首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of experiments was conducted to determine the effects of limit-feeding high-concentrate (LFHC) diets on dietary CP requirements of steer calves. When steer calves were fed 80% concentrate diets at 78 g/kg of BW.75, increasing dietary CP resulted in increased ADG (P less than .001). Average daily gain was increased in steers as daily monensin dosage increased from 120 to 180 mg (P less than .05). Increasing the daily monensin dosage to 240 mg did not increase ADG further. There were no (P greater than .10) CP X monensin interactions, suggesting that the monensin response was caused by improved energy utilization and not be the possible protein-sparing effects of ionophores. Steer calves in the second feedyard experiment expressed similar ADG when provided equal NEg as limit-fed, high-moisture ear corn (HMEC) or when given ad libitum access to corn silage. The basal diet did not affect the steers' daily N requirement for growth. Gain per unit of protein intake declined quadratically (P less than .05) with increasing CP intake, indicating that CP requirements were near NRC estimates on both diets. The corn silage-based diet was less digestible (70.3 vs 77.4%; P less than .01) than the HMEC diet when fed to lambs. Fecal output differed (P less than .10) substantially (342 g/d of corn silage vs 205 g/d of HMEC), whereas fecal N output was only slightly higher (6.97 vs 6.34 g/d, respectively; P less than .10). Limited feeding of higher-concentrate diets to steer calves seemed to be an effective management procedure and did not cause acute digestion upset.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Four ruminally fistulated Holstein heifers (BW = 385 +/- 6.2 kg) were used in a 4 x 4 Latin square experiment to determine the effect of feeding frequency on intake, water consumption, ruminal fermentation, and feeding and animal behavior. The treatments consisted of different feeding frequencies: a) once daily (T1); b) twice daily (T2); c) 3 times daily (T3); and d) 4 times daily (T4). Heifers were offered ad libitum access to concentrate and barley straw. Feeding frequency did not affect DMI (P >0.10), but water consumption tended to increase linearly as feeding frequency increased (P = 0.08). Average ruminal pH was not affected (P >0.10) by feeding frequency, but at 12 h after feeding ruminal pH was greater for T2 than for the other treatments. Total VFA concentration and VFA proportions were not affected (P >0.10) by feeding frequency, except valerate proportion, which increased linearly (P = 0.05) as feeding frequency increased. The concentration of ammonia-N was affected (P <0.05) cubically as feeding frequency increased (greatest for T3 = 9.3 mg of N/100 mL; lowest for T2 = 7.2 mg of N/100 mL). Feeding frequency had no effect on daily percentages of behavioral activities (P >0.05), except for observational behavior, for which there was a linear decrease as feeding frequency increased (P = 0.02). Heifers spent the same time on chewing activities, independent of feeding frequency. However, meal criteria tended to be affected (P = 0.07) by feeding frequency, with T2 (39.4 min) showing the longest intermeal interval. Total daily meal time, meal frequency, and meal size were not affected by feeding frequency (P >0.10), whereas meal length and eating rate showed cubic tendencies (P = 0.10 and P = 0.06, respectively) as feeding frequency increased. These results suggest that in the present experimental conditions, with heifers fed high-concentrate diets and with noncompetitive feeding, a smaller range of ruminal pH values was observed when feed was offered twice daily. Although heifers spent the same time on chewing activities, more stable ruminal conditions were probably achieved by feeding twice daily due to the rumination pattern, which was more constant during daytime in T2 than in T1. Moreover, when daytime and nighttime ruminating activity were analyzed separately, this activity was different in T1 (17.3 vs. 30.8%, respectively; P <0.05) but not in T2 (21.5 vs. 28.0%, respectively; P >0.05).  相似文献   

3.
As thiamine status of ruminants is adversely affected by rumen acidity, this study investigated whether or not thiamine deficiency occurs in feedlot cattle fed a high concentrate diet. Fifty 1- to 2-year-old feedlot cattle fed a high concentrate diet (75% barley) for at least 3 mo (high concentrate diet group) and 15 healthy feedlot cattle of similar ages (control group) that were fed a low concentrate diet (30% barley) were used. Rumen fluid samples were obtained by rumenocentesis and their pH was determined with a portable pH meter. Blood samples taken from all animals from a jugular vein were used to determine erythrocyte transketolase enzyme activity, and hence thiamine pyrophosphate (TPP) effect. Odor and mean pH values of ruminal fluid samples from the high concentrate diet and control group were acidic (pH 5.3) and aromatic (pH 6.1), respectively. The mean TPP effect % in the high concentrate diet group (47.2 ± 3.2) was significantly higher than in the control group (19.53 ± 2.5) (P < 0.001). The study provides evidence of a TPP effect in feedlot cattle fed a high concentrate diet.  相似文献   

4.
Two metabolism trials were conducted to evaluate the influence of therapeutic antibiotic supplementation on characteristics of digestion of growing and finishing diets. Treatments consisted of a basal diet supplemented with: no antibiotics, 350 mg chlortetracycline and 350 mg sulfamethazine and 700 mg chlortetracycline and 700 mg sulfamethazine. In trial 1, treatment effects were evaluated in a replicated 3 X 3 Latin-square design experiment involving six crossbred steers (462 kg) with cannulas in the rumen and proximal duodenum. The basal diet contained (dry matter basis) 16.1% alfalfa hay, 72% steam flaked corn, 3.3% molasses, 5.8% fat, .96% urea, .79% limestone, .50% trace mineral salt, 33 mg/kg lasalocid, 2,200 IU/kg vitamin A and .44% chromic oxide. Dry matter intake was limited to 1.4% of body weight. In trial 2, treatment effects were evaluated in a 3 X 3 Latin-square design experiment involving three steers (399 kg) with cannulas in the rumen and proximal duodenum. The basal diet contained (dry matter basis) 10.1% sudangrass hay, 34.9% alfalfa hay, 43.9% steam flaked corn, 6.1% molasses, 4.0% fat, .46% urea, .49% trace mineral salt, 33 mg/kg lasalocid and 2,200 IU/kg vitamin A. Dry matter intake was limited to 1.65% of body weight. Antibiotic supplementation did not influence microbial efficiency, passage of microbial and feed N to the small intestine, or either ruminal or total tract digestion of organic matter and acid detergent fiber in either growing or finishing diets (P greater than .20).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Energy density in growing diets may affect carcass quality of cattle; however, few reports have described the impact of energy source. The objectives of this research were to determine effects of source [dried distillers grains with solubles (DDGS) vs. corn] and amount (limit-fed to gain 0.9 vs. 1.4 kg of BW/d) of energy during the growing phase on feedlot performance and marbling. Angus-cross steers (144 head) were blocked by BW (average initial BW = 252 ± 36 kg), allotted within each block to 8 pens (6 steers/pen, 24 pens total), and randomly assigned to 1 of 4 feeding systems in a 2 × 2 factorial arrangement of treatments: 1) 65% DDGS fed to gain 0.9 kg of BW/d, 2) 65% DDGS fed to gain 1.4 kg of BW/d, 3) 65% corn fed to gain 0.9 kg of BW/d, and 4) 65% corn fed to gain 1.4 kg of BW/d. Fecal grab samples were collected on d 52 of the growing phase to determine digestibility of DM, ADF, NDF, ether extract (EE), and CP. After the 98-d growing phase, all steers were fed the same finishing diet. Steers were slaughtered by pen when average BW within the pen was 544, 522, and 499 kg for the large, medium, and small BW blocks, respectively. Average daily gain and DMI differed (P<0.01) by design during the growing phase. Compared with the corn-based diets, digestibilities of DM, NDF, and EE were decreased (P<0.02) when DDGS-based diets were fed during the growing phase, whereas the digestibility of N was increased (P<0.01). The ADG was greatest (P=0.02) during the finishing phase for steers fed to gain 0.9 kg of BW/d initially, but source of energy during the growing phase did not affect (P=0.24) finishing phase ADG. Steers fed to gain 0.9 kg of BW/d during the growing phase also had less backfat (P=0.08), decreased USDA yield grades (P=0.03), and greater LM area (P<0.01) than steers fed to gain 1.4 kg of BW/d. There was an interaction between energy source and amount for marbling scores (P=0.02). Steers fed corn-based diets to gain 0.9 kg of BW/d during the growing phase had the most marbling, whereas those fed to gain 0.9 kg of BW/d on DDGS had the least marbling; the remaining feeding systems were intermediate. Overall ADG and DMI were affected (P < 0.06) by both source and amount of energy fed during the growing phase. Feeding the DDGS-based diet to achieve greater ADG during the growing phase increased marbling, whereas feeding the corn-based diet to increase ADG during the growing phase decreased marbling.  相似文献   

6.
The relationship between feeding behavior and performance of 274 feedlot cattle was evaluated using Charolais cross steers from 2 consecutive years averaging 293 ± 41 kg for yr 1 (n = 115) and 349 ± 41 for yr 2 (n = 159). Steers were blocked by BW and assigned to 3 (yr 1) or 4 (yr 2) feedlot pens equipped with a radio frequency identification system (GrowSafe Systems). Each pen contained 5 feeding stalls that allowed individual animal access to a feed tub suspended on load cells. The system recorded animal identification, duration, and frequency of feedings as well as the amount of feed consumed during each visit. Daily variation in DMI (DVI), calculated as the absolute difference in DMI from one day to the next, as well as eating rate were determined for each steer. Barley-based diets were delivered to meet steer ad libitum intake over the 213- and 181-d feeding periods for yr 1 and 2 of the study, respectively. The backgrounding periods included the first 85 and 56 d of yr 1 and 2, respectively, in which steers were fed a 14 to 30% concentrate diet, whereas the finishing periods included the last 116 and 101 d of feeding in yr 1 and 2, respectively, with the diet consisting of 77.9% concentrate. Steers were weighed individually every 14 d. To relate feeding behavior to performance, steers were grouped by ADG and G:F and categorized as high, average, or low (based on 1 SD greater than and less than the mean). In the backgrounding and finishing periods of both years of the study, steers classified as having high ADG exhibited greater (P < 0.001) DVI than steers classified as having average or low ADG. Total daily DMI was also greater (P < 0.001) for steers in the high ADG group than those in the low ADG group. Overall, those steers with the greatest G:F also tended (P = 0.15) to have greater DVI than average or low G:F steers. Compared with average or low G:F steers, DMI by high G:F steers in both years of the study was less during backgrounding, finishing, and overall (P = 0.02). Bunk visits and bunk attendance duration were less frequent and shorter (P ≤ 0.01) overall for high compared with low G:F steers. In this study, steers with more variable eating patterns exhibited greater ADG and tended to have greater G:F, a finding that is contrary to industry perception.  相似文献   

7.
To determine the effects of DL-malate on ruminal metabolism, four steers equipped with ruminal cannulas were fed an 80% rolled grain (75% corn:25% wheat) diet twice daily with a DMI equal to 2.0% of BW (485+/-24.8 kg). DL-Malate was infused into the rumen on two consecutive days in 500 mL of phosphate buffer to provide 0, 27, 54, or 80 g of DL-malate/d. Ruminal pH linearly increased (P < .01) with DL-malate concentration and was greater (P < .01) for DL-malate than for the control steers (6.07 vs 5.77). DL-Malate treatment linearly decreased (P < .10) total VFA and tended to linearly increase (P = .10) acetate concentration. Propionate, butyrate, and L-lactate concentrations and acetate:propionate ratio were not affected (P > .10) by DL-malate. Three finishing studies were conducted to determine the effects of feeding DL-malate on growth rate and feed efficiency. In a 98-d experiment, 33 crossbred steers were randomly allotted in a Calan gate feeding system to three DL-malate levels (0, 40, and 80 g/d). Steers (initial weight = 367+/-4.5 kg) were fed a rolled corn-based diet twice daily. After 84 d on feed, gain efficiency (gain:feed) tended to improve with more DL-malate (linear, P < .10) and was 8.1% greater (P < .05) for DL-malate than for the control. The ADG linearly increased (P < .05) with more DL-malate and was 8.6% greater (P = .10) for DL-malate than for the control. After 98-d on feed, ADG was linearly increased (P = .09) by DL--malate, and the greatest increase occurred with 80 g of DL-malate. In the second performance study, 27 Angus steers were randomly allotted in a Calan gate feeding system to three DL-malate concentrations (0, 60, and 120 g/d). Steers (initial weight = 432+/-4.6 kg) were fed diets used in the first finishing study twice daily, but DL-malate was included during the 10-d step-up period. During the 10-d step-up period, feed efficiency and ADG linearly increased (P = .01) with more DL-malate. DL-Malate had little effect on steer and heifer performance or plasma constituents in a 113-d finishing study. Collectively, these results suggest that feeding DL-malate to cattle consuming high-grain diets alleviates subclinical acidosis, and it improved animal performance in two finishing studies.  相似文献   

8.
Four Holstein steers (212 kg) with cannulas in the rumen and proximal duodenum were used in a 4 x 4 Latin square experiment to study the influence of degree of ruminal biohydrogenation (BH) on the feeding value of supplemental fat. Treatments consisted of an 88% concentrate finishing diet supplemented with 1) 2% yellow grease (control); 2) 4% formaldehyde-protected fat (Rumentek), 2% yellow grease (LBH); 3) 2% Rumentek, 4% yellow grease (MBH); or 4) 6% yellow grease (HBH). Ruminal BH of HBH, MBH, and LBH diets was 74, 68, and 54%, respectively. High-fat supplementation decreased (7%, P < .05) intestinal digestibility of 18:0 but increased intestinal digestibility of 18:1 (3%, P < .10), 18:2 (14%, P < .01), and 18:3 (23%, P < .05). Increases in intestinal digestibility of 18:0 (quadratic effect, P < .05), 18:1 (linear effect, P < .01), 18:2 (linear effect, P < .01), 18:3 (linear effect, P < .05), and total fatty acids (linear effect, P < .05) were inversely related to BH. For every 1% increase in the proportion of 18:1 fat entering the small intestine, the digestibility of 18:0 increased 1%. High-fat supplementation depressed ruminal digestion of OM (11%, P < .05), NDF (16%, P < .05), starch (6%, P < .05), and feed N (12%, P < .01). Formaldehyde-protein protection of fat diminished its depressing effects on ruminal digestion of NDF (quadratic effect, P < .10) and enhanced ruminal escape of feed N (linear effect, P < .10). Postruminal digestion of OM was greater (4.6%, P < .10) for high-fat diets. High-fat diets decreased (P < .05) total tract digestion of OM (1.9%), NDF (7.4%), and starch (.5%). Postruminal and total tract digestibility of OM, NDF, N, and starch was not affected (P > .10) by BH. In a 125-d finishing trial, 100 yearling steers (362 kg) were used to evaluate treatment effects on growth performance. High-fat diets did not affect (P > .10) ADG but increased (P < .10) feed efficiency (9%, P < .10), dietary NEm (7.6%, P < .05), and dressing percentage (9%, P < .05). The magnitude of the increase in dressing percentage was inversely related (linear effect, P < .10) to BH. We conclude that decreasing ruminal BH will increase postruminal digestibility of fat, and hence the NE value of dietary fat. The synergistic effect of increasing the proportion of 18:1 on intestinal digestion of fat enables higher levels of fat supplementation. Protecting fat from BH minimizes the detrimental effects of supplemental fat on fiber digestion.  相似文献   

9.
The objectives of this experiment were to determine the effects of replacing ground corn with soybean hulls (SH) in high-concentrate diets on the growth (56-d period), carcass characteristics, and eating behavior of feedlot lambs. Sixty-four Santa Inês ram lambs (18.3 ± 2.8 kg of BW and 69 ± 5 d of age) were assigned to a randomized complete block design experiment with 8 blocks and 4 diets. The control diet contained 10% coastcross (Cynodon sp.) hay, 70% corn, and no SH (SH0) in the dietary DM. In the remaining diets, SH replaced corn at the rate of 15 (SH15), 30 (SH30), or 45% (SH45) of the original corn concentration, resulting in 0, 10.5, 21.0, or 31.4% SH in the dietary DM. Dry matter intake increased linearly (P < 0.01) when SH replaced ground corn (1.0, 1.0, 1.1, and 1.1 kg/d for SH0, SH15, SH30, and SH45, respectively). There was no effect on ADG of lambs, with values of 276, 278, 282, and 287 g for SH0, SH15, SH30, and SH45, respectively. Feed efficiency decreased linearly (P < 0.01) with SH inclusion. Carcass measures were not affected by SH as a replacement for ground corn. Eating time, expressed as minutes per day and minutes per gram of NDF, showed a quadratic effect (P < 0.05), whereas no effect was observed when expressed as minutes per gram of DM. Rumination, in minutes per day, was not influenced by dietary SH inclusion, but a linear decrease (P < 0.01) was observed when this variable was expressed as minutes per gram of NDF. Soybean hulls can replace up to 45% of the ground corn (31.4% of SH in the dietary DM) in high-concentrate diets fed to feedlot lambs without negative effects on ADG and carcass measures. The linear decrease in feed efficiency (11.6% reduction from SH0 to SH45) suggests that optimal dietary SH inclusion rates should be dictated by the relative costs of SH and corn.  相似文献   

10.
The effects of 3 supplemental Cu concentrations on feedlot performance, mineral absorption, carcass characteristics, and ruminal S metabolism of cattle fed diets containing 60% dried distillers grains with solubles (DDGS) were evaluated in 2 experiments. Experiment 1 was conducted with 84 Angus-cross yearling steers and heifers (initial BW = 238 ± 36 kg), which were blocked by gender and allocated to 12 pens. Supplemental dietary Cu (tribasic copper chloride) treatments were: 1) 0 mg Cu/kg diet DM, 2) 100 mg Cu/kg diet DM, 3) 200 mg Cu/kg diet DM. The remainder of the diet was DDGS (60%), grass hay (10%), pelleted soy hulls (15%), and a vitamin-mineral supplement (15%). Diets were offered ad libitum throughout the finishing phase (168 d). Three cattle from each pen (n = 36) were harvested on d 168 and carcass data and liver samples were collected. Copper supplementation did not affect ADG (P = 0.22). However, the nonsignificant trend for increased ADG and decreased DMI led to a linear increase (P = 0.02) feed efficiency (G:F = 0.167, 0.177, and 0.177 for 0, 100, and 200 mg Cu/kg diet DM, respectively). The apparent absorption of Cu decreased quadratically (P = 0.07) and the apparent absorption of Mn and Zn were decreased linearly (P = 0.03 and P = 0.05, respectively) with increased Cu supplementation. Cattle supplemented with 100 or 200 mg Cu/kg diet DM had greater liver Cu concentrations (P < 0.01) than cattle that were not supplemented with Cu. There were no treatment effects (P > 0.10) on HCW, LM area, USDA yield grade, backfat, or marbling score. Experiment 2 was conducted with 6 ruminally fistulated steers that were fed the same diets as in Exp 1 in a replicated 3 × 3 Latin Square design. Copper supplementation did not affect (P > 0.10) ruminal pH or liquid S(2-) concentrations in steers consuming 60% DDGS diets (total dietary S = 0.55%). From 3 to 9 h after feeding, H(2)S gas concentration was decreased in those cattle supplemented with 100 mg Cu/kg diet. Concentration of H(2)S gas did not differ among cattle supplemented with 0 or 200 mg Cu/kg diet DM on 60% DDGS diets. Supplemental Cu improved feed efficiency in cattle consuming diets containing 60% DDGS; however, effects of Cu on rumen S metabolism were minimal even when supplemented at twice the maximum tolerable limit for beef cattle (NRC, 2000).  相似文献   

11.
A study was conducted to evaluate feed intake, ADG, carcass quality, eating behavior, and blood metabolites in feedlot beef steers fed diets that varied in proportion of wheat dried distillers grains with solubles (DDGS) replacing barley grain or barley silage. Two hundred crossbred steers (BW = 489 ± 30 kg) were blocked by BW and randomly allotted to 20 pens (5 pens per treatment). Steers were fed 1 of 4 diets: control without DDGS (CON), 25% (25DDGS), 30% (30DDGS), or 35% (35DDGS) wheat DDGS (DM basis). The CON diet consisted of 15% barley silage and 85% barley-based concentrate; the 3 wheat DDGS diets were formulated by substituting 20% barley grain and 5, 10, or 15% silage, respectively, with 25, 30, or 35% wheat DDGS so that the 35DDGS diet contained no silage. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy and fiber in feedlot finishing diets. Dry matter intake of steers fed 25DDGS was greater (P < 0.01), but final BW, ADG, and G:F were not different compared with steers fed CON diet. Carcass characteristics and liver abscess score were not different between CON and 25DDGS. Steers fed 25DDGS had longer eating time (min/d; P < 0.01), greater meal frequency (P < 0.04), but a slower eating rate (P < 0.04). Replacing barley silage with increasing amounts of wheat DDGS (from 25DDGS to 35DDGS) linearly reduced (P < 0.01) DMI. Final BW, ADG, and G:F were not affected by increasing amounts of wheat DDGS. Carcass traits were not different, whereas liver abscess scores linearly (P < 0.01) increased as more barley silage was replaced by wheat DDGS. Eating time (min/d) and duration of each meal linearly (P < 0.02) decreased, whereas eating rate (min/g of DM) linearly (P < 0.01) increased with increasing replacement of barley silage. Blood urea N was doubled (P < 0.01) compared with CON by inclusion of wheat DDGS. Results indicate that wheat DDGS can be used effectively in feedlot diets, decreasing the need for barley grain or silage without negatively affecting growth performance and carcass characteristics. A reduction in the amount of roughage required to maintain growth performance is a potential advantage in feedlot operations because forage is costly and often of limited availability. Thus, DDGS can be a possible alternative as long as they are available and cost effective; however, increased incidence of liver abscess and increased N content of manure need to be considered when greater amounts of wheat DDGS are included in finishing diets.  相似文献   

12.
Management strategies designed to improve grazing animal performance can influence feedlot performance and carcass traits both positively and negatively. In spite of the economic relevance of potential interactions between grazing and finishing performance, controlled experiments evaluating integrated production systems are limited in number. Effects of grazing treatments can result from, or be overshadowed by, changes in gut fill, thus making it difficult to assign precise costs to different phases of production. Published reports have considered the effects of stocking rate, duration of grazing, forage characteristics, supplementation, and growth-promoting implants on subsequent finishing performance. Improvements in cattle performance attributed to changes in stocking rate generally have been neutral to positive with respect to effects on finishing performance. Comparisons among forages have led to the suggestion that forage species may contribute to differences in gastrointestinal fill of grazing cattle, thereby influencing gain and efficiency during the subsequent finishing phase. Creep-feeding suckling calves generally has increased preweaning performance but has had relatively little influence on performance during the subsequent finishing phase. Grain supplementation of stocker cattle during the grazing period has improved grazing performance, but effects on subsequent feedlot performance have been inconsistent. Potential carryover effects from protein and mineral supplementation also have been inconclusive. Lack of congruence among studies is puzzling but may be the consequence of highly varied production systems, differences in experimental procedures, and changes in gut fill or mass of internal organs. Based on the studies reviewed, the expression or absence of compensatory growth during the finishing phase appears to be related to the nutritional quality of forages utilized in the grazing period, with higher quality forages tending to yield greater compensatory effects. The bulk of evidence with suckling cattle and stocker implants suggests that effects on subsequent finishing performance are minimal. Attention is drawn to the noticeable lack of research pertaining to integrated production systems. A more thorough understanding of the interactions among grazing nutrition and management, finishing performance, and carcass traits is needed to facilitate greater economic exploitation of these relationships.  相似文献   

13.
To describe the feeding behavior of growing heifers fed high-concentrate diets with different sources of protein and nonstructural carbohydrates, and to explain the ruminal fermentation pattern, 4 ruminally fistulated Holstein heifers (BW = 132.3 +/- 1.61 kg) were assigned to a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. Two non-structural carbohydrate sources (barley and corn) and 2 protein sources [soybean meal (SBM) and sunflower meal (SFM)] that differ in their rate and extent of ruminal degradation were combined, resulting in a synchronized, rapid fermentation diet (barley-SFM), a synchronized, slow fermentation diet (corn-SBM), and 2 unsynchronized diets consisting of a rapidly and a slowly fermenting component (barley-SBM and corn-SFM). The corn-SFM diet resulted in a lower frequency of feeding (P < or = 0.05), longer meal length (P < or = 0.043), and larger meal size (P < or = 0.037) than the other 3 diets. Dietary treatment had no effect (P > or = 0.09) on the daily percentages of posture and behaviors. In general, heifers spent 9.97 +/- 0.83% of the day eating, 2.11 +/- 0.42% drinking, 25.13 +/- 1.36% ruminating, 16.97 +/- 1.42% in other activities such as social behavior and self-grooming, and the rest of the day (45.82 +/- 2.55%) resting or doing no chewing activities. Eating, drinking, and social behaviors were performed while standing (P < or = 0.01), whereas resting and ruminating occurred mainly while lying (P = 0.001). Eating took place mainly in the first 4 h after feeding (P = 0.001), whereas ruminating occurred mainly at night (P = 0.001). When chewing activities (eating and ruminating) were expressed per kilogram of DM or NDF from roughage intake, more time (P = 0.004) was spent chewing per kilogram of DMI for barley-based diets, and per kilogram of NDF from roughage intake for barley- (P = 0.01) and SFM- (P = 0.002) based diets. Tethered heifers fed the more fermentable and rapidly synchronized diet (barley-SFM) reduced intake and increased chewing time. With these high-concentrate diets, time spent chewing was inversely related to roughage intake.  相似文献   

14.
Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P 相似文献   

15.
A 5-yr study was conducted involving the placement of yearling steers on feed at 2-mo intervals under three different housing systems. A total of 3,571 steers (180 pens) initially averaging 318 kg was used. Evaluations were made for DM intake, ADG, feed efficiency (FE), carcass quality (QG), and yield grades (YG). Cattle were assigned to either an open lot with overhead shelter (S), an open lot without overhead shelter (NS), or an open-front confinement building (C). Each treatment consisted of two lots of 20 steers each per interval per trial. Corn grain provided 85% of the energy; the remainder was supplied by corn silage and protein supplement. Cattle were fed 140 to 180 d to achieve an average slaughter weight of 500 kg. The main effects of year (Y), month (M), and housing (H) affected DM intake, ADG, FE, and final live weight (P less than .01). The interactions for Y x M, M x H and Y x M x H affected ADG (P less than .05). Month and H affected hot carcass weight (P less than .01). Year affected YG, and year and month affected QG (P less than .01). Month effects on DM intake and ADG indicated that cattle started in May had the highest intake and ADG (P less than .05) and that cattle started in November had the lowest (P less than .05) DMI and ADG. Month effects on FE indicated that cattle were most efficient when placed on feed during March, May, and July (5.82, 5.72, and 5.66 kg DM/kg gain; P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. In previous studies, a lack of agreement in measurements of plasma corticosterone concentrations and heterophil:lymphocyte (H/L) ratio as physiological indices of stress, caused by hunger and frustration in restricted-fed broiler breeders, was observed. It could be suggested that the differences between previous studies were caused by differences in duration of restriction and time of the day of the measurements. Therefore, in the present study the plasma corticosterone concentration and the H/L ratio were again determined in restricted- and ad libitum-fed growing broiler breeders, taking possible causes of disagreement between previous studies into account. In addition, we measured the daily rhythm in body temperature and heart rate, and the corticosterone responses to an acute stressor as physiological indices of stress. 2. Female broiler breeders (64 per treatment, housed in groups of 4 birds) were used in the experiment. Behaviour, baseline plasma corticosterone concentrations and H/L ratio were determined at 21 d of age (immediately after the start of food restriction), and at 42 and 63 d of age. Body temperature, heart rate and activity were measured by radiotelemetry for 36 h at 49 and 70 d of age. In addition, the plasma corticosterone response to acute stress (5 min manual restraint) was measured at 77 or 78 d of age. 3. Restricted broiler breeders had higher plasma corticosterone concentrations at 42 and 63 d of age, but no differences in H/L. ratio were found between restricted birds and unrestricted control birds. Restricted broiler breeders had a higher corticosterone response to 5 min manual restraint than unrestricted birds. Restricted birds displayed a clear day-night rhythm in body temperature, heart rate and activity whereas such a rhythm was blunted in ad libitum-fed birds. 4. It is discussed that some physiological differences (plasma corticosterone concentrations, body temperature and heart rate) between ad libitum-fed and restricted broiler breeders may have been caused by differences in metabolic rate as well as by differences in the level of stress. It is concluded that a combination of behavioural measurements and a wide range of physiological parameters should be used for the assessment of stress in growing broiler breeders.  相似文献   

17.
British and British x Continental steers (n = 560; initial BW = 339.4 +/- 1.76 kg) were used in a serial slaughter study with a completely random design to evaluate effects of zilpaterol hydrochloride (ZH; 8.33 mg/kg of dietary DM basis) on performance and carcass characteristics. Treatments were arranged in a 4 x 4 factorial (112 pens; 7 pens/treatment; 5 steers/pen) and included duration of ZH feeding (0, 20, 30, or 40 d before slaughter plus a 3-d ZH withdrawal period) and days on feed (DOF) before slaughter (136, 157, 177, and 198 d). No duration of ZH feeding x slaughter group interactions were detected for the performance measurements (P > 0.10). Final BW did not differ (P = 0.15) between the 0-d group and the average of the 3 ZH groups, but ADG was greater for the average of the 3 ZH groups during the period in which ZH diets were fed (P < 0.01) and for the overall feeding period (P = 0.05). As duration of ZH feeding increased, DMI decreased (P = 0.01) and G:F increased linearly (P < 0.01). With the exception of KPH (P = 0.022), no duration of ZH feeding x slaughter group interactions (P > 0.10) were detected for carcass characteristics. Regardless of the duration of ZH feeding, cattle fed ZH had greater HCW (P < 0.01), greater dressing percent (P < 0.01), less 12th-rib fat (P < 0.01), larger LM area (P < 0.01), less KPH (P = 0.03), and lower yield grade (P < 0.01) than the 0-d cattle. The 0-d group had greater marbling scores (P < 0.01) than cattle fed ZH diets, with a tendency for a linear decrease in marbling score (P = 0.10) as duration of ZH feeding was extended. A greater percentage of carcasses in the 0-d group graded USDA Choice or greater (P < 0.01) than in the 3 ZH groups, whereas the percentage of Select carcasses was greater (P = 0.01) for the 3 ZH groups. From d 0 to end (P = 0.04) and during the last 43 d on feed (P < 0.01), ADG responded quadratically to DOF before slaughter. No differences were detected among slaughter groups for DMI for the entire trial period; however, a quadratic response (P = 0.02) was observed for the final 43 d before slaughter. A quadratic response was also detected for the final 43 d before slaughter (P < 0.01) and from d 0 to end (P = 0.02) for G:F. Final BW, HCW, dressing percent, and 12th-rib fat increased linearly (P < 0.01) as DOF before slaughter increased. Our results indicate that no substantial effects on performance and carcass measurements were observed when ZH was fed for 30 or 40 d as opposed to 20 d, and that effects of ZH generally did not interact with DOF before slaughter.  相似文献   

18.
Two hundred twenty-eight crossbred steers (304 kg) were used in a 125-d comparative slaughter trial to evaluate the influence of level and source of supplemental fats on their feeding value for feedlot cattle. Dietary treatments consisted of a steam-rolled, barley-based finishing diet containing 1) no supplemental fat; 2) 4% yellow grease (YG); 3) 4% blended animal-vegetable fat (BVF); 4) 8% YG; 5) 8% BVF or 6) 6% BVF and 2% crude soybean lecithin. Increasing level of supplemental fat in the diet resulted in linear improvements (P less than .01) in weight gain, feed conversion and NE value of the diet. Estimated NE values of YG and BVF were similar and did not appear to be influenced by level of supplementation, averaging 5.78 and 4.61 Mcal/kg for maintenance and gain, respectively. Fat supplementation resulted in linear increases in empty body fat (P less than .01), kidney, pelvic and heart fat (P less than .01) and marbling score (P less than .05). Partially replacing BVF with lecithin did not influence (P greater than .10) steer performance, carcass merit or estimated NE value of the diet. The comparative feeding value (in terms of both diet acceptability and NE value) of the supplemental fats tested was similar and was apparently not influenced by level of supplementation up to 8% of diet DM.  相似文献   

19.
Two experiments evaluated effects of ractopamine hydrochloride (RAC) on performance, intake patterns, and acid-base balance of feedlot cattle. In Exp. 1, 360 crossbred steers (Brangus, British, and British x Continental breeding; initial BW = 545 kg) were used in a study with a 3 x 3 factorial design to study the effects of dose [0, 100, or 200 mg/(steer x d) of RAC] and duration (28, 35, or 42 d) of feeding of RAC in a randomized complete block design (9 treatments, 8 pens/treatment). No dose x duration interactions were detected (P > 0.10). As RAC dose increased, final BW (FBW; P = 0.01), ADG (P < 0.01), and G:F (P < 0.01) increased linearly. As duration of feeding increased, ADG increased quadratically (P = 0.04), with tendencies for quadratic effects for FBW (P = 0.06), DMI (P = 0.07), and G:F (P = 0.09). Hot carcass weight increased linearly (P = 0.02) as dose of RAC increased. Thus, increasing the dose of RAC from 0 to 200 mg/(steer x d) and the duration of feeding from 28 to 42 d improved feedlot performance, although quadratic responses for duration of feeding indicated little improvement as the duration was extended from 35 to 42 d. In Exp. 2, 12 crossbred beef steers (BW = 593 kg) were used in a completely random design to evaluate the effects of RAC [0 or 200 mg/(steer x d) for 30 d; 6 steers/treatment] on rate of intake, daily variation in intake patterns, and acid-base balance. To assess intake patterns, absolute values of daily deviations in feed delivered to each steer relative to the total quantity of feed delivered were analyzed as repeated measures. There were no differences (P > 0.10) in feedlot performance, urine pH, blood gas measurements, or variation in intake patterns between RAC and control cattle, but steers fed RAC had increased (P = 0.04) LM area, decreased (P = 0.03) yield grade, and increased (P < 0.10) time to consume 50 and 75% of daily intake relative to control steers. Our results suggest that feeding RAC for 35 d at 200 mg/(steer x d) provided optimal performance, and no effects on acid-base balance or variation in intake patterns of finishing steers were noted with RAC fed at 200 mg/(steer x d) over a 30-d period.  相似文献   

20.
Forty-eight bulls (335 +/- 8.6 kg of initial BW) were randomly assigned to 4 glycerin levels (0, 4, 8, and 12% of concentrate DM) with the objective of evaluating the effects of glycerin supplementation on performance, ruminal fermentation, metabolism, and carcass and meat quality in Holstein bulls fed high-concentrate diets. Concentrates were formulated to be isonitrogenous and isocaloric (assuming a glycerin ME content of 3.47 Mcal/kg of DM). Concentrate and straw were fed for ad libitum intake. Bull BW and feed consumption were recorded monthly. Additionally, rumen and blood samples were collected every month. Bulls were slaughtered after 91 d of study (460 +/- 11 kg of final BW). Hot carcass weight, carcass backfat, and conformation were recorded. The area, Warner-Bratzler shear force, and intramuscular fat content of LM were determined. Glycerin level did not affect daily concentrate intake (6.89 +/- 0.34 kg/d of DM), straw intake (1.38 +/- 0.069 kg/d of DM), total DMI (8.27 +/- 0.32 kg/d of DM), ADG (1.36 +/- 0.087 kg/d), or G:F (0.17 +/- 0.009). Similarly, rumen molar proportions of propionic, acetic, and butyric acids, and rumen liquid osmolality were unaffected by treatment. However, a decreased rumen pH (P < 0.05), and greater rumen total VFA concentration (P = 0.09), serum insulin concentration (P < 0.05), and insulin to glucose ratio (P < 0.05) were observed in bulls fed 8% glycerin in concentrate compared with those receiving 0, 4, or 12%. No changes were observed in carcass and meat quality. The ME content of glycerin (86% glycerol) can be assumed to be 3.47 Mcal/kg of DM in Holstein bulls fed high-concentrate diets. In addition, feeding concentrate containing up to 12.1% of glycerin does not lead to detrimental effects on performance, ruminal fermentation, metabolism, and carcass and meat quality variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号