首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was performed to determine the optimum dietary carbohydrate (CHO) levels of sea cucumber, based on the parameters of growth, digestive enzymes, digestibility, non‐specific immune enzymes and acute low‐salinity (20 g/L) stress and high‐temperature (30°C) stress tolerance. Diets with eight different CHO (dextrin) levels (32.9, 107.6, 192.5, 257.2, 316.8, 428.0, 482.4 and 572.8 g/kg) were fed to sea cucumber juveniles (0.49 ± 0.01 g) for 60 days. Significant higher amylase activity was observed in sea cucumbers fed diet with CHO ranging between 32.9 and 192.5 g/kg than that of other treatments (p < .05). The sea cucumbers fed with 192.5 g/kg CHO showed significantly higher acid phosphatase activity than the treatments of 482.4 and 572.8 g/kg CHO (p < .05), and significantly higher alkaline phosphatase activity than other treatments (p < .05, except 257.2 g/kg). The treatments of 428.0–572.8 g/kg were found significantly lower values than other treatments in apparent digestibility coefficients for dry matter and crude protein (p < .05). The sea cucumbers fed with 192.5, 257.2 and 316.8 g/kg CHO showed better tolerance to high‐temperature (30°C) and low‐salinity (20 g/L) stress than other treatments. In brief, the optimal dietary CHO level for the growth of juvenile sea cucumber is 177.96 g/kg. However, excessive CHO will inhibit amylase enzyme activity and decrease digestibility, resulting in low growth of sea cucumber.  相似文献   

2.
A feeding trial of three protein (200, 300 and 400 g kg−1) and two lipid levels (20 and 100 g kg−1) was conducted to determine the proper dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Dietary protein and lipid levels were adjusted by adding with different levels of soybean meal, squid liver oil and soybean oil, respectively. Three replicate groups of sea cucumbers (average weight of 1.3 g) were fed the experimental diets for 12 weeks. At the end of the feeding trial, survival was not affected by dietary protein and lipid levels (P > 0.05). Weight gain (WG) and specific growth rate (SGR) of sea cucumbers were significantly affected by dietary protein (P < 0.006) and lipid levels (P < 0.001). The highest WG and SGR were observed in sea cucumbers fed the 200 and 400 g kg−1 protein diet with 20 g kg−1 lipid (P < 0.05). WG and SGR of sea cucumbers fed the diet containing 20 g kg−1 lipid were higher than those of sea cucumbers fed the 100 g kg−1 lipid diets (P < 0.05) at each dietary protein level. Apparent digestibility coefficients of dry matter, crude protein, carbohydrate and gross energy of sea cucumbers fed the 20 g kg−1 lipid diets were significantly higher than those of the 100 g kg−1 lipid diets at 200 and 400 g kg−1 protein (P < 0.05). Moisture, crude protein, crude lipid and ash contents were not significantly different among the groups. The results of this study indicate that the diet containing 200 g kg−1 protein (170 g kg−1 digestible protein) with 20 g kg−1 lipid (13 g kg−1 digestible lipid) may be sufficient for optimum growth of juvenile sea cucumber.  相似文献   

3.
In order to understand the effects of seasonal change on the immunity of sea cucumber Apostichopus japonicus cultured in pond, A. japonicus with body weight of 12.2 ± 4.5 g (sample A) and 32.6 ± 7.1 g (sample B), respectively, were collected monthly and randomly from a typical pond during a year cycle and employed for the evaluation of immunocompetence. Simultaneously, the environmental factors in the pond including water temperature, pH, salinity and dissolved oxygen (DO) were measured using a handheld multiparameter meter. The activities of acid phosphatase (ACP), alkaline phosphatase (ALP), lysozyme (LYZ), phenoloxidase (PO), superoxide dismutase (SOD), catalase (CAT) and myeloperoxidase (MPO) in the coelomic fluid were selected for the evaluation of A. japonicus immunocompetence and determined using biochemical methods. The results showed that in both samples, the activities of all determined enzymes had small values in winter and early spring, and LYZ, CAT and MPO activities also presented small values in summer, suggesting that pond‐cultured A. japonicus underwent immunosuppression twice during a year cycle, and the immunosuppression occurred in winter and early spring was more severe than that occurred in summer. In addition, most of the determined enzymes showed different variations between the two samples, and had significantly negative correlation with protein concentration, which was significantly and negatively correlated with water temperature, revealing that body weight and water temperature might have crucial effects on the immunity of A. japonicus cultured in pond.  相似文献   

4.
In this study, a 60‐day feeding trial was conducted to determine the effects of feed supplementating the feed of Apostichopus japonicus with peptides on its growth, energy budget, body composition and immune responses. Sea cucumbers were fed with five experimental diets supplemented with different proportions of peptides: 0 (D1), 12.5 (D2), 25 (D3), 37.5 (D4) and 50 (D5) g/kg in basal diet. Our results suggested that specific growth rate (SGR) and ratio of viscera to body wall (RVBW) of sea cucumbers fed with D4 were significantly improved. Relative to D1, ingestion rate (IR) and faeces production rate (FPR) for D3 and D4 were reduced considerably. Notably, the energy intake increased when peptide level increased from 0 to 50 g/kg. Meanwhile, the energy deposited for growth increased, and the energy loss decreased when peptide level increased from 0 to 37.5 g/kg. The sea cucumbers in D4 had the highest level of crude fat and lowest crude ash. The activities of immunoenzyme, such as SOD, CAT, T‐AOC, ACP and AKP, increased with peptide increase. Results suggested that supplementation of the feed with 25–37.5 g/kg peptides could significantly improve the growth performance, body composition and immune capacity of Apostichopus japonicus.  相似文献   

5.
The effect of a commercially available compound probiotics product containing Bacillus subtilis YB‐1 (50%) and Bacillus cereus YB‐2 (50%) fed to sea cucumbers, Apostichopus japonicus (Selenka) on challenge infections and non‐specific immune responses was assessed. Sea cucumbers (were randomly allocated into nine aquariums at a density of 30 sea cucumbers per tank and triplicate groups) were fed diets containing 0 (control), 107 and 1010 cfu (g diet)?1 of the probiotics mixture for 32 days. The growth factors and immunological parameters were measured. In addition, the effects on resistance against Vibrio alginolyticus infection were also evaluated. The results indicate that all the immunological parameters (phagocytic activity, superoxide anion production, lysozyme activity, catalase activity and phenoloxidase activity) measured and the growth rate of sea cucumbers fed 1010 cfu of the probiotics mixture were significantly (P < 0.05) improved than control groups at 16 and 32 days. After challenging, the cumulative mortality for the control was 100%, whereas the cumulative mortality for sea cucumbers fed 1010 cfu of the probiotics mixture was 47% (P < 0.05). Although the total autochthonous intestinal heterotrophic bacterial counts were not affected by dietary treatment (P > 0.05), Bacillus sp. levels were significantly elevated in sea cucumbers fed the probiotics mixture (P < 0.05). These results confirmed that administration of the probiotics mixture in the diet stimulated non‐specific immune responses and enhanced the growth performance of sea cucumbers, and was effective in controlling infections caused by V. alginolyticus.  相似文献   

6.
A feeding trial aimed to determine the effects of dietary lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea cucumber, Apostichopus japonicus. Diets with six crude lipid levels (1.9, 13.8, 29.1, 43.6, 59.6 and 71.6 g kg?1) were fed to sea cucumbers (initial weights 0.65 ± 0.01 g) at a density of 30 juveniles, once a day. After 60 days, body weight gain (BWG), specific growth rate (SGR), feed intake (FI) and protein efficiency ratio (PER) decreased with increasing dietary lipid levels. The sea cucumbers fed 1.9 g kg?1 crude lipid showed significantly higher (P < 0.05) BWG than those of the sea cucumbers fed 59.6 and 71.6 g kg?1 crude lipid. Intestinal protease and lipase activities generally increased with increasing dietary lipid levels. Eicosapentaenoic acid (EPA) content of body walls generally increased with increasing dietary lipid levels. Docosahexaenoic acid (DHA) content of body walls reached the maximum value at a dietary lipid level of 13.8 g kg?1. N‐3 highly unsaturated fatty acid content followed the same pattern of DHA. According to the growth performance and body composition of sea cucumbers, it can be indicated that the optimum dietary lipid level for juvenile sea cucumbers is between 1.9 and 13.8 g kg?1.  相似文献   

7.
Sea cucumbers are free of protective exoskeleton and capable of autolysis under stress conditions. The live transport of small‐size juveniles to grown‐out sites induces hypoxia and congesting stress. The transport process is essential to production of outdoor healthy seedlings. Here, we evaluated the effects of damp transport and water transport on Apostichopus japonicus, an economic species inhabiting along the Asian coast. The survival after transport and immune performance of small‐size juveniles (0.05–0.1 g of immersed weight) were monitored during distinct duration of transport (1, 3, 5, 8 and 12 hr). The results revealed that there were no significant differences between the two transport systems within 5 hr. Given the survival for recovery of 48 hr and responses of immune enzymes and catecholamines during transport, water transport was less detrimental to sea cucumbers than damp transport when the transport duration was less than 8 hr. Once the duration prolonged to 12 hr, these immune parameters changed irregularly and the survival declined drastically. Water transport with a notably higher survival for juveniles was the more appropriate manner for long‐time transport. These findings provide insights into long‐term transport of small‐size A.  japonicus juveniles and might be beneficial for production of ecologically healthy seedlings.  相似文献   

8.
A feeding trial was conducted to determine the optimum level and effect of incremental dietary levels of docosahexaenoic acid (DHA, 22:6n‐3) on growth and non‐specific immune responses in juvenile rock bream, Oplegnathus fasciatus. A basal diet without DHA supplementation was used as a control, and six other diets were prepared by supplementing with 4, 8, 12, 16, 20 or 40 g kg?1 DHA. These diets included no eicosapentaenoic acid and/or arachidonic acid contents. The actual DHA concentrations of the diets were 1, 4.8, 8.9, 13.1, 17.6, 21.2 and 41.4 g kg?1 diet (DHA1.0, DHA4.8, DHA8.9, DHA13.1, DHA17.6, DHA21.2 and DHA41.4 respectively). At the end of feeding trial, final body weight, weight gain, specific growth rate and feed efficiency of fish fed the DHA13.1, DHA17.6, DHA21.2 and DHA41.4 diets were significantly higher than those fed the other diets (P < 0.05). The broken‐line analysis of weight gain indicates that the optimum dietary DHA level is 11.9 g kg?1. Fish fed DHA1.0 had the highest hepatosomatic index, an increase in plasma cholesterol, triglyceride, low‐density lipoprotein and aspartate aminotransferase levels, as well as a decrease in high‐density lipoprotein. Superoxide dismutase activity of fish fed DHA13.1 and DHA17.6 diets was significantly higher than that of fish fed DHA1.0, DHA4.8 and DHA8.9 diets. Fish fed the DHA17.6, DHA21.2 and DHA41.4 diets showed significantly higher lysozyme activity than those fish fed DHA1.0, DHA4.8 and DHA8.9 diets. Therefore, the optimum dietary DHA level could be greater than 11.9 g kg?1 but less than 13.1 g kg?1 in diet.  相似文献   

9.
Fatty acids (FAs) in the body walls of sea cucumber, Apostichopus japonicus, reared under diet‐administered conditions were analysed to determine the accumulative status of dietary FAs. Four test diets different in diet source and microbial degradation, that is, a diet composed of powdered pennate diatoms (diet PD), one microbially degraded of diet PD (diet PDM), one composed of brown algae [tangle weed, Saccharina (Laminaria) longissima (Miyabe); diet BA], and one microbially degraded of diet BA (diet BAM), were fed to juvenile A. japonicus, respectively, for 2 months and the FA composition of the juvenile body wall was determined. FAs in body wall were influenced and changed by diet source and microbial degradation of diet. Degradation significantly promoted juvenile's growth and increased iso‐15:0 in the body wall; however, iso‐15:0 was not a growth factor. FA 20:4n6 and 20:5n3 were dominant in all groups despite being a minor dietary constituent, suggesting that these FAs can be readily accumulated or synthesized in the animal.  相似文献   

10.
11.
The effect of dietary substitution of silkworm (Bombyx mori L) meal (SM) for fishmeal (FM) on the growth performance and non‐specific immunity of sea cucumber (Apostichopus japonicus) (initial weight: 12.8 ± 0.16 g) was determined. Four isonitrogenous and isocaloric diets were formulated: Diet 1, which served as the control diet, contained 5% FM; Diet 2 contained 3.75% FM and 1.25% SM; Diet 3 contained 2.5% FM and 2.5% SM; and Diet 4 contained 5% SM. Other ingredients in each of the four diets were kept in the same proportion. After 8 weeks of feeding, the results showed that sea cucumbers fed Diet 2 had 18.7% increases in weight over those fed the control diet, but no significant difference was observed. No obvious difference in body wall composition was detected among the sea cucumbers fed the four different diets. Immunity analysis indicated that phagocytosis and serum alkaline phosphatase activity were not significantly (P > 0.05) affected when FM was partially or completely replaced with SM. Serum lysozyme activity of sea cucumbers fed Diet 4 showed a significant (P < 0.05) growth increase compared with those fed control diet. The results revealed that SM could be an effective substitute for FM in sea cucumber diet.  相似文献   

12.
An 8‐week feeding trial was conducted to investigate the effects of dietary chitosan oligosaccharide complex with cerium (Ce IV) (COS‐Ce) on growth performance, nonspecific immunity and disease resistance of sea cucumber, Apostichopus japonicas. Five isonitrogenous (18.6%) and isolipidic (1.1%) practical diets were formulated with graded level of COS‐Ce (0, 150, 300, 600 and 1200 mg kg?1 dry feed), which were named as COS‐Ce/0, COS‐Ce/150, COS‐Ce/300, COS‐Ce/600, COS‐Ce/1200 respectively. Each diet was allocated to four replicates of sea cucumbers (Initial weight: 6.72 ± 0.02 g). Sea cucumbers were fed to apparent satiation once daily (19:00 hours) for 56 days. During the experiment, water temperature was kept at 16 ± 0.5°C, pH 7.8–8.2, dissolved oxygen beyond 5 mg L?1, ammonia nitrogen below 0.5 mg L?1 and salinity from 30‰ to 31‰. Results showed that the specific growth rate of sea cucumbers was significantly higher in COS‐Ce/600 than that in other four treatments. Activities of phagocytosis, respiratory burst, acid phosphatase and alkaline phosphatase in COS‐Ce/600 were significantly higher than that in COS‐Ce/0 (P < 0.05) respectively. On the contrary, cumulative mortality was the lowest in COS‐Ce/600 following 14 days exposure to Vibrio splendidus (P < 0.05). In conclusion, these results confirmed that dietary COS‐Ce had beneficial effects on growth performance, nonspecific immunity and disease resistance of sea cucumber.  相似文献   

13.
A 9‐week feeding experiment was conducted to determine the effect of dietary biotin levels on growth performance and non‐specific immune response of large yellow croaker. Fish (6.16 ± 0.09 g) were fed twice daily to apparent satiation with diets containing 0.00 (as the basal diet), 0.01, 0.05, 0.25, 1.24 and 6.22 mg biotin kg?1 diet. Results showed that fish fed the basal diet had the lowest survival rate, and fish fed 0.05 mg kg?1 dietary biotin achieved significantly higher final weight and weight gain. Dietary biotin levels had no significant influence on carcass crude lipid, moisture and ash content, but significantly influenced the carcass crude protein. Liver biotin concentration significantly increased with the supplementation of biotin, but no tissue saturation was found within the supplementation scope of biotin. Broken‐line regression analysis of weight gain showed that juvenile large yellow croaker requires a minimum dietary biotin of 0.039 mg kg?1 for maximal growth. The analyses of serum parameters showed that the moderate‐ (0.05 mg kg?1) and high‐dose (6.22 mg kg?1) dietary biotin significantly improved both lysozyme and alternative complement pathway activities, indicating dietary biotin within a certain range could improve the non‐specific immune response of large yellow croaker.  相似文献   

14.
Eight test diets were used in the experiment: seven fresh diatom (Cylindrotheca fusiformis) diets in which diatom occupied 100%, 83.3%, 50%, 33.3%, 20%, 14.3% and 11.1% in dry matter of the feeds (marked as D100, D83, D50, D33, D20, D14 and D11), and a formulated diet (70% Sargassum thunbergii powder, 20% sea mud and 10% fish meal, based on dry weight, marked as ST). The results showed that the specific growth rates (SGRs) of the animals fed diets D33, D20, D14 and D11 were not significantly different from the SGR of those fed diet ST. However, the energy allocated to growth for the animals fed with diet D14 was twice that of diet ST. For sea cucumbers fed diet D14 the largest expenditure part was allocated to respiration (55.4%), but for those fed diet ST, the largest part was allocated to faeces (62.7%). The organic content of diet D14 was also much lower than that of diet ST. Frozen diatom diets containing 14% (dry matter weight) fresh diatom could be an environmentally friendly feed as an alternative option for macroalgae powder.  相似文献   

15.
The immune‐related enzymes in marine animals are very sensitive to divalent metal ions. To investigate the roles divalent metal ions play in the influence on the immunity of sea cucumber Apostichopus japonicus, one of the most important commercial species in Asian countries, the effects of eight divalent metal ions at concentrations of 2.5, 5, 10, 15, 20, 25 and 30 mmol L?1 on the activities of superoxide dismutase (SOD), phenoloxidase (PO), acid phosphatase (ACP), alkaline phosphatase (AKP) and myeloperoxidase (MPO) in coelomic fluid were determined with the nitro blue tetrazolium chloride (NBT) method, dopachrome formation method, p‐nitrophenyl phosphate (pNPP) method and 3,3′,5,5′‐tetramethyl benzidine (TMB) method. The results indicated that Mg2+ enhanced the activities of SOD, PO, ACP and AKP significantly and showed no obvious effect on MPO activity; Zn2+ increased the activities of SOD, ACP and AKP, and showed no obvious effect on the activities of PO and MPO; Cu2+ enhanced the activities of ACP, AKP and MPO and activated SOD and PO at a certain concentration range; Ca2+ and Mn2+ inhibited the activities of ACP and AKP; Fe2+ had strong inhibitory effect on SOD activity; Pb2+ showed inhibitions on the activities of SOD, PO, ACP and AKP; and Cd2+ inhibited MPO activity greatly. The data obtained in this study collectively suggest that Mg2+, Zn2+ and Cu2+ have potential in promotion of A. japonicus immunity, while Ca2+, Fe2+, Pb2+, Cd2+ and Mn2+ might be limiting factors to the immune response of A. japonicus.  相似文献   

16.
This feeding trial was conducted to determine the vitamin E requirement of growing sea cucumber Apostichopus japonicus Selenka. Six isonitrogenous and isoenergetic experimental diets were formulated to contain graded levels of vitamin E (6.7, 81.2, 159.3, 237.8, 314.6, 395.9 mg/kg diet). Each diet was assigned randomly to 30 growing sea cucumber with initial body weight 15.43 g in triplicates for 8 weeks. Survival rate was not affected by dietary vitamin E; meanwhile, both the weight gain (WG) and specific growth rate were presented the trend of increasing first and then kept stable. With the increasing of dietary vitamin E, crude lipid content of body wall was evaluated firstly and dropped afterwards. When dietary vitamin E contents were lower than 159.3 mg/kg, vitamin E contents of body wall were increased by dietary vitamin E levels, but there were no more differences when dietary vitamin E higher than 159.3 mg/kg. There were minor effects on digestive enzymes of intestine by dietary vitamin E. Contents of malondialdehyde were decreased, while the total superoxide dismutase activity was increased first and then decreased with the increasing of dietary vitamin E. Activities of intestinal alkaline phosphatase were increased, and glutamic oxaloacetic transaminase were decreased first and then increased with the increasing of dietary vitamin E. In conclusion, analysis by a linear regression equation of WG or vitamin E contents in body wall indicated that the optimum requirement of vitamin E for growing sea cucumber (initial body weight 15.43 g) was 165.2–187.2 mg/kg diet.  相似文献   

17.
To discuss the possibility of co‐culturing Pacific oyster with the sea cucumber Apostichopus japonicus, a field experiment was conducted in an oyster farm. Apostichopus japonicus juveniles (mean wet weight, 0.08 g) were cultured below an oyster raft and at a control station for 216 days, and the wet weight and stable isotope ratios (δ13C, δ15N) were analysed together with settling organic matter (OM) collected using sediment traps. All sea cucumbers cultured below the raft survived (survival rate, 100%), while at the control station one individual disappeared (96%). During 216 days, the juveniles at the oyster and control stations grew to a mean weight of 5.5 and 2.6 g, attaining respective specific growth rates of 2.0% and 1.6% (paired t‐test, P < 0.001). Settlement rates of carbon and nitrogen at the oyster station were ~5 times larger than those at the control station. The stable isotope analysis showed that settling OM at both stations originated from coastal phytoplankton and that phytoplankton represented the primary food source for A. japonicus. The rapid growth of A. japonicus at the oyster station was concluded to be due to the abundant supply of oyster biodeposits, which could be ingested by this species.  相似文献   

18.
采用室内受控的实验方法研究了不同光照强度对刺参幼参生长的影响。实验设暗光、微强光、强光3个光照处理,同时每个光照处理组分别投喂两种饵料(人工配合饲料、人工配合饲料加底栖硅藻)。研究结果表明,不同光照强度下,幼参的生长差异显著(P<0.05),每种饵料处理下强光处理组幼参的特定生长率和日增重明显高于暗光处理组,而相同光照强度下两种饵料处理对幼参生长的影响差异不显著(P>0.05)。3个光照处理下幼参的特定生长率平均分别为0.26%、0.63%、0.98%/d,日增重为0.53、1.39、2.26 g/d。  相似文献   

19.
Because of its high nutritional value and health benefits, aquaculture production of Apostichopus japonicus in China is the largest of any single species. Therefore, the development of new farming methods is of considerable significance. In this study, discarded oyster shells have been used to create an artificial reef for the culture of this species. The results have shown that from 6th March 2009 to 26th November 2009, the wet weight of sea cucumber increased from 49.57 ± 1.16 to 79.87 ± 1.46 g ind?1. Between 16th July and 18th October, the specific growth rate and daily weight gain of A. japonicus differed significantly from other periods. Population density was higher within the reef compared with outside the reef area, and the difference was significant (P < 0.01). The maximum distance between A. japonicus individuals within the reef area on 3rd March and 16th July was 65.0 ± 3.3 and 62.9 ± 4.4 cm, respectively, but the difference was not significant (P > 0.05). The diatom species attached to the oyster shells were similar to those found in the stomach content of A. japonicus. In conclusion, the oyster‐shell reef provides a suitable habitat and shelter for the culture of the sea cucumber, A. japonicus.  相似文献   

20.
A feeding experiment was conducted in a closed recirculating system to evaluate the effects of freeze‐dried spheroplasts prepared from Pyropia yezoensis (Ueda) on feed intake, growth and biochemical composition of sea cucumber, Apostichopus japonicus (Selenka). Pyropea spheroplasts (PS) were prepared through enzymatic treatment to break down the complex mixture of polysaccharides cell walls that might be easier for growth energy partitioning. Sea cucumbers were fed‐formulated diets with 10 (Diet 1), 30 (Diet 2) and 50 g/kg (Diet 3) inclusion level of PS. A diet without PS was used as a control (Diet 4). The experiment was conducted for 6 weeks maintaining water temperature 15 ± 1°C, photoperiod 18:06 hours (D:L). Feed was supplied ad‐libitum at 16.00 h once in a day, and the remaining feed and faeces were removed in the next day. Results showed that the highest growth was observed in the 50 g/kg PS diet compared to other treatments. Total weight gain, mean weight gain, net yield, protein efficiency ratio (PER) and protein gain (%) were significantly higher in the 50 g/kg PS diet (p < .05). A significantly higher percentage of energy was allocated for growth in the 50 g/kg PS diet. The highest specific growth rate and feed conversion efficiency (p < .05) were observed in the higher percentage of PS diet. Both the growth performance and biochemical analysis showed that superior growth was observed with increasing levels of PS in the diet. We infer that PS can be used as a new, cheaper feed ingredient in the formulated diet of A. japonicus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号