐9 was detected in oocytes from primordial follicles onwards, besides, also presented in granulosa cells. Moreover, GDF‐9 was detected in mural granulosa cells and theca cells of pre‐antral follicles. In antral follicles, cumulus cells and theca cells displayed positive expression of GDF‐9. In corpora lutea, GDF‐9 was expressed in both granulosa and theca lutein cells. After in vitro culture, there was no difference in the number of primordial follicles between cultured plus GDF‐9 and cultured control that indicated the GDF‐9 treatment has no effect on the primordial to primary follicle transition. GDF‐9 treatment caused a significant decrease in the number of primary and secondary follicles compared with controls accompanied with a significant increase in pre‐antral and antral follicles. These results suggest that a larger number of primary and secondary follicles were stimulated to progress to later developmental stages when treated with GDF‐9. Vitrification/warming of buffalo ovarian tissue had a little remarkable effect, in contrast to culturing for 14 days, on the expression of GDF‐9. In conclusion, treatment with GDF‐9 was found to promote progression of primary follicle that could provide an alternative approach to stimulate early follicle development and to improve therapies for the most common infertility problem in buffaloes (ovarian inactivity).  相似文献   

16.
Cystic ovarian disease (COD) is one of the main causes of infertility in dairy cattle. It has been shown that intra‐ovarian factors, such as members of the insulin‐like growth factor (IGF) system, may contribute to follicular persistence. The bioavailability of IGF to initiate its response by binding to specific receptors (IGFRs) depends on interactions with related compounds, such as pregnancy‐associated plasma protein A (PAPP‐A). The aim of this study was to determine IGFR1 and PAPP‐A expression both in follicles at different stages of development and in cysts, to evaluate the roles in the etiopathogenesis of COD in cattle. The mRNA expression of PAPP‐A was higher in granulosa cells of large tertiary follicles than in cysts, whereas the protein PAPP‐A present in the follicular fluid from these follicles showed no differences. Although no PAPP‐A mRNA expression was detected in smaller tertiary follicles, in their follicular fluid, this protease was detected in lesser concentration than in cysts. The mRNA expression of IGFR1 was lower in granulosa cells from cystic follicles than in those from tertiary ones. However, the protein expression of this receptor presented the highest levels in cystic structures, probably to increase the possibility of IGF response. The data obtained would indicate that animals with COD have an altered regulation of the IGF system in the ovary, which could be involved in the pathogenesis of this disease in cattle.  相似文献   

17.
Follicle development in the highly efficient laying hen is characterized by a well-organized follicular hierarchy. This is not the case in other chickens such as the broiler breeder hen that has excessive follicle development and lower reproductive efficiency. Although management practices can optimize egg production in less productive breeds of chickens, the factors that contribute to this difference are not known. Interactions between the oocyte and surrounding somatic cells are believed to be involved in promoting follicle selection. Anti-Müllerian hormone (AMH) has been shown to have a role in regulating rate of follicle development in mammals. In hens, the expression of AMH is restricted to the growing population of follicles and, similar to mammals, is markedly decreased at around the time of follicle selection. The oocyte factors, growth and differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), have been identified in the hen, and their expression pattern has been characterized. Anti-Müllerian hormone expression in hens is decreased by a protein factor from the oocyte (not GDF9) and is also decreased by vitamin D. Associated with the decrease in AMH expression by vitamin D, follicle-stimulating hormone receptor mRNA is increased. These data suggest that information about AMH regulation may enhance our understanding of follicle selection, particularly in birds with aberrant follicle development.  相似文献   

18.
Insulin-like growth factors in the regulation of avian ovarian functions.   总被引:6,自引:0,他引:6  
In the past three decades, overwhelming evidence has accumulated to show that insulin-like growth factor (IGF)-I and -II, their receptors and binding proteins (IGFBP) (the IGF system), have major roles to play in the regulation of ovarian function in mammals. Although studies in birds did not start until 5-6 years ago, the limited information thus far available suggests that the IGFs act as autocrine/paracrine regulators of follicular growth and differentiation, just as observed in mammals. The genes for IGF-I and -II, type-I IGF receptor, IGFBP-2, and IGFBP-5 are expressed in both granulosa and theca cells of the chicken ovary. The mechanisms by which the IGF system controls ovarian function in the avian species are complex and involve interactions with the gonadotrophins (LH and FSH), growth hormone, and even other growth factors. Effects are different between strains and nutritional status.  相似文献   

19.
More than 99% of follicles undergo a degenerative process known as "atresia", in mammalian ovaries, and only a few follicles ovulate during ovarian follicular development. We have investigated the molecular mechanism of selective follicular atresia in mammalian ovaries, and have reported that follicular selection dominantly depends on granulosa cell apoptosis. However, we have little knowledge of the molecular mechanisms that control apoptotic cell death in granulosa cells during follicle selection. To date, at least five cell death ligand-receptor systems [tumor necrosis factor (TNF)alpha and receptors, Fas (also called APO-1/CD95) ligand and receptors, TNF-related apoptosis-inducing ligand (TRAIL; also called APO-2) and receptors, APO-3 ligand and receptors, and PFG-5 ligand and receptors] have been reported in granulosa cells of porcine ovaries. Some cell death ligand-receptor systems have "decoy" receptors, which act as inhibitors of cell death ligand-induced apoptosis in granulosa cells. Moreover, we showed that the porcine granulosa cell is a type II apoptotic cell, which has the mitochondrion-dependent apoptosis-signaling pathway. Briefly, the cell death receptor-mediated apoptosis signaling pathway in granulosa cells has been suggested to be as follows. (1) A cell death ligand binds to the extracellular domain of a cell death receptor, which contains an intracellular death domain (DD). (2) The intracellular DD of the cell death receptor interacts with the DD of the adaptor protein (Fas-associated death domain: FADD) through a homophilic DD interaction. (3) FADD activates an initiator caspase (procaspase-8; also called FLICE), which is a bipartite molecule, containing an N-terminal death effector domain (DED) and a C-terminal DD. (4) Procaspase-8 begins auto-proteolytic cleavage and activation. (5) The auto-activated caspase-8 cleaves Bid protein. (6) The truncated Bid releases cytochrome c from mitochondrion. (7) Cytochrome c and ATP-dependent oligimerization of apoptotic protease-activating factor-1 (Apaf-1) allows recruitment of procaspase-9 into the apoptosome complex. Activation of procaspase-9 is mediated by means of a conformational change. (8) The activated caspase-9 cleaves downstream effector caspases (caspase-3). (9) Finally, apoptosis is induced. Recently, we found two intracellular inhibitor proteins [cellular FLICE-like inhibitory protein short form (cFLIPS) and long form (cFLIPL)], which were strongly expressed in granulosa cells, and they may act as anti-apoptotic/survival factors. Further in vivo and in vitro studies will elucidate the largely unknown molecular mechanisms, e. g. which cell death ligand-receptor system is the dominant factor controlling the granulosa cell apoptosis of selective follicular atresia in mammalian ovaries. If we could elucidate the molecular mechanism of granulosa cell apoptosis (follicular selection), we could accurately diagnose the healthy ovulating follicles and precisely evaluate the oocyte quality. We hope that the mechanism will be clarified and lead to an integrated understanding of the regulation mechanism.  相似文献   

20.
A peptidyl-prolyl isomerase, Pin 1, has been shown to play a role in the regulation of cell cycle progression, both in vitro and in vivo. However, the involvement of Pin 1 during follicular development is not well understood. The aim of this study was first to investigate the expression of Pin 1 mRNA in the granulosa and theca cells of the follicle at different developmental stages of follicles in the bovine ovary, and second, to examine the effects of follicle-stimulating hormone (FSH) and estradiol (E2) on the expression of Pin 1 in the cultured bovine granulosa cells. Follicles were classified into four groups based on the diameter (dominant follicles >8.5mm in diameter, subordinate follicles <8.5mm in diameter) and the relative levels of E2 and progesterone (P4) (E2:P4>1, estrogen active; E2:P4<1, estrogen inactive): i.e. preovulatory dominant follicles (POFs); E2 active dominant follicles (EADs); E2 inactive dominant follicles (EIDs); small follicles (SFs). The expression of the Pin 1 gene was significantly increased in the granulosa cells of EADs as compared with those of other follicles, whereas its expression in theca cells did not differ among follicles at different developmental stages. The concentration of 5 ng/ml FSH alone and the combination of 1 ng/ml E2 and 5 ng/ml FSH stimulated the expression of the Pin 1 gene in bovine granulosa cells. Our data provide the first evidence that Pin 1 expression in the granulosa cells but not the theca cells changes during follicular development, and that FSH stimulate the expression of the Pin 1 gene. These results suggest that Pin 1 regulates the timing of cell proliferation and may act as an intracellular signal responder in the granulosa cells during bovine follicle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号