首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
It was previously reported that cell cultures from Lactobacillus plantarum CECT 748 (T) were able to decarboxylate phenolic acids, such as p-coumaric, m-coumaric, caffeic, ferulic, gallic, and protocatechuic acid. The p-coumaric acid decarboxylase (PDC) from this strain has been overexpressed and purified. This PDC differs at its C-terminal end when compared to the previously reported PDC from L. plantarum LPCHL2. Because the C-terminal region of PDC is involved in enzymatic activity, especially in substrate activity, it was decided to biochemically characterize the PDC from L. plantarum CECT 748 (T). Contrarily to L. plantarum LPCHL2 PDC, the recombinant PDC from L. plantarum CECT 748 (T) is a heat-labile enzyme, showing optimal activity at 22 degrees C. This PDC is able to decarboxylate exclusively the hydroxycinnamic acids p-coumaric, caffeic, and ferulic acids. Kinetic analysis showed that the enzyme has a 14-fold higher K(M) value for p-coumaric and caffeic acids than for ferulic acid. PDC catalyzes the formation of the corresponding 4-vinyl derivatives (vinylphenol and vinylguaiacol) from p-coumaric and ferulic acids, respectively, which are valuable food additives that have been approved as flavoring agents. The biochemical characteristics showed by L. plantarum PDC should be taken into account for its potential use in the food-processing industry.  相似文献   

2.
Eight avenanthramides, amides of anthranilic acid (1) and 5-hydroxyanthranilic acid (2), respectively, and the four cinnamic acids p-coumaric (p), caffeic (c), ferulic (f), and sinapic (s) acid, were synthesized for identification in oat extracts and for structure-antioxidant activity studies. Three compounds (2p, 2c, and 2f) were found in oat extracts. As assessed by the reactivity toward 1,1-diphenyl-2-picrylhydrazyl (DPPH), all avenanthramides except 1p showed activity. Initially, the antioxidant activity of the avenanthramides decreased in a similar order as for the corresponding cinnamic acids, that is: sinapic > caffeic > ferulic > p-coumaric acid. The avenanthramides derived from 2 were usually slightly more active than those derived from 1. All avenanthramides inhibited azo-initiated peroxidation of linoleic acid. 1c and 1s were initially the most effective compounds. The relative order of antioxidant activities was slightly different for the DPPH and the linoleic acid assays run in methanol and chlorobenzene, respectively.  相似文献   

3.
To release bound phenolic acids, a microwave-assisted extraction procedure was applied to bran and flour fractions obtained from eight sorghum and eight maize cultivars varying in hardness. The procedure was followed by HPLC analysis, and the identities of phenolic acids were confirmed by MS/MS spectra. The extraction of sorghum and maize bound phenolic acids was done for 90 s in 2 M NaOH to release ferulic acid and p-coumaric acid from bran and flour. Two diferulic acids, 8-O-4'- and 8-5'-benzofuran form, were identified and quantitated in sorghum bran, and only the former was found in maize bran. The contents of ferulic acid and diferulic acids in sorghum bran were 416-827 and 25-179 μg/g, respectively, compared to 2193-4779 and 271-819 μg/g in maize. Phenolic acid levels of sorghum were similar between hard and soft cultivars, whereas those of maize differed significantly (p < 0.05) except for ferulic acid in flour. Sorghum phenolic acids were not correlated with grain hardness as measured using a tangential abrasive decortication device. Maize ferulic acid (r = -0.601, p < 0.01), p-coumaric acid (r = -0.668, p < 0.01), and 8-O-4'-diferulic acid (r = -0.629, p < 0.01) were significantly correlated with hardness.  相似文献   

4.
Chlorsulfuron and imazethapyr (herbicides that inhibit acetolactate synthase; ALS, EC 4.1.3.18) produced a strong accumulation of hydroxycinnamic acids that was related to the induction of the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (EC 2.5.2.54). The exogenous application of two hydroxycinnamic acids, ferulic and p-coumaric acids, to pea plants resulted in their internal accumulation, arrested growth, carbohydrate and quinate accumulation in the leaves, and the induction of ethanolic fermentation. These effects resemble some of the physiological effects detected after acetolactate synthase inhibition and suggest important roles for ferulic and p-coumaric acids in the mode of action of herbicides inhibiting the biosynthesis of branched chain amino acids.  相似文献   

5.
Antioxidant properties of ferulic acid and its related compounds   总被引:13,自引:0,他引:13  
Antioxidant activity of 24 ferulic acid related compounds together with 6 gallic acid related compounds was evaluated using several different physical systems as well as their radical scavenging activity. The radical scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) decreased in the order caffeic acid > sinapic acid > ferulic acid > ferulic acid esters > p-coumaric acid. In bulk methyl linoleate, test hydroxycinnamic acids and ferulic acid esters showed antioxidant activity in parallel with their radical scavenging activity. In an ethanol-buffer solution of linoleic acid, the activity of test compounds was not always associated with their radical scavenging activity. Ferulic acid was most effective among the tested phenolic acids. Esterification of ferulic acid resulted in increasing activity. The activity of alkyl ferulates was somewhat influenced by the chain length of alcohol moiety. When the inhibitory effects of alkyl ferulates against oxidation of liposome induced by AAPH were tested, hexyl, octyl, and 2-ethyl-1-hexyl ferulates were more active than the other alkyl ferulates. Furthermore, lauryl gallate is most effective among the tested alkyl gallates. These results indicated that not only the radical scavenging activity of antioxidants, but also their affinity with lipid substrates, might be important factors in their activity.  相似文献   

6.
A new method has been developed for the quantitative determination of hydroxycinnamic acids participating in ester or ether linkages to the cell wall polymers. The method is based on mild alkaline hydrolysis followed by acid hydrolysis or mild alkaline hydrolysis, which partially removed esterified phenolic acids, and high-temperature concentrated alkaline treatment, which cleaved both the ester and ether linkages. It was found that traditional mild alkaline hydrolysis and acid hydrolysis released only part of the ester- and ether-linked phenolic acids, respectively. Approximately half (44.0-47.9%) of the total ester-linked p-coumaric acid and 18.2-32.6% of the total esterified ferulic acid remained ester-linked to the mild alkali-soluble lignin polymers, and 55.0-72.0% of the total ether-linked p-coumaric acid and 37.5-53.8% of the total ether-linked ferulic acid remained ether-linked to the solubilized lignin molecules after the acid hydrolysis. To correct this, a second mild alkaline hydrolysis of the alkali-soluble lignin preparations and acid hydrolysis of the solubilized lignin fractions, obtained from the first acid hydrolysis of the cell wall materials, was investigated. On the basis of this new method, a majority of the cell wall p-coumaric acid (55.8-81.5%) was found to be ester-linked to cell wall components, mainly to lignin, and about half of the cell wall ferulic acid is etherified through its phenolic oxygen to the cell wall lignin component, whereas the remainder is esterified to the cell wall hemicelluloses and/or lignin in different plant materials.  相似文献   

7.
A GC-MS method is reported for separation and characterization of widely different amounts of benzoic and phenolic acids as their trimethylsilyl derivatives simultaneously in cranberry. Fifteen benzoic and phenolic acids (benzoic, o-hydroxybenzoic, cinnamic, m-hydroxybenzoic, p-hydroxybenzoic, p-hydroxyphenyl acetic, phthalic, 2,3-dihydroxybenzoic, vanillic, o-hydroxycinnamic, 2,4-dihydroxybenzoic, p-coumaric, ferulic, caffeic, and sinapic acid) were identified in cranberry fruit in their free and bound forms on the basis of GC retention times and simultaneously recorded mass spectra. Except for benzoic, p-coumaric, caffeic, ferulic, and sinapic acids, 10 other phenolic acids identified have not been reported in cranberry before. The quantitation of the identified components was based on total ion current (TIC). The experimental results indicated cranberry fruit contains a high content of benzoic and phenolic acids (5.7 g/kg fresh weight) with benzoic acid being the most abundant (4.7 g/kg fresh weight). The next most abundant are p-coumaric (0.25 g/kg fresh weight) and sinapic (0.21 g/kg fresh weight) acid. Benzoic and phenolic acids occur mainly in bound forms and only about 10% occurs as free acid.  相似文献   

8.
Volatile phenols have long been recognized as important flavor contributors to the aroma of various alcoholic beverages. The two main flavor-active volatile phenols in beer are 4-vinylguaiacol and 4-vinylphenol. They are the decarboxylation products of the precursors ferulic acid and p-coumaric acid, respectively, which are released during the brewing process, mainly from malt. In this study, the variability in the release of free and ester-bound hydroxycinnamic acids from nine malted barley ( Hordeum vulgare L.) varieties during wort production was investigated. A large variability between different barley malts and their corresponding worts was observed. Differences were also found between free ferulic acid levels from identical malt varieties originating from different malt houses. During mashing, free hydroxycinnamic acids in wort are both water-extracted and enzymatically released by cinnamoyl esterase activity. Esterase activities clearly differ between different barley malt varieties. Multiple linear regression analysis showed that the release of ferulic acid during mashing did not depend only on the barley malt esterase activity but also on the amount of ester-bound ferulic acid initially present in the wort and on its endoxylanase activity. The study demonstrates the importance of selecting a suitable malt variety as the first means of controlling the final volatile phenol levels in beer.  相似文献   

9.
Naturally occurring cinnamic acid derivatives are ubiquitously distributed in the plant kingdom, and it has been proposed that their consumption contributes to the maintenance of human health. However, the molecular mechanisms underlying their health keeping effects remain unknown. In the present investigation, we evaluated the capacity of several cinnamic acid derivatives (trans-cinnamic, p-coumaric, caffeic and ferulic acids, as well as caffeic acid-methyl and -propyl esters) to protect cells from oxidative stress-induced DNA damage. It was observed that effective protection was based on the ability of each compound to (i) reach the intracellular space and (ii) chelate intracellular "labile" iron. These results support the notion that numerous lipophilic iron chelating compounds, present abundantly in plant-derived diet components, may protect cells in conditions of oxidative stress and in this way be important contributors toward maintenance of human health.  相似文献   

10.
Oxidative stress, caused by reactive oxygen species (ROS), is responsible for modulating several pathological conditions and aging. Soluble and bound phenolic extracts of commonly consumed millets, namely, kodo, finger (Ravi), finger (local), foxtail, proso, little, and pearl, were investigated for their phenolic content and inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS, namely, hydroxyl radical, peroxyl radical, hydrogen peroxide (H(2)O(2)), hypochlorous acid (HOCl), and singlet oxygen ((1)O(2)). Inhibition of DPPH and hydroxyl radicals was detrmined using electron paramagnetic resonance (EPR) spectroscopy. The peroxyl radical inhibitory activity was measured using the oxygen radical absorbance capacity (ORAC) assay. The scavenging of H(2)O(2), HOCl, and (1)O(2) was evaluated using colorimetric methods. The results were expressed as micromoles of ferulic acid equivalents (FAE) per gram of grain on a dry weight basis. In addition, major hydroxycinnamic acids were identified and quantified using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). All millet varieties displayed effective radical and ROS inhibition activities, which generally positively correlated with phenolic contents, except for hydroxyl radical. HPLC analysis revealed the presence of ferulic and p-coumaric acids as major hydroxycinnamic acids in phenolic extract and responsible for the observed effects. Bound extracts of millet contributed 38-99% to ROS scavenging, depending on the variety and the test system employed. Hence, bound phenolics must be included in the evaluation of the antioxidant activity of millets and other cereals.  相似文献   

11.
Concentrations of antioxidant compounds (total phenolic compounds, free hydroxycinnamic acids, and lycopene) and color parameters ( a*, b*, and L*) were determined in 167 tomato samples belonging to five cultivars (Dorothy, Boludo, Dunkan, Dominique, and Thomas) produced on the island of Tenerife. Chlorogenic, caffeic, p-coumaric, and ferulic acids were identified and quantified in the tomato samples. Chlorogenic acid had the highest mean concentration, whereas the p-coumaric was not detected in almost half of the tomato samples. The cultivar, cultivation method, and production region had little influence on the concentration of analyzed parameters. Considerable seasonal variations in the levels of these parameters were observed. Many correlations were observed between the antioxidant compounds and color parameters. The tomato samples tended to be differentiated according to the sampling period when discriminant analysis was applied.  相似文献   

12.
Hydroxycinnamic acids are effective antioxidants and are abundant components of plant cell walls, especially in cereal bran. For example, wheat and rye brans are rich sources of the hydroxycinnamates ferulic acid, sinapic acid, and p-coumaric acid. These phenolics are part of human and animal diets and may contribute to the beneficial effects derived from consumption of cereal bran. However, these compounds are ester linked to the main polymers in the plant cell wall and cannot be absorbed in this complex form. The present work shows that esterases with activity toward esters of the major dietary hydroxycinnamates are distributed throughout the intestinal tract of mammals. In rats, the cinnamoyl esterase activity in the small intestine is derived mainly from the mucosa, whereas in the large intestine the esterase activity was found predominantly in the luminal microflora. Mucosa cell-free extracts obtained from human duodenum, jejunum, and ileum efficiently hydrolyzed various hydroxycinnamoyl esters, providing the first evidence of human cinnamoyl esterase(s). This study first demonstrates the release by human colonic esterase(s) (mostly of microbial origin) of sinapic acid and p-coumaric acid from rye and wheat brans. Hydrolysis by intestinal esterase(s) is very likely the major route for release of antioxidant hydroxycinnamic acids in vivo.  相似文献   

13.
Hydroxycinnamic acids are antioxidant polyphenols common in the human diet, although their potential health benefits depend on their bioavailability. To study the hepatic uptake and metabolism, human hepatoma HepG2 cells were incubated for 2 and 18 h with caffeic, ferulic, and chlorogenic acids. Moderate uptake of caffeic and ferulic acids was observed versus a low absorption of chlorogenic acid, where esterification of the caffeic acid moiety markedly reduced its absorption. Methylation was the preferential pathway for caffeic acid metabolism, along with glucuronidation and sulfation, while ferulic acid generated glucuronides as the only metabolites. Ferulic acid appeared to be more slowly taken up and metabolized by HepG2 cells than caffeic acid, with 73% and 64% of the free, nonmetabolized molecules detected in the culture medium after 18 h, respectively. In conclusion, hydroxycinnamic acids can be metabolized by the liver as suggested by the results obtained using HepG2 cells as a hepatic model system.  相似文献   

14.
Hydroxycinnamic acid content and ferulic acid dehydrodimer content were determined in 11 barley varieties after alkaline hydrolysis. Ferulic acid (FA) was the most abundant hydroxycinnamate with concentrations ranging from 359 to 624 microg/g dry weight. p-Coumaric acid (PCA) levels ranged from 79 to 260 microg/g dry weight, and caffeic acid was present at concentrations of <19 microg/g dry weight. Among the ferulic acid dehydrodimers that were identified, 8-O-4'-diFA was the most abundant (73-118 microg/g dry weight), followed by 5,5'-diFA (26-47 microg/g dry weight), the 8,5'-diFA benzofuran form (22-45 microg/g dry weight), and the 8,5'-diFA open form (10-23 microg/g dry weight). Significant variations (p < 0.05) among the different barley varieties were observed for all the compounds that were quantified. Barley grains were mechanically fractionated into three fractions: F1, fraction consisting mainly of the husk and outer layers; F2, intermediate fraction; and F3, fraction consisting mainly of the endosperm. Fraction F1 contained the highest concentration for ferulic acid (from 77.7 to 82.3% of the total amount in barley grain), p-coumaric acid (from 78.0 to 86.3%), and ferulic acid dehydrodimers (from 79.2 to 86.8%). Lower contents were found in fraction F2, whereas fraction F3 exhibited the lowest percentages (from 1.2 to 1.9% for ferulic acid, from 0.9 to 1.7% for p-coumaric acid, and <0.02% for ferulic acid dehydrodimers). The solid barley residue from the brewing process (brewer's spent grain) was approximately 5-fold richer in ferulic acid, p-coumaric acid, and ferulic acid dehydrodimers than barley grains.  相似文献   

15.
Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid, but neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts was significantly correlated with their total content of monomeric and dimeric hydroxycinnamates, and the rye bran extract was the most potent. The data suggest that especially rye bran provides a source of dietary phenolic antioxidants that may have potential health effects.  相似文献   

16.
A universal method to separate and quantify 13 phenolic acids (gallic acid, chlorogenic acid, gentsic acid, vanillic acid, caffeic acid, syringic acid, sinapic acid, p-coumaric acid, ferulic acid, anisic acid, rosmarinic acid, salicylic acid, and cinnamic acid) in some compound herbal medicines was established by liquid chromatographic (HPLC). On an Agela XBP-C18 (5 microm, 4.6 mm x 150 mm) column, a multistep binary gradient elution program and a simplified sample pretreatment approach were used in the experiment. For all of the phenolic acids, detection limits ranged around 0.01 mg/L. Linear ranges of higher than 2 orders of magnitude were obtained with a correlation coefficient of 0.9991 to 1. Repeatability was 0.39-2.24% (relative standard deviation, RSD) for intraday, 1.17-3.96% (RSD) for interday, and 0.14-5.33% (RSD) for drug sample analysis. Recovery, tested by a standard addition method, ranged from 83.3% to 104.9% for various trace phenolic acids.  相似文献   

17.
Hydroxycinnamic acids are a group of phenolic compounds that exhibit a wide range of in vitro chemoprotective and antioxidant properties. Cereals containing a high proportion of the bran layers are rich in ester-linked hydroxycinnamic acids, such as ferulic and diferulic acids. The present work investigated the absorption in humans of hydroxycinnamic acids from high-bran breakfast cereal (wheat). Plasma and urine samples from six volunteers were collected before and after cereal consumption and analyzed for total hydroxycinnamic acids content after beta-glucuronidase/sulfatase treatment both by HPLC-DAD and by LC-MS (SIM monitoring). High-bran cereal administration resulted in increased plasma ferulic and sinapic acid concentrations (maximum levels detected of approximately 200 and approximately 40 nM, respectively) with absorption peaks between 1 and 3 h. Increases of approximately 4-fold in ferulic acid and approximately 5-fold in feruloylglycine were detected in 24-h urine after consumption of the cereal. Most of the ferulic acid detected in urine and plasma was present as conjugates (feruloylglycine and/or glucuronides). Diferulic acids were undetectable. The data show that ferulic and sinapic acids are taken up in humans from dietary high bran wheat but that absorption is limited and may originate only from the free and soluble portions present in the cereal.  相似文献   

18.
为研究不同有机物料强还原土壤处理(Reductive Soil Disinfestation, RSD)及枯草芽孢杆菌施用对土壤酚酸类物质的影响,以龙牙百合栽培土壤为研究对象,采用裂区试验设计,主区设置对照(CK)和以制糖发酵废液(MO)、植物残渣(SB)为主要有机物料的RSD处理,并于再植龙牙百合出苗后裂区添加枯草芽孢杆菌Y25(CK_Y25、MO_Y25、SB_Y25),分别在RSD处理后及龙牙百合生长期和收获期采集土壤样品,分析土壤中酚酸类物质的组成和含量变化。结果表明:与CK相比,SB处理显著(P<0.05)增加了土壤中丁香酸、对香豆酸、阿魏酸和总酚酸的含量,改变了土壤酚酸谱特征,而MO处理对土壤酚酸组成和含量的影响均不显著。龙牙百合再植能够提高RSD处理土壤中酚酸类物质含量,但不同处理随种植时间延长而呈现不同的变化规律。此外,添加枯草芽孢杆菌Y25能显著(P<0.05)降低SB处理土壤中酚酸类物质的含量(总酚酸降解率≥30%),其中对香豆酸和阿魏酸在龙牙百合生长期和收获期的降解率分别高达39.2%~47.8%和32.3%~36.7%。本研究发现,以植物残渣为有机物...  相似文献   

19.
Cinnamic acid derivatives are naturally occurring substances found in fruits, vegetables, and flowers and are consumed as dietary phenolic compounds. In the present study, cinnamic acid and its derivatives were evaluated for insulin secreting activity in perfused rat pancreas and pancreatic beta-cells (INS-1) as well as an increase in [Ca(2+)]i in vitro. The presence of m-hydroxy or p-methoxy residues on cinnamic acid was a significantly important substituent as an effective insulin releasing agent. The introduction of p-hydroxy and m-methoxy-substituted groups in cinnamic acid structure (ferulic acid) displayed the most potent insulin secreting agent among those of cinnamic acid derivatives. In particular, the stimulatory insulin secreting activities of test compounds were associated with a rise of [Ca(2+)]i in INS-1. In perfused rat pancreas, m-hydroxycinnamic acid, p-methoxycinnamic acid, and ferulic acid (100 microM) significantly stimulated insulin secretion during 10 min of administration. The onset time of insulin secretion of those compounds was less than 1 min and reached its peak at 4 min that was about 2.8-, 3.3-, and 3.4-fold of the baseline level, respectively. Intravenous administration of p-methoxycinnamic acid and ferulic acid (5 mg/kg) significantly decreased plasma glucose and increased insulin concentration in normal rats and maintained its level for 15 min until the end of experiment. Meanwhile, m-hydroxycinnamic acid induced a significant lowering of plasma glucose after 6 min, but the effects were transient with plasma glucose concentration, rapidly returning to basal levels. Our findings suggested that p-methoxycinnamic acid and ferulic acid may be beneficial for the treatment of diabetes mellitus because they regulated blood glucose level by stimulating insulin secretion from pancreatic beta-cells.  相似文献   

20.
Chufas (Cyperus esculentus) are edible tubers that, like Chinese waterchestnut (CWC), are very crisp when raw and do not soften when cooked. The present study compares the mechanical properties of chufas with those of potato and CWC in relation to the carbohydrate and phenolic compositions of the cell walls. The cutting toughness of raw chufa was higher than that of raw CWC and potato; its value decreased on boiling, as also observed with CWC, but remained over twice that of raw potato. Chufa cell walls were rich in xylose, arabinose, glucose, uronic acid, and galactose, with minor quantities of mannose. The cell walls of the parenchyma exhibited a uniform pH-dependent autofluorescence indicating the presence of cinnamic acid derivatives. Analysis of these revealed that peeled tuber cell walls are rich in ferulic acid, whereas p-coumaric acid dominates the monomeric phenol fraction of the skin. Cell wall material from both skin and peeled tubers contains a significant amount of different diferulic acids ( approximately 20% of the wall ferulic acid), consisting mainly of the 8-O-4'-, 8-5'-, and 5-5'-dimers. These are potentially available to form thermally stable cross-links between polysaccharides within the wall and between cells. This may confer thermal stability of texture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号