首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 906 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
川中丘陵区土壤侵蚀对土壤特性和作物产量的影响   总被引:8,自引:0,他引:8  
Roles of tillage erosion and water erosion in the development of within-field spatial variation of surface soil properties and soil degradation and their contributions to the reduction of crop yields were studied on three linear slopes in the Sichuan Basin, southwestern China. Tillage erosion was found to be the dominant erosion process at upper slope positions of each linear slope and on the whole short slope (20 m). On the long slope (110 m) and medium slope (40 m), water erosion was the dominant erosion process. Soil organic matter and soil nutrients in the tillage layer were significantly related to slope length and 137Cs inventories on the long slope; however, there was no significant correlation among them on the short slope, suggesting that water erosion lowered soil quality by transporting SOM and surface soil nutrients selectively from the upper to lower slope positions, while tillage erosion transported soil materials unselectively. On the medium slope, SOM, total N, and available N in the tillage layer were correlated with slope length and the other properties were distributed evenly on the slope, indicating that water erosion on this slope was still the dominant soil redistribution process. Similar patterns were found for the responses of grain yield, aboveground biomass, and harvest index for slopes. These results indicated that tillage erosion was a major cause for soil degradation and grain yield reduction on the linear slopes because it resulted in displacement of the tillage layer soil required for maintaining soil quality and plant growth.  相似文献   

13.
14.
Calix[4]arene-crown-6 compounds are promising ligands in the removal of cesium. With this aim, a macrocyclic compound, calix[4]arene-crown-6, was chemically immobilized onto inorganic ordered mesoporous carbon material. Several adsorption parameters such as nitric acid concentration, contact time, initial cesium content, operation temperature, and competing ions were studied. The results demonstrated the prepared material conserved high cesium selectivity of calix[4]arene-crown-6 and physicochemistry stability of the ordered mesoporous carbon matrix and showed the superior cesium adsorption performance. The optimum adsorption acidity determined as 3.0 M nitric acid was consistent with the actual acidity value in the back-end of the nuclear fuel cycle. The Langmuir model indicated the monolayer coverage adsorption and the highest mass adsorption capacity was calculated as 128.06 mg cesium/g. The pseudo-second-order model and D-R model proved the adsorption was a chemical process. Thermodynamics parameters showed the adsorption was spontaneous and exothermal in nature. Competing ions hardly affected cesium adsorption. Furthermore, the adsorbent showed almost intact adsorption capacity after five adsorption-elution cycles. The comprehensive performance highlights the composite material as a promising adsorbent for cesium adsorption from wastewaters.
Graphical Abstract
  相似文献   

15.
The adsorption process is one of the most important techniques of water and wastewater treatment technology. Therefore, there are many methods allowing to improve the effectiveness of these processes based mainly on the chemical modification of adsorbents. However, they are always associated with the necessity of introducing an additional wastes or sewage to the environment. That is why a purpose of the presented was to investigate an innovative and noninvasive adsorption supporting method based on the using of a static magnetic field. The results showed that in the adsorption process of equimolar copper, nickel, and cadmium mixture, a presence of the magnetic field may increase the effectiveness of the process, with respect to copper by more than 40% and a summary molar removal was increased about 11%. However, the effectiveness of the analyzed modification depends largely on the heavy metal equilibrium concentration, and when it increases, a beneficial effect of magnetic field significantly decreases. Nevertheless, due to the fact that heavy metal adsorption processes are very important part of environmental engineering technologies, it can be assumed that further work on magnetic modification of these processes can allow for a significant improvement of many water and wastewater purification plants.
Graphical Abstract
  相似文献   

16.
Biosorbents are the natural origin adsorbents, which popularity in environmental engineering is steadily increasing due to their low price, ease of acquisition, and lack of the toxic properties. Presented research aimed to analyze the possibility of chemical modification of the straw, which is a characteristic waste in the Polish agriculture, to improve its biosorption properties with respect to removal of selected metals from aquatic solutions. Biosorbents used during the tests was a barley straw that was shredded to a size in the range of 0.2–1.0 mm. The biosorption process was performed for aqueous solutions of zinc at a pH 5. Two different modifications of straw were analyzed: esterification with methanol and modification using the citric acid at elevated temperature. The results, obtained during the research, show a clear improvement in sorption capacity of the straw modified by the citric acid. In the case of straw modified with methanol, it has been shown that the effectiveness of zinc biosorption process was even a twice lower with respect to the unmodified straw. Moreover, it was concluded that the removal of analyzed metals was based mainly on the ion-exchange adsorption mechanism by releasing a calcium and magnesium ions from the straw surface to the solution.
Graphical Abstract ?
  相似文献   

17.
In this study, the optimum conditions for the ammonia removal from aqueous solution by microwave-assisted air stripping have been investigated at pH 11. Ammonia solution with five different initial ammonia concentrations was prepared synthetically. The Taguchi method was applied to optimize the ammonia removal conditions. Initial ammonia concentration, air flow rate, temperature, stirring speed, microwave radiation power, and radiation time were defined as the optimization parameters. Experiments were carried out at five different levels for each operational parameter. The results of the experiments revealed that 1800 ppm of initial ammonia concentration, 7.5 L min?1 of air flow rate, 60 °C of temperature, 500 rpm of stirring speed, and 500 W of microwave radiation power for 180 min. of microwave radiation time are optimum conditions for complete ammonia removal. In addition to present experimental data, the optimum operational conditions predicted by the balanced characteristics of orthogonal array were confirmed experimentally. Finally, the effect of optimization parameters was discussed in detail.
Graphical Abstract ?
  相似文献   

18.
Functional diversity amongst soil protozoa   总被引:8,自引:0,他引:8  
Organismal and functional diversity of soil protozoa are reviewed and the importance of protozoa in soil metabolism is discussed. Existing methods of determining protozoan organismal diversity in soils are briefly listed and some of their shortcomings outlined. Feeding guilds amongst soil protozoa are described and a preliminary classification of feeding habits of soil protozoa based on Pratt and Cairns (1985) system for freshwater protozoa is proposed. Protozoan diversity during the recovery of soil communities from serious environmental disturbance is discussed and some proposals for the direction of future research are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号