首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of various dietary blends of menhaden oil (MO) with canola oil (CO) on the growth performance, whole body proximate composition, flesh quality (muscle proximate and lipid composition) and thyroidal status of immature Atlantic salmon in sea water were studied.Atlantic salmon (initial weight, 145.2–181.3 g), held on a natural photoperiod and in 1100 L fibreglass tanks that were supplied with running, aerated (D.O., 9–10.5 p.p.m.), ambient temperature (8–10.5 °C) sea water (salinity, 28–30), were fed twice daily to satiation one of four isonitrogenous (36% digestible protein) and isoenergetic (18.8 MJ of digestible energy kg-1) extruded high-energy diets for 112 days. All diets contained omega –3 (n-3) fatty acids in excess of requirements and differed only with respect to the source of the supplemental lipid which was either, 25% MO; 20.75% MO and 4.25% CO; 16.5% MO and 8.5% CO; or 12.25% MO and 12.75% CO. Thus, CO comprised, respectively, 0, 15.5, 31.2, or 47.0% of the total dietary lipid content (28% on an air-dry basis).Dissimilar percentages of saturated fatty acids in the dietary lipids were not found to be consistently related to the apparent gross energy digestibility coefficients of the diets. Atlantic salmon growth, dry feed intake, feed and protein utilization, percent survival, thyroidal status, and whole body and muscle proximate compositions were generally not influenced by the different sources of supplemental lipid. Therefore, our results suggest that canola oil may comprise as much as 47% of the lipid in high-energy grower diets for Atlantic salmon without compromising performance.The muscle lipid compositions generally mirrored those of the dietary lipids which, in turn, were influenced strongly by the concentrations and compositions of the CO and MO in the diet. Hence, as the dietary CO level was increased there were attendant increases in percentages of oleic acid (18:1(n-9)), linoleic acid (18:2(n-6)), total omega-6 (n-6) fatty acid content, and ratios of (n-6) to (n-3) and decreases of eicosapentaenoic acid (EPA; 20:5(n-3)), docosahexaenoic acid (DHA; 22:6(n-3)) and n-3 HUFAs (EPA & DHA) in the flesh lipids. The ranges for percentages of saturated and unsaturated fatty acids in the flesh lipids were, however, much less than those noted respectively in the dietary lipids probably because of selective metabolism of many of the former acids and some of the 18 carbon unsaturates for energy purposes.  相似文献   

2.
Juvenile Atlantic cod (Gadus morhua) were fed extruded feeds formulated to contain 360–660 g kg?1 protein, 80–280 g kg?1 lipid and 80–180 g kg?1 starch at feeding frequencies of either once per day or every second day to satiation. The trial was conducted at 8 °C and lasted for 28 weeks during which fish were weighed five times at regular intervals. Sampling for proximate analysis was performed at the start, after 12 weeks and at the end of the trial. Fish grew from an average weight of 192 g to between 750 and 866 g, with growth being negatively affected by low dietary protein concentration. High dietary starch concentrations had some negative effects on growth, whereas changes in dietary fat concentration had no significant effect on growth. Liver indices (at the end of the experiment) varied between 80 and 170 g kg?1, and there was a negative correlation between the ratio of protein to fat and liver index. Feed conversion ratio (FCR) ranged between 0.74 and 0.88, and feed utilization improved with increasing concentrations of dietary protein and fat. Increasing dietary starch concentrations resulted in poorer feed utilization. To achieve good growth and protein retention, and avoid excessive liver size in juvenile cod, feeds should contain 500–600 g kg?1 crude protein, 130–200 g kg?1 lipid and <150 g kg?1 starch.  相似文献   

3.
A 12‐week feeding trial was conducted to investigate the interactive effects between water temperature and diets supplemented with different blends of fish oil, rapeseed oil and crude palm oil (CPO) on the apparent nutrient and fatty acid digestibility in Atlantic salmon. Two isolipidic extruded diets with added fish oil fixed at 50% and CPO supplemented at 10% or 25% of total added oil, at the expense of rapeseed oil, were formulated and fed to groups of Atlantic salmon (about 3.4 kg) maintained in floating cages. There were no significant effects (P>0.05) of diet on growth, feed utilization efficiency, muscle total lipid or pigment concentrations. Fatty acid compositions of muscle and liver lipids were mostly not significantly different in salmon fed the two experimental diets but showed elevated concentrations of 18:1n‐9 and 18:2n‐6 compared with initial values. Decreasing water temperatures (11–6°C) did not significantly affect protein, lipid or energy apparent digestibilities of the diets with different oil blends. However, dry matter digestibility decreased significantly in fish fed the diet with CPO at 25% of added oil. Increasing dietary CPO levels and decreasing water temperature significantly reduced the apparent digestibility (AD) of saturated fatty acids. The AD of the saturates decreased with increasing chain length within each temperature regimen irrespective of CPO level fed to the fish. The AD of monoenes and polyunsaturated fatty acids was not affected by dietary CPO levels or water temperature. No significant interaction between diet and water temperature effects was detected on the AD of all nutrients and fatty acids. The results of this study showed that the inclusion of CPO up to about 10% (wt/wt) in Atlantic salmon feeds resulted in negligible differences in nutrient and fatty acid digestibility that did not affect growth performance of fish at the range of water temperatures generally encountered in the grow‐out phase.  相似文献   

4.
Two extruded diets designed to have fat levels of 220 g kg−1 (F22) and 300 g kg−1 (F30) were fed to Atlantic salmon Salmo salar L. in two different experiments during the sea rearing period (from 0.2–0.3 kg to 3–4 kg). Each diet was fed restricted and isoenergetically at two feeding rates to fish in triplicate groups. In one of the experiments, a supplementary group of fish was fed to satiation with the F30 diet. All fish were slaughtered and evaluated for quality according to a commercial standard.
No difference in growth was observed between fish fed the two diets at similar feeding rates and the growth was proportional to the amount of dietary energy offered. Feed conversion ratios decreased according to higher energy content in the F30 diet, and the nitrogen and phosphorus retention increased significantly. Fish fed the F30 diet revealed a higher incidence of sexual maturity. Fat content in cutlets and dressed carcasses were significantly affected by feeding rate but not by dietary fat level. Fish fed the F30 diet had more visceral fat and, consequently, lower dress-out percentage. Mortality, liver size and liver colour were not significantly affected by dietary fat level.
These experiments showed that even large differences in dietary fat level employed for the entire sea rearing period of Atlantic salmon, did not, or only marginally affected the cutlet and dressed carcass fat content. The high fat diet improved the feed utilization, thus decreasing the discharge to the environments. Furthermore, it resulted in greater growth at ad libitum feeding.  相似文献   

5.
Four extruded diets differing in protein/fat concentrations, 378/389 g kg?1, 425/346 g kg?1, 480/308 g kg?1 and 524/256 g kg?1 were tested in a digestibility trial and a growth study. Apparent digestibility of protein and fat were not significantly different among the diets when tested in 1-kg Atlantic salmon, Salmo salar L., in sea water. The diets represented a range of digestible protein to digestible energy ratios (DP/DE ratios) of 14.1, 16.4, 18.8 and 21.9 g MJ?1. The 138-day growth study was performed with triplicate groups of Atlantic salmon of 1.0 and 2.5 kg initial weight. Irrespective of size; growth, feed conversion ratio (FCR), nitrogen and energy retention were poorer in fish fed the diet with DP/DE ratio of 14.1 g MJ?1 compared with the fish fed the other diets. A DP/DE ratio of 16.4 g MJ?1 was sufficient to produce maximum growth for the large fish, while the DP/DE ratio of 18.8 g MJ?1 produced the highest growth in the small fish. In the large fish, the lowest FCR was obtained on a DP/DE ratio of 16.4 g MJ?1, while there was no clear difference in FCR within the small fish when diets of DP/DE ratios of 16.4–21.9 g MJ?1 were fed. The carcass-to-body ratio in the small fish decreased with decreasing DP/DE ratios. The fish fed the diet of 21.9 g MJ?1 had significantly lower fat and dry matter and higher protein content than fish of similar size fed the other diets. Increased dietary lipid content seemed to improve astaxanthin deposition in the small fish, while the large fish showed no significant differences in astaxanthin deposition due to dietary treatment. This study indicates that a DP/DE ratio of 14.1 g MJ?1 in high-energy diets for Atlantic salmon in sea water is below the optimal DP/DE ratio for growth and feed utilization, and that the optimal DP/DE ratio decreases with increasing fish weight. DP/DE ratios around 19 g MJ?1 for fish weighing 1 to 2.5 kg, and 16–17 g MJ?1 for fish weighing 2.5 to 5 kg, are suggested to be optimal.  相似文献   

6.
The effects of oxidized dietary lipid and the role of vitamin E on the growth performance, blood parameters and body composition of juvenile Atlantic cod (Gadus morhua) were evaluated over a 9‐week feeding period. Four isonitrogenous experimental diets containing fresh or oxidized fish oil with or without added vitamin E (α‐tocopherol or mixed tocopherols) were fed to juvenile cod. The oxidized lipid used had a peroxide value of 94 mEq kg?1 oil. No significant (P>0.05) differences in growth performance (weight gain and specific growth rate) or feed utilization (feed consumption and feed efficiency ratio) were observed when oxidized dietary lipid was used. The hepatosomatic index (HSI), viscerosomatic index (VSI) and haematocrit did not show any significant (P>0.05) differences among the treatments. However, erythrocyte osmotic fragility (EOF), referred to as susceptibility to haemolysis, of fish fed oxidized oil without added vitamin E was high in comparison with those fed unoxidized oil. Supplementation with α‐tocopherol appeared to decrease haemolysis, but mixed tocopherols had no significant (P>0.05) effect on EOF. The proximate composition of fish whole body was also affected by diet treatment. Fatty acid composition of liver total lipid reflected that of dietary lipid. Variations in tissue (liver and muscle) fatty acid composition among the treatments followed the same trend as those of the dietary fatty acids. Fish fed fresh oil had a higher proportion of polyunsaturated fatty acids (PUFA) in muscle and liver lipid than those fed oxidized oil. The results suggest that oxidized dietary oil affected juvenile Atlantic cod in certain tissues and that these effects could be alleviated by supplementation of sufficient amounts of vitamin E in the diet.  相似文献   

7.
A 12‐week feeding trial was conducted to elucidate the interactive effects of dietary fat, protein contents and oil source on growth, whole body proximate composition, protein productive value (PPV) and fatty acid (FA) composition of muscle and liver in Atlantic salmon (Salmo salar L.)` at low water temperatures (4.2 °C). Triplicate groups of Atlantic salmon (initial weight 1168 g) were fed six isoenergetic diets, formulated to provide either 390 g kg−1 protein and 320 g kg−1 fat (high‐protein diets) or 340 g kg−1 protein and 360 g kg−1 fat (low‐protein diets). Within each dietary protein/fat level, crude rapeseed oil (RO) comprised 0, 30 or 60% (R0, R30, R60, respectively) of the added oil. After 12 weeks, the overall growth and feed conversion ratio (FCR) were very good for all treatments [thermal growth coefficient (TGC): 4.76 (±0.23); FCR: 0.85 (±0.02)]. Significant effects were shown owing to the oil source on specific growth rate and TGC only. The liver and muscle FA compositions were highly affected by the graded inclusion of RO. The PPV was significantly affected by the dietary protein level. The results of this study suggest that more sustainable, lower protein diets with moderate RO inclusion can be used in Atlantic salmon culture at low water temperatures with no negative effects on growth and feed conversion, no major detrimental effects on lipid and FA metabolism and a positive effect on protein sparing.  相似文献   

8.
High‐energy feeds, with increased fat concentrations, are often used in salmon farming to improve feed:gain ratio. However, fish are thought to regulate ingestion to meet their energy and nutrient intake requirements. Further, feeds with excessive fat content will lead to increased adiposity, which is thought to exert a negative feedback on feed intake via lipostatic regulation mechanisms. A test of the lipostatic model of feed intake regulation was carried out on juvenile Atlantic salmon Salmo salar L. (c. 165 g) in which body fat content (5.6% and 9.4% body fat) had been manipulated by feeding feeds with different fat concentrations. Thereafter, the fish were offered the high‐ and low‐fat feeds (15.6% and 26.5% dietary fat content) simultaneously, and our hypothesis was that feed preference and intake would reflect the state of fat storage. Thus, we predicted that, when given a choice of feeds, the lean fish would eat more, and that the body fat status of the groups would converge over time. The results indicated a general preference for the leaner feed irrespective of adiposity level, but leaner fish consumed more feed, grew faster and deposited more body fat than their fatter counterparts. Over time, body compositions converged among treatments, and differences in feed intake ablated. These findings seem to provide supportive evidence for a lipostatic regulation of feed intake in fish.  相似文献   

9.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

10.
The growth and feed utilization of Atlantic cod (Gadus morhua) (437 g), Atlantic salmon (Salmo salar) (485 g) and rainbow trout (Oncorhynchus mykiss) (413 g) fed a diet (170 g kg−1 fat, 600 g kg−1 crude protein; LE) similar to that used in commercial cod production or one that was top dressed with additional fat (280 g kg−1 fat, 530 g kg−1 crude protein; HE), were compared in an 11‐week trial. In the cod, relative feed intake was 41–58% and thermal growth coefficient 63% of that in the salmonids, but the feed efficiency ratio (FER) was 38% better (P ≤ 0.05). In contrast to the cod where there was no effect of diet on feed intake, growth or FER, both the salmon and trout fed the HE diet had greater feed intake than those fed the LE diet, but the effect of this was only positive for growth in the salmon. The cod retained more of the digested nitrogen (44.9 ± 2.7%) than the salmon (39.4 ± 0.8%), and both of these species retained more than the trout (33.6 ± 1.1%) (P ≤ 0.05). The retention of digested energy was significantly higher in the salmon (52.2 ± 0.9%) than in the trout (44.8 ± 1.1%), with the cod (44.9 ± 4.9%) not different from either of the other species. There were no differences between the species in the retention of absorbed phosphorus (65.9 ± 3.6%). There were very few dietary effects on nutrient utilization in this trial and, for the cod, this indicates that higher energy diets may be feasible for use in production.  相似文献   

11.
This study was conducted to determine the effects of feeding increasing lipid concentrations (310, 380 and 470 g kg–1 lipid on dry weight) in diets based mainly on herring byproducts to Atlantic salmon Salmo salar . The diets were isonitrogenous, varying in dietary lipid content at the expense dietary starch. Average fish weight increased from 1.2 kg in April to 2.2–2.7 kg at the end of the feeding trial in September. Significantly greater growth was found in fish fed either the 380 g kg−1 or the 470 g kg−1 lipid diets compared with the 310 g kg−1 lipid diet. Muscle lipid content increased in all dietary groups on a wet weight basis from 7.7 ± 1.4% to 12 ± 3% in salmon fed the 310 g kg−1 lipid diet, and to 16 ± 2% in salmon fed the 380 g kg−1 and 470 g kg−1 lipid diets. In fish of similar weight there was a positive correlation between dietary lipid and muscle lipid concentrations. Low concentrations of muscle glycogen were detected in fish fed each of the diets, while muscle vitamin E concentrations slowly decreased as muscle lipid increased. Muscle fatty acid composition reflected dietary fatty acid profiles, containing similar percentages of total saturated, monoenic and n-3 fatty acids (20:5n-3 and 22:6n-3) in fish from all dietary treatment groups. However, a higher ratio of n-3/n-6 was found in muscle from fish fed the 470 g kg−1 lipid diet compared with the other two groups. Blood chemistry values varied somewhat, but all values were within normal ranges for Atlantic salmon of these sizes.  相似文献   

12.
Two extruded diets with oil/protein levels of 260/410 and 360/365 g kg?1 were used to feed Atlantic salmon, from an initial weight of 600 g to a final weight of 4 kg after 1 year of feeding. The experiment was performed using 12 net‐pens with 500 fish in each. Every 4 months 10 fish were taken from each net‐pen, and analysed for growth and proximate composition. After 4 months of feeding, the chemical composition in the fillets was significantly different for the two different feed groups. The mean fillet fat content was 1% higher in fish fed with high oil content in the feed. There were no differences in the biological values. After 8 months of feeding the difference in mean muscular fat content was 3%, but there was still no difference in the carcass weight. However, a significant difference was found in the intestine weight and the condition factor. One year of feeding resulted in a significant, 10% higher carcass weight, a 2% higher fat‐content and a 1% lower protein‐content in the fillets of fish fed on the high oil content diet. A drop in pH was found during the winter, but this was not correlated to the feed.  相似文献   

13.
Production of Atlantic salmon Salmo salar L. utilizes feeds with high fat concentrations to give low feed:gain. However, increased dietary fat content inevitably leads to increased body fat deposition, and salmon with very high fat concentrations in the muscle (fillet) are regarded as being of inferior quality. Adiposity is thought to participate in the regulation of feed intake by means of negative feedback control. Thus, elevated adiposity is predicted to result in lower feed consumption, and thereby possibly impair growth. We tested the hypothesis that high body fat content in salmon would lead to reduced feed intake and growth. Salmon (740 g) were preconditioned with high‐ or low‐fat feed (38.8 and 27.8% dietary fat content) for 10 weeks to establish differences in body fat storage (build‐up phase). Thereafter, fat and lean fish (19.4% and 16.7% body fat content) were fed the high‐ and low‐fat feeds for an additional 7 weeks (Phase Two). During Phase Two, the fat fish consumed 30% less feed than lean fish, which resulted in corresponding differences in growth. The differences in adiposity seen at the end of the build‐up phase were still evident at trial end. Groups of fish, which were preconditioned with the same feed during the build‐up phase, had similar feed consumption and growth to each other during Phase Two, indicating that body fat was playing an important role in the regulation of feed intake.  相似文献   

14.
The present trials aimed to investigate the effects of replacing fish meal with plant proteins in diets for cod, using a regression design where fish meal constituted the control. The plant protein diets were formulated to meet the amino acid requirements according to NRC (1993) and contained corn gluten meal, soybean meal, a mixture of these, or a mixture of wheat gluten meal and soybean concentrate. The plant protein fraction constituted up to 440 g kg−1 of the extruded diet. Two feeding experiments were conducted, one at high (11 °C) and one at low (6.5 °C) temperature. High growth and feed utilization were obtained in all diet groups at both temperatures. However, only in Exp.1 (11 °C), growth and feed utilization were linearly reduced by increases in dietary soybean and corn gluten meal, while no such effect was detected in Exp.2 (6.5 °C). Reductions in protein retention were seen at both temperatures with use of all evaluated plant protein sources. Due to large amounts of plant protein ingredients in diet, differences in diet amino acid composition were seen. These were partly reflected in the muscle free amino acid pool. Dietary plant ingredients did not affect whole body, liver or muscle proximate compositions, or liver indices. In both experiments, blood parameters were within the range of earlier reported normal values and indicated, together with low mortality, good fish health status. The results show that there is high potential to use protein‐rich plant ingredients in diets for Atlantic cod.  相似文献   

15.
The present experiment reports on the effects of inositol supplementation from 0 to 1600 mg kg−1 to a fishmeal-based diet on growth, inositol retention, proximate composition (dry matter, protein and lipid) and blood chemistry in Atlantic salmon, Salmo salar L., fry during a 28-week feeding experiment. Growth was affected to a minor extent, and only during the first 4 weeks of the experiment. Mortality was low and not related to dietary inositol. The inositol concentration in whole fish and liver was affected by dietary inositol supplementation. Proximate composition of whole fish was similar among dietary groups, except for positive correlations between dry matter, lipid and protein and dietary inositol supplementation after 8 weeks. Analyses of hepatic lipid classes after 8 weeks showed non-significant differences among the groups, mostly explained by somewhat reduced total hepatic lipid accumulation with increasing dietary inositol. Triacylglycerol and phosphatidylcholine accounted for 80% and 8–10% of the hepatic lipids (approximately 80 mg lipid g−1 wet weight) in all groups. Blood haemoglobin was positively correlated and plasma triacylglycerol was negatively correlated to dietary inositol supplementation at week 28, while plasma protein and cholesterol were unaffected. The present results indicate that the requirement of Atlantic salmon fry for inositol is covered through the natural content of inositol in practical feed ingredients at around 300 mg inositol kg−1. It may, however, be advisable to supplement starter diets with moderate amounts of inositol, around 200 mg kg−1, to compensate for fluctuations in inositol concentrations in natural ingredients, leaching loss of inositol from the diet and for any potential increased inositol requirement in salmon fry.  相似文献   

16.
The effects of different feeding methods on growth and slaughter traits of Atlantic salmon, Salmo salar, have been examined. Swimming activity associated with feeding was greatest amongst fish fed using automatic feeders, intermediate amongst those fed predetermined rations by hand, and least in groups of fish fed to satiation twice per day. Fish fed to satiation ate more and grew faster than did those provided with rations predicted to support high rates of growth, but the fish fed to satiation had higher feed:gain ratios than those given predetermined rations as two meals per day. The muscle tissues of the fish fed to satiation had higher lipid (%) and lower moisture (%) contents than did those of the fish fed the predetermined rations, but differences in muscle composition could be accounted for by differences in the size of the fish. Lipid was positively, and moisture negatively, correlated with fish size, whereas per cent protein and dress-out losses were little influenced by fish size and feeding regime. The fish fed to satiation were slightly heavier for a given length than those in the other groups. There was, however, no evidence that the largest fish had the highest condition factor, nor could condition factor be used to predict per cent lipid in the muscle tissue. Size variation increased in all groups of fish, and this was, in part, due to the cessation of growth of maturing individuals. Size variation was, however, most marked in the groups fed using automatic feeders, suggesting that interindividual competition for food was greatest amongst these fish.  相似文献   

17.
Camelina meal Camelina sativa (CM) is a potential protein source in aquaculture feeds, because of its crude protein level (39%) and essential amino acids. Two feeding experiments were conducted with Atlantic cod Gadus morhua. Cod in Experiment I (19.4 g fish?1) were fed diets with 0%, 12% or 24% CM for 9.5 weeks at 10°C; and cod in Experiment II (14.4 g fish?1) were fed diets with 0%, 15%, 30% or 40% CM for 13 weeks at 10°C. Growth, lipid and amino acid tissue composition were compared amongst cod fed varying levels of CM. In Experiment I, cod could tolerate the highest level of CM inclusion (24%) without affecting growth compared to cod fed the control diet. In Experiment II, growth performance was significantly affected at 30% CM inclusion compared to the control treatment, and cod fed 15% CM displayed some signs of depressed growth (reduced feed intake and weight gain). Both treatment and duration were interacting factors (P = 0.015) that determined growth performance when comparing both experiments. Muscle tissue composition was relatively unaltered with less than 30% CM inclusion; however, multivariate statistics revealed significant differences in muscle tissue fatty acid composition between cod fed 40% CM and the control diet. The tissue amino acid profile was generally unaltered because the dietary amino acid profile was consistent after CM inclusion. A few antinutritive compounds in CM may have affected palatability in diets with greater than 30% CM inclusion, which may have resulted in reduced growth performance.  相似文献   

18.
The results of a 56‐day experiment on juvenile Murray cod, Maccullochella peelii peelii, an Australian native fish with a high aquaculture potential, of mean weight 14.9 ± 0.04 g, fed with five experimental diets, one a series of 40% protein content and lipid levels of 10, 17 and 24% (P40L10, P40L17 and P40L24), and another of 50% protein and 17 and 24% (P50L17 and P50L24) lipid are presented. The specific growth rate (SGR) (% day?1) of fish maintained on different diets ranged from 1.18 to 1.41, and was not significantly different between dietary treatments, except P40L10 and the rest. However, there was a general tendency for SGR to increase with increasing dietary lipid content at both protein levels. The food conversion ratio (FCR) for the 40% protein series diets were poorer compared with those of the 50% protein diets, and the best FCR of 1.14 was observed with the P50L17 diet. The protein efficiency ratio (PER), however, was better in fish reared on low protein diets. The net protein utilization (NPU) also did not differ significantly (P > 0.05) in relation to dietary treatment. As in the case of PER the highest NPU was observed in Murray cod reared on diet P40L24 and the lowest in fish fed with diet P50L24. The carcass lipid content reflected that of the diets, when significant increases in the lipid content was observed in relation to dietary lipid content at both protein levels. However, body muscle lipid content did not increase with increasing dietary lipid content, and was significantly lower than in the whole body. The fatty acids found in highest concentration amongst the saturates, monoenes and polyunsaturates (PUFAs) were 16 : 0, 18 : 1n‐9 and 22 : 6n‐3, respectively, and each of these accounted for more than 60% of each of the group's total. The muscle fatty acid content was affected by the dietary lipid content; for example the total amount (in μg mg?1 lipid) of monoenes ranged from 72 ± 5.1 (P40L10) to 112 ± 10 (P40L24) and 112 ± 2.8 (P50L17) to 132 ± 11.8 (P50L24) and the n‐6 series fatty acids increased with increasing dietary lipid content, although not always significant. Most notably, 18 : 2n‐6 increased with the dietary lipid level in both series of diets.  相似文献   

19.
This research examined the haematological and immunological responses of quadruplicate groups of juvenile (~400 g initial weight) Atlantic salmon (Salmo salar L.) that had each been fed daily to satiation for 12 weeks one of three high‐energy extruded diets of identical composition except for the supplemental dietary lipid (234.7 g kg?1) source. The three experimental diets varied in the composition of supplement lipid; diet 1 contained 100% anchovy oil (AO), while diets 2 and 3 replaced 29.8% and 59.7% of the AO (respectively) with a 1:1 blend of canola oil (CO) and poultry fat (PF). Immediately following the feeding trial, a random sample of fish from each diet was sampled for determination of baseline levels of various haematological and immunological parameters. Thereafter, duplicate diet groups were vaccinated (against Listonella anguillarum) and reared on their respective experimental diets for an additional 4 weeks. At that time, the remaining fish were sampled similarly, and the different parameters were measured again. Comparisons between the different diet treatment groups were made before and after vaccination. There were no significant diet treatment effects at either sample time, for haematocrit, differential leucocyte counts, erythrocyte counts, serum hemolytic activity or head kidney leucocyte respiratory burst activity. The fish fed diet 1 however, did show significantly higher post‐vaccination levels of peripheral blood leucocyte respiratory burst activity and higher serum antibody titres against L. anguillarum. The results suggest that the relatively low n‐6/n‐3 fatty acid ratios in the muscle and presumably other tissues of fish fed diet 1, may have resulted in a reduced production of immunocompromising eicosanoids than were produced in fish ingesting the other two diets that were based in part on the different amounts of the CO and PF blend. Long‐term studies are required to confirm this possibility.  相似文献   

20.
The influence of dietary cholesterol (CHOL) and short-chain fatty acids (SCFA; sodium salts of acetic, propionic and butyric acid, 5:5:2 w/w/w) on growth, organ indices, macronutrient digestibility, and fatty acid composition of Atlantic salmon Salmo salar was investigated. Salmon (initial average weight 0.7 kg) held in seawater (7°C) for 175 days were fed one of six diets: 1, without CHOL/SCFA supplement; 2, with 0.5% SCFA; 3, with 2.0% SCFA; 4, with 1.0% CHOL; 5, with 1.0% CHOL and 0.5% SCFA; 6, with 1.0% CHOL and 2.0% SCFA.
Neither SCFA nor CHOL supplements had any significant effects on specific growth rate (SGR), mortality, apparent digestibility coefficients (ADC) of macronutrients, total lipid content. Hepatosomatic index (HSI) was slightly increased in salmon fed the CHOL supplement ( P  < 0.05). Hepatic CHOL concentration, but not the hepatic CHOL pool, was significantly increased ( P  < 0.001) by dietary CHOL supplementation.
The fatty acid compositions of fillet and gut tissues were not influenced by dietary treatment, while significant effects of CHOL supplements were observed in faeces and liver. Less saturated fatty acids and more mono- and poly-unsaturated fatty acids were excreted with faeces in salmon fed CHOL supplements. Salmon fed CHOL supplements significantly reduced the relative concentration of hepatic palmitic acid (C16 : 0), arachidonic acid (C20 : 4 n-6) and docosahexaenoic acid (C22 : 6 n-3), while the contents of oleic acid (C18 : 1 n-9) and eicosenoic acid (C20 : 1 n-9) were significantly increased. SCFA did not influence the observed effects of dietary CHOL.
The present study shows that dietary CHOL supplements profoundly altered excretion and liver metabolism of individual fatty acids in salmon. The impact of this alteration on physiological performance has not been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号