首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to determine the combined effect of both stress and EFA deficiency on several biological and biochemical parameters. Fish were fed during 15 weeks two isocaloric and isoproteic diets: a control diet based on fish oil and formulated to meet the n-3 HUFA requirements for this species (1.5% of n-3 HUFA) and a deficient diet containing beef tallow and formulated to be deficient in n-3 HUFA. Each experimental diet was evaluated both at high and low stocking densities (10 and 3.2 kg m–3 of initial density, respectively).High stocking density produced a chronic stress situation with elevation of plasma cortisol levels. It also caused a reduction in hepatosomatic index and liver lipid contents, increasing the oleic acid/n-3 HUFA ratios in the polar lipids. Fish fed the EFA deficient diet at low stocking density showed common deficiency symptoms. High stocking density in fish fed the EFA deficient diet induced a higher degree of EFA deficiency symptoms leading to mortality, liver steatosis, liver lipid deposition, reduced muscle lipid and reduced n-3 HUFA contents, which particularly affected EPA, but not DHA, suggesting a preferential retention of the latter fatty acid, specially in the phosphoglycerides fraction.  相似文献   

2.
This study was conducted to confirm the essentiality of dietary n-3 highly unsaturated fatty acids (n-3 HUFA) and to investigate the effects of dietary lipid sources on growth performance, liver, and blood chemistry in juvenile Japanese flounder. Three replicate groups of fish (average weighing 3.0 g) were fed experimental diets containing lauric acid ethyl ester, soybean oil, soybean and linseed oils mixture, and squid liver oil as lipid sources for 13 wk. No significant difference was observed in survival among all groups ( P >0.05). Weight gain, feed efficiency and protein efficiency ratio of fish fed the squid liver oil diet containing high n-3 HUFA level were significantly higher than those of fish fed the other diets ( P 0.05). Saturated and monounsaturated fatty acids of liver polar and neutral lipid fractions in fish fed the diet containing lauric acid tended to increase compared to those of the other groups. Fish fed the diets containing soybean and/or linseed oils, which contained high contents of 18:2n-6 and 18:3n-3, respectively, showed the highest contents of 18:2n-6 and 18:3n-3 in both lipid fractions of the liver ( P 0.05). Significantly higher content of n-3 HUFA was observed in both lipid fractions of the liver from fish fed the diet containing squid liver oil than for fish fed the other diets ( P 0.05). Total cholesterol, glucose, and glutamic-oxaloacetic acid transaminase in plasma were significantly affected by dietary lipids ( P 0.05). Histologically, the liver of fish fed the diet containing squid liver oil had a clear distinction between nuclear and cytoplasm membranes; however, cytoplasm of fish fed the diets containing lauric acid and soybean oil was shrunken, and the hepatic cell outline was indistinguishable. It is concluded that the dietary n-3 HUFA is essential for normal growth, and that the dietary lipid sources affect growth performance, liver cell property, and blood chemistry in juvenile Japanese flounder.  相似文献   

3.
Feeding experiments and laboratory analyses were conducted to establish the essential fatty acid (EFA) requirement of red drum (Sciaenops ocellatus). Juvenile red drum were maintained in aquaria containing brackish water (5 ± 2‰ total dissolved solids) for two 6-week experiments. Semipurified diets contained a total of 70% lipid consisting of different combinations of tristearin [predominantly 18:0] and the following fatty acid ethyl esters: oleate, linoleate, linolenate, and a mixture of highly unsaturated fatty acids (HUFA) containing approximately 60% eicosapentaenoate plus docosahexaenoate. EFA-deficient diets (containing only tristearin or oleate) rapidly reduced fish growth and feed efficiency, and increased mortality. Fin erosion and a “shock syndrome” also occurred in association with EFA deficiency. Of the diets containing fatty acid ethyl esters, those with 0.5–1% (n-3) HUFA (0.3–0.6% eicosapentaenoate plus docosahexaenoate) promoted the best growth, survival, and feed efficiency; however, the control diet containing 7% menhaden fish oil provided the best performance. Excess (n-3) HUFA suppressed fish weight gain; suppression became evident at 1.5% (n-3) HUFA, and was pronounced at 2.5%. Fatty acid compositions of whole-body, muscle and liver tissues from red drum fed the various diets generally reflected dietary fatty acids, but modifications of these patterns also were evident. Levels of saturated fatty acids appeared to be regulated independent of diet. In fish fed EFA-deficient diets (containing only tristearin or oleate), monoenes increased and (n-3) HUFA were preferentially conserved in polar lipid fractions. Eicosatrienoic acid [20:3(n-9)] was not elevated in EFA-deficient red drum, apparently due to their limited ability to transform fatty acids. Red drum exhibited some limited ability to elongate and desaturate linoleic acid [18:2(n-6)] and linolenic acid [18:3(n-3)]; however, metabolism of 18:3(n-3) did not generally result in increased tissue levels of (n-3) HUFA. Based on these responses, the red drum required approximately 0.5% (n-3) HUFA in the diet (approximately 7% of dietary lipid) for proper growth and health.  相似文献   

4.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

5.
Replacement of fish oil with sustainable alternatives, such as vegetable oil, in aquaculture diets has to be achieved without compromising the nutritional quality, in terms of n-3 highly unsaturated fatty acid (HUFA) content, of the product. This may be possible if the level of replacement is not too high and oil blends are chosen carefully but, if high levels of fish oil are substituted, a fish oil finishing diet prior to harvest would be required to restore n-3HUFA. However, a decontaminated fish oil would be required to avoid increasing undesirable contaminants. Here we test the hypotheses that blending of rapeseed and soybean oils with southern hemisphere fish oil will have a low impact upon tissue n-3HUFA levels, and that decontamination of fish oil will have no major effect on the nutritional quality of fish oil as a feed ingredient for Atlantic salmon. Salmon (initial weight ~ 0.8 kg) were fed for 10 weeks with diets in which 60% of fish oil was replaced with blends of soybean, rapeseed and southern hemisphere fish oil (SVO) or 100% decontaminated northern fish oil (DFO) in comparison with a standard northern fish oil diet (FO). Decontamination of the oil was a two-step procedure that included treatment with activated carbon followed by thin film deodorisation. Growth performance and feed efficiency were unaffected by either the SVO or DFO diets despite these having lower gross nutrient and fatty acid digestibilities than the FO diet. There were also no effects on the gross composition of the fish. Liver and, to a lesser extent flesh, lipid levels were lower in fish fed the SVO blends, due to lower proportions of neutral lipids, specifically triacylglycerol. Tissue lipid levels were not affected in fish fed the DFO diet. Reflecting the diet, flesh eicosapentaenoic acid (EPA) and total n-3 fatty acids were higher, and 18:1n-9 lower, in fish fed DFO than FO, whereas there were no differences in liver fatty acid compositions. Flesh EPA levels were only slightly reduced from about 6% to 5% although docosahexaenoic acid (DHA) was reduced more severely from around 13% to about 7% in fish fed the SVO diets. In contrast, the liver fatty acid compositions showed higher levels of n-3 HUFA, with DHA only reduced from 21% to about 18% and EPA increased from under 8% to 9–10% in fish fed the SVO diets. The evidence suggested that increased liver EPA (and arachidonic acid) was not simply retention, but also conversion of dietary 18:3n-3 and 18:2n-6. Increased HUFA synthesis was supported by increased hepatic expression of fatty acyl desaturases in fish fed the SVO diets. Flesh n-3HUFA levels and desaturase expression was significantly higher in fish fed soybean oil than in fish fed rapeseed oil. In conclusion, partial replacement of fish oil with blends of vegetable oils and southern hemisphere fish oil had minimal impact on HUFA levels in liver, but a greater effect on flesh HUFA levels. Despite lower apparent digestibility, decontamination of fish oil did not significantly impact its nutritional quality for salmon.  相似文献   

6.
This study investigated the effects of coconut oil as a dietary supplement on the growth, lipid metabolism and related gene expressions of juvenile orange‐spotted grouper Epinephelus coioides. Coconut oil at concentrations of 0, 10, 30 and 50 g/kg was used to replace dietary lipids in a basal diet containing 150 g/kg lipids. The four experimental diets were, respectively, fed to triplicate groups of juvenile groupers (initial weight: 8.53 ± 0.13 g) in a recirculating system for 8 weeks. Fish fed the diet containing 50 g/kg coconut oil exhibited lower (p < .05) weight gain than did fish fed the diet containing 30 g/kg coconut oil; however, no significant differences in weight gain were observed between fish fed diets containing 0 and 10 g/kg coconut oil. Hepatic carnitine palmitoyltransferase‐1, fatty acid synthase, fatty acid elongase, fatty acid desaturase and peroxisome proliferator‐activated receptor gamma gene expressions were all the highest in fish fed the diet containing 10 g/kg coconut oil. Fish fed the coconut oil‐free basal diet demonstrated upregulated gene expression of neuropeptide Y. The results suggest that dietary supplementation with 10 g/kg coconut oil exerted beneficial effects on lipid metabolism by E. coioides.  相似文献   

7.
Two experiments were conducted to determine the nutritional value of various dietary proteins for juvenile red drum. In the first 8-week feeding trial, diets containing similar quantities of lipid, carbohydrate, available energy and ash with 35% crude protein from either lyophilized whole-body croaker (Micropogon undulatus), striated beef muscle, red drum processing waste or commercially processed menhaden (Brevoortia tyrannus) fish meal were fed to juvenile red drum in brackish (6 ppt) water along with a control diet containing lyophilized muscle of red drum. The control diet produced significantly (P<0.05) greater weight gain (WG), feed efficiency (FE), and protein efficiency ratio (PER) values than all other diets; intermediate responses were observed for fish fed diets containing protein from red drum waste and whole-body croaker, while diets containing striated beef muscle and menhaden fish meal yielded the lowest values. Some differences in tissue indices and body composition of red drum including hepatosomatic index, whole-body ash and lipid, as well as liver lipid and glycogen were induced by the various diets. In the second 8-week feeding trial, the control diet containing red drum muscle was compared with similar diets containing protein from whole-body croaker and menhaden fish meal. Again the control diet produced the greatest WG, FE, and PER values followed by whole-body croaker and then menhaden fish meal. Effects of the dietary proteins on tissue indices and body composition were limited. The excellent protein quality and low-temperature processing of lyophilized red drum muscle resulted in superior performance of red drum relative to the other evaluated protein products, and lyophilized whole-body croaker provided better performance than commercially processed menhaden fish meal.  相似文献   

8.
Channel catfish, Ictalurus punctatus, 88.4 ± 2.6 g/fish, were fed a basal diet amended with 4% of three processed menhaden, Brevoortia tyrannus, oils. These were compared with basal diets amended with 4% corn oil or 4% canola oil. Three replicate aquaria of nine fish each were fed assigned diets twice daily. At 6 wk, fish were group weighed, fillets were collected for sensory evaluation, fatty acid analysis by gas chromatography (GC). In a second study, catfish, 118.8 ± 3.2 g/fish, were stocked into fifteen 0.04‐ha earthen ponds and fed once daily for 16 wk one of four diets containing 2 or 4% of either catfish offal oil or refined (RF) menhaden oil. At harvest, fillets were saved for sensory evaluation and fatty acid analysis. Results showed no significant (P > 0.05) differences among treatments for aquarium study and pond study variables such as weight gain, fillet proximate analysis, or pond production. GC analysis showed that levels of omega‐3 (n‐3) highly unsaturated fatty acids (HUFA) in fillet lipid were significantly (P < 0.05) elevated for fish fed menhaden oil diets. Sensory evaluation revealed that fillets from fish fed RF menhaden oil had satisfactory flavor and could be a source of n‐3 HUFA for humans.  相似文献   

9.
A 12‐week growth trial was conducted with gibel carp Carassius auratus gibelio (initial weight: 2.69 g) to evaluate the effects of dietary n‐3 highly unsaturated fatty acids (n‐3 HUFA) on growth performance and tissue fatty acid composition. Five diets of different n‐3 HUFA levels from 0 to 17 g kg?1 diet were supplemented at 80 g kg?1 dietary lipid by including fish oil (FO) at 0, 25, 50, 75 and 100% of supplemental lipid. The remainder was coconut oil. The results showed that fish fed FO25 and FO50 obtained highest specific growth rate and lowest with FO0. Feed efficiency was highest at FO100 and lowest at FO0. Apparent digestibility coefficient of lipid increased with increasing dietary n‐3 HUFA. The fish fed FO0 diet had the lowest thiobarbituric acid reactive substance in serum and muscle and highest moisture and lowest lipid content in viscera. Fatty acid compositions of muscle and liver were correlated with dietary fatty acids. Fish muscle concentration of 20:5n‐3 increased with increasing dietary n‐3 HUFA while the concentration of 22:6n‐3 was distinctly reduced in FO0 group. It suggested that 4 g kg?1 n‐3 HUFA in diet could permit gibel carp normal growth performance and provide considerable n‐3 HUFA in fish muscle. Excessive n‐3 HUFA showed impact on growth performance of gibel carp.  相似文献   

10.
A 10‐week trial was conducted to determine the response of juvenile jade perch Scortum barcoo on the replacement of dietary fish oil (FO) in a fishmeal free diet. Three iso‐nitrogenous, isocaloric and isolipidic diets were formulated, each containing a different primary fat source: FO, linseed oil (LO), and a mixture of Schizochytrium and LO. The substitution of FO with the mixture of Schizochytrium and LO did not cause a difference in growth. However, there was an 8% reduction in weight gain in fish fed dietary LO, indicating that juvenile jade perch do require a minimal concentration of dietary n‐3 highly unsaturated fatty acids (HUFA). Fish fed the Schizochytrium diet stored more efficient n‐3 HUFA and in particular DHA in their flesh, and retained a higher fillet recovery compared to fish fed FO. In addition, we demonstrated that jade perch are able to produce both n‐3 HUFA and n‐6 HUFA when dietary PUFA are present. Fish fed the LO diet for 10 weeks contained the lowest amount of n‐3 HUFA in fillets among dietary treatment groups. However, feeding these fish the Schizochytrium diet for an additional 4 weeks increased the n‐3 HUFA content towards the same concentration of n‐3 HUFA found in the flesh of fish fed FO, without affecting the sensory properties of the fillets. In contrary, feeding the Schizochytrium diet for a continuous period of 14 weeks lowered overall sensory property scores.  相似文献   

11.
The effects of dietary lipid from four experimental diets on the fatty acid (FA) composition and cholesterol (CHOL) content of spermatozoa and spermatozoal plasma membranes and their consequences for sperm viability after cryopreservation were evaluated in rainbow trout Oncorhynchus mykiss (Walbaum). The four sources of lipid were herring oil (adequate n‐3 FA), menhaden oil (high n‐3 FA), safflower oil (high n‐6 FA) or tallow (high saturated FA), and they comprised 12% of the total diet. Spermatozoa from fish fed the tallow diet had significantly (P < 0.05) higher CHOL levels than spermatozoa from the fish fed the other diets. The spermatozoal plasma membranes from fish fed the tallow diet had significantly (P < 0.05) higher CHOL and monounsaturated fatty acid levels than those from fish fed the menhaden or safflower oil diets, but were not different from membranes of fish fed the herring oil diet. Cryopreserved spermatozoa from fish fed the tallow or herring oil diets exhibited less membrane damage (P < 0.05) and produced a higher percentage (P < 0.05) of eyed embryos compared with spermatozoa from the menhaden or safflower oil‐fed fish. Therefore, it would appear that high levels of CHOL and monounsaturated fatty acids provided the spermatozoa with increased resistance to cryopreservation damage.  相似文献   

12.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

13.
Due to its traditionally good availability, digestibility and high content of n ? 3 HUFA, fish oil is the main lipid source in fish feeds. However, world demand for this product has grown significantly in recent years, whereas its production, based on fisheries landings, is static. The purpose of the present study was to assess the effect of partial replacement of fish oil in compound diets for gilthead seabream and seabass, by several vegetable oil sources, on growth, dietary fatty acid utilization and flesh quality. Five iso‐energetic and isoproteic experimental diets were formulated (25% lipid content). Fish oil was the only added lipid source in the control (FO) diet, and it was included in the other experimental diets at a level high enough (40% of FO diet) to keep the n ? 3 HUFA levels well over 3% in order to cover the essential fatty acid requirements of these species. Fish oil was replaced by soyabean oil (SO), rapeseed oil (RO) and linseed oil (LO) or a mixture (Mix) of them. Feed intake in all dietary groups was in the range of results obtained for commercial diets in both species, and growth and feed utilization were very good. The results show that, providing a minimum content of essential fatty acids in the diet, it is possible to replace up to 60% of the fish oil by SO, LO and RO or a mixture of them in diets for seabream and seabass, without compromising fish growth. Fatty acid composition of liver and muscle reflected that of the diet, but utilization of dietary lipids differed between these two tissues and was also different for the different fatty acids. Despite reduction in dietary saturated fatty acids by the inclusion of vegetable oils, their levels in fish liver were as high as in fish fed the fish oil diet, whereas, in muscle, levels were reduced according to that in the diet. Linoleic and linolenic acids were accumulated in the liver proportionally to their levels in the diet, suggesting a lower oxidation of these fatty acids in comparison to other 18C fatty acids. Regarding eicosapentaenoic acid (20 : 5n ? 3; EPA), docosahexaenoic acid (22 : 6n ? 3; DHA) and arachidonic acid (20 : 4n ? 6; ARA), these essential fatty acids were reduced in the liver at a similar rate, whereas DHA was preferentially retained in the muscle in comparison with the other fatty acids, denoting a higher oxidation particularly of EPA, in the muscle. Some other PUFA increased despite their low dietary levels in seabream fed LO diets and in seabass fed SO diet, suggesting the stimulation of delta‐6 and delta‐5 desaturase activity in marine fish. Despite differences in fatty acid composition, fillet of fish fed vegetable oils was very well accepted by trained judges when assessed cooked.  相似文献   

14.
A study was conducted to determine the effect of increasing dietary levels of fish oil on vitamin E requirement and their effect on growth performance, liver vitamin E status, and tissue proximate and fatty acid compositions of channel catfish. Basal purified diets (42% protein and 3,800 kcal DE/kg) supplemented with 6, 10, and 14% menhaden fish oil were each supplemented with 50, 100, and 200 mg vitamin E/kg (3 × 3 factorial experiment). Each diet was fed to juvenile channel catfish in three random aquaria to apparent satiation twice daily for 12 weeks. Weight gain, feed intake, and feed efficiency ratio were not affected by dietary levels of fish oil, vitamin E, or their interaction. Survival rate at the end of week 12 was significantly lower for fish fed diets containing 14% fish oil, regardless of vitamin E content. Whole-body moisture significantly decreased and lipid increased when dietary lipid levels were increased to 10 or 14%. Dietary vitamin E levels had no effect on body proximate composition. Lipid content of liver was not influenced by dietary levels of fish oil and vitamin E or their interaction. Hepatosomatic index significantly decreased with increasing lipid levels but was not affected by dietary levels of vitamin E. Liver vitamin E increased with increasing dietary vitamin E but decreased with increasing fish oil levels. Fatty acid composition of whole body and liver reflected that of dietary lipid but was not influenced by dietary levels of vitamin E. Whole-body saturates increased, whereas MUFA decreased with increasing dietary levels of fish oil. Liver saturates were not affected by fish oil levels, but MUFA and n-6 decreased and increased, respectively, with increasing fish oil levels. Total n-3 and n-3 HUFA in both tissues increased with increasing fish oil levels in diets, but liver stored much higher levels of these fatty acids.  相似文献   

15.
We determined whether canola oil could spare menhaden oil (MO) in diets containing minimal fish meal without affecting sunshine bass, Morone chrysops × Morone saxatilis, production. Seven isonitrogenous, isocaloric (41.7% crude protein and 14.6% crude lipid) diets containing graded levels (0, 20, 40, 60, 80, or 100%) of menhaden to canola oils with 20% menhaden meal (MM) or 100% canola oil with 20% lipid‐extracted MM were fed to sunshine bass (initial weight 9.3 ± 0.16 g; mean ± SD) twice daily to apparent satiation for 10 wk. Sunshine bass fed less than 40% of their dietary lipid as MO exhibited significantly (P < 0.05) lower feed intake and growth rates. Increased concentrations of saturated, n‐3, and n‐3 highly unsaturated fatty acids (FA) in the fillet were associated with MO‐rich diets, while monounsaturated and n‐6 FA were most common in fillets from fish fed diets rich in canola oil. Reducing MO to 40% of the dietary lipid in diets containing minimal fish meal allows for efficient utilization of marine resources without negatively impacting juvenile sunshine bass production.  相似文献   

16.
This study was conducted to evaluate the effects of different concentrations of dietary lipids on body composition and liver function in juvenile red drum, Sciaenops ocellatus. Diets were formulated to contain 40% crude protein from solvent-extracted menhaden fish meal and 0, 7, 14 or 21% lipid from menhaden fish oil. The basal diet, without supplemental fish oil, contained lipid at 0.4% of dry weight. The diets were fed to groups of 25 juvenile red drum initially averaging 7.3 ± 0.18 g fish–1 in a recirculating culture system for 8 weeks and weight gain was recorded. After an additional 8 weeks, 16 fish from each treatment were sacrificed and the following measurements were recorded: hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, and liver -tocopherol, malondialdehyde (MDA) formation, and cytochrome P-4501A activity (measured as 7-ethoxyresorufin O-deethylase (EROD) activity). The activity of alanine and aspartate aminotransferases and concentrations of -tocopherol also were measured in plasma.Weight gain was significantly (p<0.05) affected by dietary lipid concentration, with values ranging from 361% of initial weight for fish fed the basal diet to 527% of initial weight for fish fed the diet containing 7% lipid. The HSI and IPF ratio values also were significantly affected by lipid with the lowest values recorded for fish fed the basal diet and the highest values observed in fish fed the diet containing 21% lipid. Increasing dietary lipid significantly increased oxidative stress as reflected in reduced -tocopherol in liver and plasma and increased MDA formation in the liver, although no overt pathological signs were observed. These findings suggest that lipid concentrations between 7 and 14%, when the diet contains 60 IU vitamin E kg–1, are likely to limit oxidative stress and result in normal physiological responses of red drum.  相似文献   

17.
An experiment was conducted in aquaria with channel catfish (Ictalurus punctatus) to determine the efficacy of augmenting fillets with conjugated linoleic acid (CLA) and omega-3 highly unsaturated fatty acids (− 3 HUFA) by feeding diets amended with products containing high levels of these nutrients. Refined menhaden fish oil at 1.5% of diet supplied the − 3 HUFA. CLA was used at dietary levels of 0.5% and 1% with a preparation that contained approximately 65% isomers of CLA. Corn oil was added to the basal diet at maximum inclusion level for added lipids of 3% for the control diet and to adjust total added lipid content of the other diets to 3%. Average initial body weight was 57.39 ± 0.25 g/fish. Six experimental diets were fed twice daily to four replicate aquaria for six weeks. At that time, fish were group weighed for determination of weight gain and feed conversion. Fillets of six fish per aquarium were recovered and stored at − 80 °C for moisture and total lipid analyses, fatty acid analysis, and sensory evaluation. Results showed feed consumption and feed conversion did not differ (> 0.05). Significantly (< 0.05) greater body weight gains were observed only for fish fed the diets with two combinations of CLA and 1.5% fish oil compared to fish fed the diet containing 0.5% CLA and corn oil. Fillet − 3 HUFA levels were significantly (< 0.05) elevated for fish fed diets containing fish oil when compared to − 3 HUFA of fillets of fish fed diets containing either corn oil or CLA and corn oil. Similarly, fillets from fish fed diets amended with CLA contained substantial amounts of CLA of up to 6.4% of total lipids. Fillets from fish fed corn oil or fish oil diets had no CLA. Taste panel evaluation indicated that fillets containing − 3 HUFA and CLA were essentially without fishy off-flavor and had excellent sensory qualities. Catfish fillets produced by amending diets with sources of − 3 HUFA and CLA at the levels used in this study would contain elevated levels of these nutraceuticals and could be an important human food source for these healthful fatty acids.  相似文献   

18.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

19.
Four isonitrogenous (300 g kg?1 crude protein), isoenergetic (21 kJ g?1) experimental diets were formulated to contain fish oil (FO), soybean oil (SBO), crude palm oil (CPO) and linseed oil (LO), respectively, as the lipid sources, added at 120 g kg?1 of crude lipid each. The diets were fed by hand to triplicate groups of Pangasius nasutus (Bleeker, 1863) juveniles (mean weight 10.66 ± 0.04 g), to apparent satiation twice daily for 12 weeks. Fish survival rate was 100% among all the treatments. Growth performance (DGR) was similar among fish fed the SBO, CPO and LO diets, but was significantly (P < 0.05) higher in the CPO compared to fish fed the control (FO) diet. Fish fed SBO and CPO diets also recorded significantly (P < 0.05) higher intraperitoneal fat compared to fish fed the control, whereas fish fed the LO diet did not significantly differ from the other treatments. Muscle and liver fatty acid profile of fish from all the treatments generally mirrored the composition of the diets fed and the major fatty acids recorded were 18:3n‐3 and 18:2n‐6 in the tissues of fish fed the LO and SBO treatments, respectively. Results of this study suggests that P. nasutus fed diets containing vegetable oils (especially CPO and SBO) produce better growth performance, without compromising fish survival and feed efficiency compared with those fed a diet containing only FO.  相似文献   

20.
A 60‐d feeding trial was conducted to evaluate the effects of different dietary oil sources on growth, fatty acid composition, peroxisome proliferator‐activated receptor (PPAR) gene expression levels, and antioxidant responses of blunt snout bream, Megalobrama amblycephala, fingerlings. Fish (average initial weight, 0.35 ± 0.01 g) were fed five experimental diets respectively containing fish oil (FO), soybean oil, canola oil, peanut oil, and palm oil (PaO). Results showed that body weight gain, specific growth rate, and feed conversion ratio did not significantly differ among treatments. Fish fed PaO diet showed significantly higher hepatosomatic index value and liver lipid content than those fed FO diet. The FO group showed significantly higher liver eicosapentaenoic acid (20:5n‐3) + docosahexaenoic acid (22:6n‐3) concentrations than other groups in both neutral lipid and polar lipid fractions. The mRNA expression levels of PPAR‐α and PPAR‐γ in the liver were significantly increased by feeding vegetable oil diets compared to FO. The activities of catalase, superoxide dismutase, and glutathione peroxidase in livers of fish fed PaO diet were lower than those fed FO diet. Meanwhile, PaO group had significantly lower malondialdehyde value than other groups. In conclusion, we suggested that a combination of FO and vegetable oil diet should be used in feed formulations for blunt snout bream fingerlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号