首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactivity studies involving anthocyanin structures and their equilibrium forms will lead to better understanding of the properties of these antioxidants. Hydrogen-deuterium (H --> D) exchange reactions at various sites of the 3-glucosides of delphinidin (1), petunidin (2), malvidin (3), and the corresponding 3-glucosides of carboxypyranodelphinidin (4), carboxypyranopetunidin (5), carboxypyranomalvidin (6), and the flavonol quercetin 3-O-(6-alpha-rhamnopyranosyl-beta-glucopyranoside)(7) have been examined at room temperature in pure CD 3OD and in CD 3OD acidified with CF 3CO 2D. The H --> D exchange rate constants of H-6 and H-8 of 2 determined from (1)H NMR integration data were found to be independent upon pigment concentration (up to 4 x 10 (-2) M) and trifluoroactic acid concentration (0-15%, v/v), respectively. This suggest that these reactions follow first-order kinetics and unexpectedly to be independent of the acid concentration. H-6 and H-8 of the flavylium cation A-rings of 1- 3, and in the corresponding hydrogens of the hemiketal forms, exchanged with half-lives of approximately 100 h ( 1) and approximately 50 h ( 2 and 3), respectively. The pyranoanthocyanins (4-6) experienced no H --> D exchange for the analogous hydrogens, but H --> D exchange of H-beta (H-4)(t 1/2 approximately 25 h) for these compounds was observed. Only H-8 underwent significant H --> D exchange in 7. It is concluded that a stabilization of the sigma-complexes, assumed to be the intermediates in the reactions, takes place for the common anthocyanins (1-3) contrary to the pyranoanthocyanins (4-6).  相似文献   

2.
Ginkgo biloba leaves and their extracts are one of the most widely used herbal products and/or dietary supplements in the world. A systematic study of the phenolic compounds is necessary to establish quality parameters. A modified LC-DAD-ESI/MS method was used to obtain chromatographic profiles for the flavonoids and terpene lactones of Ginkgo biloba leaves. The method was used to identify 45 glycosylated flavonols and flavones, 3 flavonol aglycones, catechin, 10 biflavones, a dihydroxybenzoic acid, and 4 terpene lactones in an aqueous methanol extract of the leaves. The extracted G. biloba leaf products contained the same flavonoids as the raw leaves except for the lack of biflavones. The detected glycosylated flavonol contents were equal to or more than 0.0008% of the dry plant material. This is the first report of the presence of more than 20 of these flavonoids in G. biloba.  相似文献   

3.
The development of an analytical method using 1H nuclear magnetic resonance (1H NMR) spectrometry to monitor cupuassu (Theobroma grandiflorum Spreng) bean fermentation, drying, and roasting processes is reported. The analysis of organic acids and alcohols of crude water extracts of cupuassu ground kernels were monitored by HPLC and 1H NMR spectroscopy. The residual protein signals caused deleterious effects on acid and alcohol quantifications. Therefore, the analytical procedures were optimized by sample cleanup and water suppression pulse sequences in order to obtain compatible data using HPLC and 1H NMR. The quantification of lactic acid, acetic acid, and 2,3-butanediol by NMR is 5- to 10-fold faster than by HPLC, with the advantage of providing the identification of several chemical species in a single experiment. Application of these analytical conditions to some cupuassu samples revealed that this methodology can be applied to the quality profiles of fermentation and roasting processes.  相似文献   

4.
The use of (1)H NMR spectroscopy for the characterization of Stevia rebaudiana extracts is presented. The developed method allows qualitative and quantitative determination of the major steviol glycosides in purified extracts and fractions obtained from various stages of the purification process. Moreover, it proved to be a powerful tool to differentiate between glycosides which are naturally occurring in the stevia plant and artifacts formed in the course of the manufacturing process. Identification of steviol glycosides was achieved by the use of 2D NMR techniques, whereas quantification is based on qHNMR using anthracene as internal standard. The solvent mixture pyridine-d(5)-DMSO-d(6) (6:1) enabled satisfactory separation of the signals to be integrated. Validation of the method was performed in terms of specificity, precision, accuracy, linearity, robustness, and stability. Quantitative results were compared to those obtained with the JECFA HPLC-UV method and were found to be in reasonable agreement. NMR analysis does not rely on the use of reference compounds and enables significantly faster analysis compared to HPLC-UV. Thus, NMR represents a feasible alternative to HPLC-based methods for the quality control of Stevia rebaudiana extracts.  相似文献   

5.
Flavonoids were extracted from cranberry powder with acetone and ethyl acetate and subsequently fractionated with Sephadex LH-20 column chromatography. The fraction eluted with a 60% methanol solution was composed primarily of phenolic constituents with maximum absorbance at 340 nm. A high-performance liquid chromatography procedure was developed, which resolved 22 distinct peaks with UV/vis and mass spectra corresponding to flavonol glycoside conjugates. Six new constituents not previously reported in cranberry or in cranberry products were determined through NMR spectroscopy to be myricetin-3-beta-xylopyranoside, quercetin-3-beta-glucoside, quercetin-3-alpha-arabinopyranoside, 3'-methoxyquercetin-3-alpha-xylopyranoside, quercetin-3-O-(6' '-p-coumaroyl)-beta-galactoside, and quercetin-3-O-(6' '-benzoyl)-beta-galactoside. Quercetin-3-O-(6' '-p-coumaroyl)-beta-galactoside and quercetin-3-O-(6' '-benzoyl)-beta-galactoside represent a new class of cranberry flavonol compounds with three conjugated components consisting of a flavonol, sugar, and carboxylic acid (benzoic or hydroxycinnamic acids). This is also the first report identifying quercetin-3-arabinoside in both furanose and pyranose forms in cranberry. Elucidation of specific flavonol glycosides in cranberry is significant since the specificity of the sugar moiety may play a role in the bioavailability of the flavonol glycosides in vivo.  相似文献   

6.
Thirteen compounds, isolated from spinach (Spinacia oleracea), acted as antimutagens against the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline in Salmonella typhimurium TA 98. The antimutagens were purified by preparative and micropreparative HPLC from a methanol/water (70:30, v/v) extract of dry spinach (commercial product) after removal of lipophilic compounds such as chlorophylls and carotenoids by solid-phase extraction (SPE). Pure active compounds were identified by instrumental analysis including FT-IR, (1)H and (13)C NMR, UV-vis spectroscopy, and mass spectrometry. All of these compounds were flavonoids and related compounds that could be attributed to five groups: (A, methylenedioxyflavonol glucuronides) 5,3'-dihydroxy-4'-methoxy-6,7-methylenedioxyflavonol 3-O-beta-glucuronide (compound 1), 5,2',3'-trihydroxy-4'-methoxy-6,7-methylenedioxyflavonol 3-O-beta-glucuronide (compound 2), 5-hydroxy-3',4'-dimethoxy-6,7-methylenedioxyflavonol 3-O-beta-glucuronide (compound 3); (B, flavonol glucuronides) 5,6,3'-trihydroxy-7,4'-dimethoxyflavonol 3-O-beta-glucuronide (compound 4), 5,6-dihydroxy-7,3',4'-trimethoxyflavonol 3-O-beta-glucuronide (compound 5); (C, flavonol disaccharides) 5,6,4'-trihydroxy-7,3'-dimethoxyflavonol 3-O-disaccharide (compound 6), 5,6,3',4'-tetrahydroxy-7-methoxyflavonol 3-O-disaccharide (compounds 7 and 8); (D, flavanones) 5,8,4'-trihydroxyflavanone (compound 9), 7,8,4'-trihydroxyflavanone (compound 10); (E, flavonoid-related compounds) compounds 11, 12, and 13 with incompletely elucidated structures. The yield of compound 1 was 0.3%, related to dry weight, whereas the yields of compounds 2-13 ranged between 0.017 and 0.069%. IC(50) values (antimutagenic potencies) of the flavonol glucuronides ranged between 24.2 and 58.2 microM, whereas the flavonol disaccharides (compounds 7 and 8), the flavanones (compounds 9 and 10), and the flavonoid-related glycosidic compounds 11-13 were only weakly active. The aglycons of compounds 7 and 8, however, were potent antimutagens (IC(50) = 10.4 and 13.0 microM, respectively).  相似文献   

7.
In this study were successfully observed the one- (1H, 13C) and two-dimensional (1H-13C, 1H-15N, 1H-31P) NMR spectra of milk directly without any pretreatment. The signals of each NMR spectrum were assigned, and their existing states were also analyzed. Lactose existed in a free state in milk. The signals due to the butyric acid chain can be assigned among the other fatty acid chains. Monounsaturated fatty acid (oleic acid chains) and polyunsaturated fatty acid chains (linoleic and linolenic acid) were assigned by their characteristic signals. The signals from citrate, N-acetylcarbohydrates, and lecithin could be observed directly in the 1H-13C HSQC NMR spectra; the assignment of their signals was made through the 1H-13C, 1H-15N, and 1H-31P HMBC spectra of extracted milk. Signals from creatine and N-acetylcarbohydrates were detected for the first time.  相似文献   

8.
MALDI-TOF MS analysis of food flavonol glycosides   总被引:3,自引:0,他引:3  
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a new technique that is having a great impact on food analysis. This study is the first to demonstrate the use of MALDI-TOF MS to identify flavonol glycosides in food samples. 2',4',6'-Trihydroxyacetophenone was chosen as the best matrix because it worked for crude sample extracts and ionized flavonol glycosides in both positive and negative MALDI-TOF MS modes. In the positive mode, multiple ion forms were observed for flavonol glycosides, including [M + H](+), [M + Na](+), [M + K](+), and [M - H + Na + K](+), with further fragmentation through loss of glycosidic residues. The negative mode for all flavonol glycosides resulted in [M - H](-) ion formation without detectable fragmentation. The multiple ions in the positive mode gave more information on individual flavonol glycoside structures than the negative mode. Flavonol glycosides showed similar intensities or responses in the positive mode, while kaempferol glycosides exhibited much less response than quercetin glycosides in negative mode.  相似文献   

9.
Flowers of maize, Zea mays, and reed canarygrass, Phalaris arundinacea, contain the same anthocyanins: cyanidin 3-glucoside, cyanidin 3-(6' '-malonylglucoside), cyanidin 3-(3' ',6' '-dimalonylglucoside), peonidin 3-glucoside, peonidin 3-(6' '-malonylglucoside), and peonidin 3-(dimalonylglucoside). The latter pigment has previously not been reported to occur in plants. Structure elucidations were primarily based on homo- and heteronuclear two-dimensional NMR and electrospray MS. During the isolation procedure using various mixtures of H(2)O, CF(3)CO(2)H, and CH(3)OH, and during storage in NMR solvent (CF(3)CO(2)D/CD(3)OD; 1:19, v/v) methyl esterification of the free acid function of the malonyl units of the pigments occurs. The acylated anthocyanins constitute more than 80% and 40% of the anthocyanins in P. arundinacea and Z. mays, respectively. Flowers and leaves of maize, Zea mays, contain the same anthocyanins in nearly equal relative proportions.  相似文献   

10.
The degradation profile of glucosamine bulk form stressed at 100 degrees C for 2 h in an aqueous solution was studied. Column chromatography of acetylated product mixture led to isolation of two pure compounds (1b and 2b) and a mixture of at least three isomers (3b). 1a and 2a were identified as 5-(hydroxymethyl)-2-furaldehyde (5-HMF) and 2-(tetrahydroxybutyl)-5-(3',4'-dihydroxy-1'-trans-butenyl)pyrazine, respectively, by utilizing a variety of analytical techniques, such as GC-MS, LC-MS, on-line UV spectrum, (1)H and (13)C NMR, and DEPT, as well as (1)H-(1)H COSY. 3a was identified as 2-(tetrahydroxybutyl)-5-(2',3',4'-trihydroxybutyl)pyrazine, commonly known as deoxyfructosazine. In addition, glucosamine solid dosage form was exposed to 40 degrees C/75% relative humility for 10 weeks. Methanol extract of glucosamine solid dosage form was analyzed after acetylation by LC-MS, resulting in degradants 3b and 4b. 3a and 4a were, therefore, determined as deoxyfructosazine and 2,5-bis(tetrahydroxybutyl)pyrazine (fructosazine), respectively. Furthermore, the mechanisms of formation of identified degradation products are proposed and briefly discussed.  相似文献   

11.
Three active components were identified by bioassay-guided fractionation of bitter orange ( Citrus aurantium L.) fruit peel petroleum ether extract. Silica gel fractionation of the extract yielded a fraction that inflicted up to 96% mortality to adults of the olive fruit fly Bactrocera oleae (Gmelin) three days post-treatment. Subsequent HPLC purification of the active fraction resulted in the isolation of three components, eluted in fractions F 222, F 224, and F 226, that induced adult mortality. Considering the data obtained from UV, FTIR, MS, and (1)H NMR spectra, they were identified as 7-methoxy-8-(3'-methyl-2'-butenyl)-2 H-1-benzopyran-2-one (osthol), 4-methoxy-7 H-furo[3,2- g]benzopyran-7-one (bergapten), and 4-(( E)-3'-methyl-5'-(3',3'-dimethyloxiran-2'-yl)pent-2'-enyloxy)-7 H-furo[3,2- g][1]benzopyran-7-one (6',7'-epoxybergamottin). Our results are in concordance with those reported in the literature and were further verified by direct comparison to authentic components. 6',7'-Epoxybergamottin was toxic when tested individually, while bergapten and osthol were found to act synergistically to 6',7'-epoxybergamottin.  相似文献   

12.
A rapid and direct low micromolar 1H NMR method for the simultaneous identification and quantification of hydrogen peroxide and phenolic compounds in plant extracts was developed. The method is based on the highly deshielded 1H NMR signal of H?O? at ~10.30 ppm in DMSO-d? and the combined use of picric acid and low temperature, near the freezing point of the solution, in order to achieve the minimum proton exchange rate. Line widths of H?O? below 3.8 Hz were obtained for several Greek oregano extracts which resulted in a detection limit of 0.7 μmol L?1. Application of an array of NMR experiments, including 2D 1H-13C HMBC, spiking of the samples with H?O?, and variable temperature experiments, resulted in the unequivocal assignment of H?O? precluding any confusion with interferences from intrinsic phenolics in the extract.  相似文献   

13.
The major anthocyanins of boysenberry fruit, a cross between Rubus loganbaccus and Rubus baileyanus Britt., were isolated by preparative high-performance liquid chromatography (HPLC). The structures of cyanidin-3-[2-(glucosyl)glucoside] (1) and cyanidin-3-[2-(glucosyl)-6-(rhamnosyl)glucoside] (2) were determined by NMR in 1% DCOOD/D(2)O. An unusually high chemical shift (delta 2.5) is reported for H-5' ' of cyanidin-3-[2-(glucosyl)glucoside].  相似文献   

14.
The selective responses of Ginkgo biloba leaf-derived materials against six intestinal bacteria was examined using an impregnated paper disk method and compared with that of bilobalide, ginkgolides A and B, kaempferol, and quercetin. The components of G. biloba leaves were characterized as kaempferol 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside), kaempferol 3-O-(2' '-O-beta-D-glucopyranosyl)-alpha-L-rhamnopyranoside, and quercetin 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) by spectroscopic analysis. The growth responses varied with each bacterial strain tested. At 2 mg/disk, kaempferol 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) and quercetin 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) revealed potent inhibition against Clostridium perfringens, and kaempferol 3-O-(2' '-O-beta-D-glucopyranosyl)-alpha-L-rhamnopyranoside showed a clear inhibitory effect on Escherichia coli. At 0.5 mg/disk, quercetin 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) showed a strong activity against C. perfringens, but weak activity was exhibited by kaempferol 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) against C. perfringens and kaempferol 3-O-(2' '-O-beta-D-glucopyranosyl)-alpha-L-rhamnopyranoside against E. coli. No inhibition was observed from treatments conducted with bilobalide, ginkgolides A and B, kaempferol, or quercetin. Furthermore, these isolated compounds did not inhibit Bifidobacterium bifidum, B. longum, B. adolescentis, or Lactobacillus acidophilus.  相似文献   

15.
Three flavonol glycosides were isolated and identified from the commercial dark red kidney bean (Phaseolus vulgaris L.) cultivar Montcalm. In order of highest to lowest concentration these compounds were 3',4',5,7-tetrahydroxyflavonol 3-O-beta-D-glucopyranosyl (2-->1) O-beta-D-xylopyranoside (compound 1), quercetin 3-O-beta-D-glucopyranoside (compound 2), and kaempferol 3-O-beta-D-glucopyranoside (compound 3). Compound 1 is a flavonol glycoside that has not been reported before in P. vulgaris L. These three flavonol glycosides were yellow compounds that do not contribute to the garnet red color of Montcalm seed coats. Red-colored compounds which tested positive for proanthocyanidins are most likely responsible for the red seed coat color of Montcalm. Previous work on the chemistry of the compounds produced from the multi-allelic seed coat gene series C-C(r)()-c(u) indicated that neither anthocyanins nor flavonol glycosides were detected from seed coat extracts in the presence of the c(u)() locus. However, the seed coat color genotype of Montcalm is c(u) J g B v rk(d) and three flavonol glycosides were found. Technological advances such as modern HPLC analysis of seed coat extracts may allow for detection of small amounts of compounds which previously could not be seen using paper chromatography. Alternatively, the change of the Rk allele to rk(d) may allow for the synthesis of flavonol glycosides in the presence of c(u).  相似文献   

16.
A combination of advanced nuclear magnetic resonance (NMR) methodologies for the analysis of complex phenolic mixtures that occur in natural products is described, with particular emphasis on caffeic acid and its ester derivative, rosmarinic acid. The combination of variable-temperature two-dimensional proton-proton double quantum filter correlation spectroscopy (1H-1H DQF COSY) and proton-carbon heteronuclear multiple quantum coherence (1H-13C HMQC) gradient NMR spectroscopy allows the identification and tentative quantification of caffeic and rosmarinic acids at 243 K in extracts from plants of the Lamiaceae family, without resorting to previous chromatographic separation of the components. The use of proton-carbon heteronuclear multiple bond correlation (1H-13C HMBC) gradient NMR spectroscopy leads to the complete assignment of the correlations of the spins of H2a and H3a with the ester and carboxyl carbons of rosmarinic and caffeic acid, even at room temperature, and confirms the results of the above methodology Quantitative results are in reasonable agreement with reverse phase HPLC measurements.  相似文献   

17.
Tomatoes ( Lycopersicon esculentum Mill.) have been recognized as an important source of dietary flavonoids because of a high consumption worldwide. The qualitative and quantitative flavonoid compositions of assorted tomato cultivars including individual quantitative contributions of the five most significant flavonoids have been determined in this work. The dihydrochalcone phloretin 3',5'-di-C-beta-glucopyranoside and the flavonol quercetin 3-O-(2'-O-beta-apiofuranosyl-6'-O-alpha-rhamnopyranosyl-beta-glucopyranoside) were identified for the first time in Solanaceae spp. and found to be among the main flavonoids in all cultivars. Phloretin 3',5'-di-C-glc is the first C-glycoside identified in tomatoes and also the first dihydrochalcone from this species. In addition, chalconaringenin, kaempferol 3-rutinoside, and quercetin 3-rutinoside (rutin), though previously reported to occur in tomato, were fully characterized by extensive use of 2D NMR techniques and high-resolution LCMS. The total flavonoid content of different tomato types varied from 4 to 26 mg 100 (-1) g FW with chalconaringenin as the predominant compound comprising 35 to 71% of the total flavonoid content. The individual quantities of quercetin 3-O-(2'- O-beta-apiofuranosyl-6'- O-alpha-rhamnopyranosyl-beta-glucopyranoside) and phloretin 3',5'-di-C-beta-glucopyranoside was similar to that of rutin in several cultivars.  相似文献   

18.
Six flavone C-glycosides were isolated from young leaves of barley. One of the C-glucosides has a new type of nucleus, a 2',4',5,5', 7-penta-OH-substituted flavone bearing a 6-C-beta-D-glucoside, which has apparently never been isolated before. One mono- and two di-C-glycosyl flavones were isolated for the first time from barley and identified as isoscoparin 7-O-beta-D-glucoside, carlinoside, and shaftoside, respectively. Other flavones were 7-O-beta-D-glucosides of isoorientin and isovitexin. The known problematic NMR structure elucidation of C-glycosyl flavonoids has been solved by using both a temperature close to the freezing point of the solvent (22.5 degrees C in DMSO-d(6)) and a high temperature (70, 90 degrees C) for comparison during NMR measurements. Structural determination of all the compounds was achieved by employing 1D and 2D NMR techniques.  相似文献   

19.
Four flavonol glycosides were isolated from an extract of sea buckthorn pomace (Hippopha? rhamnoides) by Sephadex LH-20 gel chromatography and semipreparative HPLC. Their structures were elucidated by hydrolysis studies, ESI-MS(n), UV, and (1)H and (13)C NMR spectroscopy. The occurrence of the major flavonol glycoside kaempferol 3-O-beta-sophoroside-7-O-alpha-rhamnoside in sea buckthorn is described here for the first time. A further 21 flavonol glycosides of Sephadex LH-20 fractions of sea buckthorn pomace were characterized by HPLC-DAD-ESI-MS. The characteristic MS-MS and MS(3) fragmentation pattern of flavonol glycosides previously identified in sea buckthorn juice and of flavonol glycosides identified by NMR spectroscopy gave valuable indications for their identification. The results demonstrate that loss of the sugar moiety from C-7 of the aglycon is more favored than fission of the glycosidic linkage at the C-3 position. Thus, most of the compounds identified were 7-rhamnosides of isorhamnetin, kaempferol, and quercetin, which exhibit different substitution patterns at the C-3 position, mainly glucosides, rutinosides, and sophorosides. In addition, numerous flavonol glycosides were detected lacking a sugar moiety at C-7. Finally, eight flavonol derivatives were identified that are acylated by hydroxybenzoic or hydoxycinnamic acids.  相似文献   

20.
A nondestructive analytical method based on NMR spectroscopy was developed for the determination of phospholipids in olive oil. The phospholipids extracted from virgin olive oil with a mixture of ethanol/water (2:1 v/v) were identified and quantified by high resolution (31)P NMR spectroscopy. The main phospholipids found in olive oil were phosphatidic acid, lyso-phosphatidic acid, and phosphatidylinositol. Validation of the (31)P NMR methodology for quantitative analysis of phospholipids in olive oil was performed. Sensitivity was satisfactory with detection limits of 0.25-1.24 mumol /mL. In addition, the composition of fatty acids in phospholipids model compounds and those in olive oil samples was estimated by employing one- and two-dimensional (1)H NMR. The results indicated that the fatty acid composition in phospholipids and triacylglycerols of olive oil was similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号