首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
The dynamics of a recent outbreak of the spruce bark beetle (Ips typographus) in Switzerland was ruled by a devastating winter storm in 1999 and the drought and heat of the summer 2003. Starting from a similar level of population sizes, estimated as the rate of infested growing stock, beetle populations increased differently in magnitude and time among different regions in Switzerland. Accordingly, we expected local or regional genetic differentiation as a result of such repeated population expansion/breakdown dynamics. We analyzed 5 nuclear microsatellites of spruce bark beetles sampled from pheromone traps at 30 locations distributed over Switzerland. Our genetic results did not indicate any sign of population differentiation, structure, isolation by distance, or recent bottlenecks. This complete lack of genetic structure suggests that spruce bark beetles are highly mobile, precluding the formation of a spatial structure at neutral molecular markers. Thus, this molecular–genetic approach does not allow us to discriminate among regional gene pools and to identify the origin of expanding beetle populations.  相似文献   

2.
We developed the model PHENIPS for spatial and temporal simulation of the seasonal development of Ips typographus at the Kalkalpen National Park in Austria. The model is based on a digital elevation model used for interpolation of temperature and solar radiation to calculate the microclimatic conditions (bark temperature) for the beetles’ development. Additionally, the beetles’ phenology at Kalkalpen National Park was monitored along with air and bark temperature measurements. The onset of host tree infestation in spring was estimated using a lower threshold of 16.5 °C for flight activity and a mean thermal sum of 140 degree-days (dd) from beginning of April 1st onward. Rate of brood development was calculated from accumulated degree-days of hourly temperature data using upper and lower temperature thresholds of 38.9 and 8.3 °C, respectively, and a nonlinear function for calculating effective thermal sums. Re-emergence of parental beetles occurred at a time when 49.7% of the thermal sum for total development (557 dd) was reached. The model includes the discontinuance of the beetle's reproductive activity at a day length <14.5 h. The rate of successful hibernation of established broods is predicted by assessing the developmental stage of initiated generations at the beginning of the cold period. For validation we compared the timing of phenological events in the field with predicted events using both, hourly recorded data at trap trees in the terrain and generated daily topoclimatic data. Using topoclimatic data, the onset of infestation was predicted with a mean absolute error of 1.3 days. The observed onset of emergence of filial beetles in the field was estimated with a mean error of 39 dd. Our PHENIPS explicitly considers the strong effects of regional topography and stand conditions on local air and bark temperature and can be used for precise monitoring of the actual state of bark beetle development at the specific stand/tree level. Using topoclimatic data, PHENIPS simulates the maximum number of generations which is necessary to assess the potential impact of bark beetle outbreaks at regional scale. Further applications of PHENIPS for site-specific hazard rating of bark beetle infestation are discussed.  相似文献   

3.
The relationship between abiotic and biotic factors and the spread of the European spruce bark beetle, Ips typographus (L.), was investigated at a landscape level over a model period of 18 years in the Bavarian Forest National Park in Germany. Deadwood areas - where I. typographus - caused tree mortality of 100% - were photographed annually using Color-infrared aerial photography and digitally recorded in vector form. Thirty-two static and dynamic habitat variables were quantitatively determined using spatial pattern analysis and geostatistics from 1990 to 2007 at the landscape scale. The importance of the presence of deadwood areas for thirty-two habitat variables for the occurrence of the bark beetle was quantitatively recorded using an Ecological Niche Factor Analysis (ENFA).It was shown over a long model period that the intensity of the bark beetle infestation went through different phases over the 18-year study period. No mono-causal correlations could be found between individual habitat factors and the spread of the bark beetle over the entire model period. On the one hand, these findings underline the complexity of the system, on the other hand, this could be interpreted as a possible explanation for conclusions drawn by previous studies that differ from each other.The importance of individual habitat variables and the combinations of variables varied to different extents within these phases. An examination of the cumulative importance of the habitat demonstrated that the biological structural variables such as the distance from the site of the previous year's infestation, the area and the perimeter of the infested areas from the previous year are of great importance for the incidence of the bark beetle, but not across all years. Of equal significance for assessing the size of the area and the distance of the deadwood areas from the sites of the previous year's infestation are the size of the areas, the perimeter of the deadwood areas and the proximity index. An evaluation of the stages of forest succession showed that cumulatively, a short distance between the infested areas and the forest areas with conifers in the early stages of growth was an equally important habitat factor from 1990 to 2007. By quantitatively recording habitat factors that are significant for the spread of the bark beetle it may help predict areas that are at risk and thus to develop suitable management strategies to minimise or stop the spread and the effect of the bark beetle.  相似文献   

4.
To evaluate control measures, the spread of mountain pine beetles, Dendroctonus ponderosae, in management and monitoring regions in Banff National Park was analyzed for years 1997 to 2004. The Park allowed mountain pine beetles to follow their natural course in a monitoring zone (74,041 ha), whereas in a management zone (45,997 ha) an extensive eradication program was established in 2001 which included baiting mountain pine beetles and cutting and burning all colonized trees. We used data collected from an annual aerial survey and the geo-referenced location of trees that were cut and removed to assess if the area colonized and the spatial extent of mountain pine beetles differed between the two zones. After 4 years, the control measures did not significantly affect the area colonized by mountain pine beetles, and in 2004 mountain pine beetles were still expanding in both zones, although at a slow rate (1.23 ha per year). The spatial extent and the rate at which 500 m × 500 m cells (25 ha) were colonized were much reduced in the management zone. Thus, the management program appeared to have reduced the success of long distance movement as measured by colonizing new 25 ha cells, but short distance dispersal remained successful as indicated by the continued increase in area colonized. The effectiveness of control measures was probably limited by the number of colonized trees that were missed and by survival rates determined by other untested factors.  相似文献   

5.
Beech forests located in the southwestern limit of Europe have been affected by severe deforestation and long-term fragmentation. Some of these forests have been subjected to partial cutting, whereas others have been maintained with little or no active management. It has previously been shown that past management has led to substantial changes in tree structure, diversity and plant species. These perturbations, through their influence on the litterfall and forest floor, may affect nutrient cycling and the nutritional status of such fragile ecosystems. Mineral nutrition was investigated in 53 forest fragments by analysis of data corresponding to nutrient concentrations in forest floor, mineral soils and foliage. In comparison with other beech forests in Central Europe subjected to higher levels of air pollution, the stands showed fewer incidences of nutrient deficiencies and lower foliar concentrations of S and heavy metals. Partial cuts carried out in recent decades have reduced the forest floor mass proportional to the intensity of the harvesting. The effect was probably due to the lower litter input and the increased decomposition of litter as a consequence of the environmental changes in forest gaps. The partially cut stands displayed higher foliar levels of K and Mg, which could be attributed to the greater release of these elements as a consequence of the increased decomposition of litter. However, past management has brought about lower foliar concentrations of P and N. Both effects were found to be proportional to basal area and the forest floor mass, which suggests that they are related to the intensity of harvesting. Although the causes are uncertain, this negative effect may be due to a reduction in forest floor thickness, which implies the loss of preferred rooting space for trees.  相似文献   

6.
The impact of forest management activities on the ability of forest ecosystems to sequester and store atmospheric carbon is of increasing scientific and social concern. The nature of these impacts varies among forest ecosystems, and spatially and temporally explicit ecosystem models are useful for quantifying the impacts of a number of alternative management regimes for the same forest landscape. The LANDIS-II forest dynamics simulation model is used to quantify changes to the live overstory and coarse woody debris pools under several forest management scenarios in a high-latitude South American forest landscape dominated by two species of southern beech, Nothofagus betuloides and N. pumilio. Both harvest type (clearcutting vs. partial overstory retention) and rotation length (100 years vs. 200 years) were significant predictors of carbon storage in the simulation models. The prompt regeneration of harvest units greatly enhanced carbon storage in clearcutting scenarios. The woody debris pool was particularly sensitive to both harvest type and rotation length, with large decreases noted under short rotation clearcutting. The roles of extended rotations and partial overstory retention are noted for enhancing net carbon storage on the forest landscape.  相似文献   

7.
The present paper deals with C and N storage in soil and vegetation, litter fall and CO2 efflux from the soil 32–33 years after early thinning in a Norway spruce (Picea abies (L.) Karst.) stand in order to evaluate the effect of thinning regime on C sequestration. At 22 years old, the stand was reduced from 3190 to 2070, 1100 and 820 trees per hectare in four replicates. The N2070 treatment represents the recommended start density in practical forestry, while the other represent a moderate to large reduction in tree number at the present stand age. Aboveground biomass was estimated from single tree measurements of diameter and height based on allometric functions. Litter fall was collected during one and a half years and soil respiration was measured on five occasions during one summer. Ground vegetation was mapped and sampled for biomass, C and N determination. A significant decrease in aboveground tree (including stump-root system) C storage of 27% and 22% due to thinning was found in the N820 and N1100 treatments, respectively, compared to the N2070 treatment. Ground vegetation C storage was little affected by treatment, while litter fall C showed a non-significant decrease in the N820 and N1100 treatments compared to the N2070 treatment. Soil respiration was significantly lower in parts of the summer in the N2070 treatment compared to the N820 treatment. The reason for this is still unexplained since no differences in soil temperature, soil moisture or litter fall chemistry was found between the treatments. No significant treatment effects on humus and mineral soil C storage could be detected. With the present soil variability, the time period of 32 years is probably too short to detect soil C differences due to thinning. The N storage followed the same pattern as for C.  相似文献   

8.
Forest management is often carried out in different ways, without any appropriate environmental restrictions. Stands of pedunculate oak (Quercus robur L.) in Galicia (NW Spain) have been harvested by alternating high forest and, mainly, coppice forest. However, some totally inappropriate silvicultural treatments have been used, such as thinning of the best trees and inadequate pruning. The objective of the present study was to analyse how environmental characteristics affect the management of oak forests in Galicia. For this, a botanical inventory was carried out in 39 selected stands of Q. robur and a total of 42 parameters were measured, 4 of which were physiographical, 12 climatic, 19 edaphic and 7 silvicultural. In order to analyse the possible relationships among these variables, the silvicultural data were compared with the other data, by canonical correlation analysis. All parameters were correlated with the silvicultural regime, although the correlation was weak for the floristic data. It is therefore evident that the environmental conditions affect how forest stands should be managed, although this does not imply that more profitable use of the stands cannot be achieved than at present, and alternative silvicultural methods must be found to enable appropriate management and conservation of oak stands.  相似文献   

9.
Bark extracts from the African cherry, Prunus africana (Rosaceae), are a popular treatment for enlarged prostates. Harvests of the bark began in Cameroon in the 1970s. Because of concerns regarding the sustainability of the trade, the species is included on the IUCN Red List and in CITES Appendix II. This study followed five P. africana populations in the Kilum-Ijim Forest Preserve on Mount Oku, Cameroon, examining growth, mortality and reproductive parameters, as well as response to harvest and other human activities. During the first part of the study (1998–1999), the forest had limited human activity; by the second part (2007–2008), more activity was apparent, including wildfires, grazing and a forest-wide bark harvest in 2005/2006. Over the study period, population structure differed from a typical J-shaped frequency curve for long-lived species, which may reflect past harvesting. After the 2005/2006 harvest, the population structure had shifted slightly toward the smaller size classes. In addition, the number of surviving trees was reduced in all size classes. About half of the reproductive trees died during the study. Size class was not a significant predictor of death, but the location of the harvest (plot) was. All trees affected by wildfires died, suggesting that the species is not adapted to fire. Trees that were harvested without disrupting the vascular cambium survived better and had minimal loss of crown. Thus, the fate of the trees in a given plot may lie in the care taken by an individual harvester. Average growth (0.34 cm per year) was not significantly different among the size classes. Crown die-back significantly reduced fruit production, obscuring the asynchronous alternating fruiting pattern. Seedling numbers followed a similar alternating pattern, but survival was negligible due to grazing. The combined factors of mortalities of a large percentage of reproductive trees (especially the largest ones), highly reduced fruit production and poor seedling survival offer a bleak prognosis for future regeneration and long-term persistence of the species in this forest. Only after decades of harvest are existing standing crop inventories and scientifically based annual quotas now being determined. It is known that the trees are easily domesticated. Efforts have been intensified to train villagers and community forest managers in vegetative propagation techniques and nursery practices, offering some hope that the species can be successfully managed to provide for sustainable harvests and dependable rural livelihoods.  相似文献   

10.
This study investigated the effects of Ips typographus (L.) damage on initial litter quality parameters and subsequent decomposition rates of oriental spruce tree species [Picea orientalis (L.) Link]. The needle litter was collected from highly damaged, moderately damaged and control stands on two aspects (north and south) and two slope position (top and bottom) on each aspect. The litter was analyzed for initial total carbon, lignin and nutrient (nitrogen, phosphorus, potassium, calcium, magnesium and manganese) concentrations. The variability in nitrogen and calcium concentrations and ratios of C:N, lignin:N and lignin:Ca was significantly affected by the insect damaged levels. While nitrogen concentrations in needle litter increased with increasing insect damage (and consequently the ratios of C:N and lignin:N decreased), calcium concentrations decreased (and consequently the ratio of lignin:Ca increased). Aspect and slope positions explained most of the variability in carbon, lignin, phosphorus, potassium, magnesium and manganese concentrations and lignin:P ratio between all studied stands. Litter decomposition was studied in the field using the litterbag technique. The litter from highly damaged stands showed highest decomposition rates followed by moderately damaged and control stands. The mass loss rates were significantly positively correlated with initial nitrogen concentration and negatively with C:N and lignin:N ratios. The effects of microclimate resulting from canopy damage on litter decomposition was also examined at the same time using standard litter with the same litter quality parameters, but they showed no significant differences among the insect damage levels indicating that alteration of the litter quality parameters produced by I. typographus damage played a more important role than altered microclimate in controlling needle litter decomposition rates. However, changes in microclimate factors due to topography influenced decomposition rates.  相似文献   

11.
Climate changes induced by the anthropogenic alteration of the atmospheric radiative balance are expected to change the productivity and composition of forest ecosystems. In Europe, the Mediterranean is considered one of the most vulnerable regions according to climatic forecasts and simulations. However, although modifications in the inter-specific competition are envisaged, we still lack a clear understanding of the ability of the Mediterranean vegetation to adapt to climate changes. We investigated how two co-occurring tree species commonly used in afforestation programmes, the native Abies alba Mill. and the nonnative Picea abies L. Karst., adapt to climate change by assessing their growth performance and physiological responses in relation to past climate variability. Growth was addressed by analysing tree-ring width and carbon and oxygen stable isotopes. Statistical relationships between isotopic value and monthly climate data suggest that the two species underwent ecophysiological adaptation to Mediterranean climatic constraints. These adaptations are also expressed in the ring-width data. Based on the carbon isotope ratio reflecting the stomatal response to drought, we found that the precipitation in the first period of the growing season, i.e. early spring, is a major factor influencing the annual growth of A. alba, which although native, proved to be sensitive to drought. P. abies, on the other hand, showed a higher tolerance to summer drought stress. These findings should help define criteria for sustainability and effective forest conservation in the Mediterranean region.  相似文献   

12.
Throughout eastern North America, stands of northern red oak (Quercus rubra L.) are undergoing successional replacement by shade-tolerant competitors. In the Great Lakes-St. Lawrence (GLSL) forest region, Q. rubra approaches the northern limit of its distribution, and ecosystem-specific silvicultural directives are needed to promote regeneration. We used an inductive, ordination-based approach to explore patterns in understorey plant community composition and microenvironment under different partial harvest treatments applied in a GLSL hardwood stand, and related these to characteristics of natural seedlings of Q. rubra and its competitors Acer rubrum and Acer saccharum.Two years after harvest, we established 2 m × 2 m plots in a stratified random design under 70% (n = 20) and 50% (n = 19) crown closure uniform shelterwood, group selection (n = 15), and uncut upper slope (n = 10) and lower slope (n = 10) areas. Percent cover of understorey vascular plant species, and a suite of microclimatic and edaphic variables were measured in each plot. Density, mean diameter and mean height of seedlings in the understorey (height <1 m) were determined in each plot for Q. rubra, A. rubrum and A. saccharum.Correspondence analysis (CA) ordination extracted two major axes explaining 21.6% of the total inertia in the species cover by plot matrix. Axis one separated uncut plots from the 50% shelterwood along a gradient of canopy cover associated with partial harvest treatments. Plot scores on axis one (13.2%) reflected a shift in dominance of the understorey from shade-tolerant Acer spp. to shade-intolerant colonizers, Rubus idaeus and Carex spp. Plot scores on axis one were directly (p < 0.05) associated with total understorey plant cover, litter depth, soil temperature and pH, but not with measures of plant diversity. Axis two (8.4%) separated plots from upper slope and lower slope areas, and plot scores were inversely associated (p < 0.05) with soil pH, phosphorus and nitrogen levels. Along axis two there was a shift in dominance from competitive (e.g. A. saccharum) to stress-tolerant (e.g. A. rubrum) species as soil fertility declined. Stepwise linear regression indicated seedling diameter in Q. rubra, A. rubrum and A. saccharum was inversely related to canopy cover. This suggests all three species benefited from partial harvest, although the relationship was strongest in Q. rubra. Patterns in understorey composition, microenvironment and seedling characteristics provide the basis to identify the main competitors of Q. rubra seedlings and adjust regeneration efforts along gradients of canopy closure and soil fertility under partial harvest systems within the GLSL forest region.  相似文献   

13.
For the period 2003–2006, fructification of Norway spruce (Picea abies [L.] Karst.) was recorded at the Kranzberg forest site in Southern Germany by employing a crane with access to the canopy of more than 266 trees. For each tree, stem diameter and growth parameters were assessed annually as well as biomass of cones and seeds, number of seeds per cone, and proportions of empty seeds for a total of 371 trees with cone crop. Genotypes at 19 enzyme coding gene loci of 110 trees were included in the study of correlations between morphological and genetic traits. Re-scaling the observed values for a virtual pure Norway spruce stand of 1 ha, cone biomass including winged seeds (oven-dried at 38°C) varied between 706.8 kg/ha in 2006 (average value per tree was 3.6 kg) and values close to zero in 2005. Corresponding values for vegetative biomass increment of the coning trees in 2006 were 9,273.0 kg/ha and 10.8 kg/tree. A significant higher biomass investment was determined for dominant trees in terms of absolute cone mass as well as in terms of cone mass relative to vegetative biomass and fructification frequency. No trade-off effects in decreased vegetative biomass growth were found in the fructification year, compared to trees that did not grow cones. Although the dominant trees invested proportionally considerable biomass in cones, they showed no significant reduction in vegetative biomass growth. In the following year no decrease in vegetative growth was detected. Based on logistic regressions and homogeneity tests, respectively, significant genetic effect became evident with respect to the gene loci AAP-B and AAT-C concerning fructification probability in the year with maximum generative biomass investment. These and closely related loci also have been found to be indicative for growth and viability, respectively, in other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号