首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The springback of compressed wood caused by built-up internal stresses results in excessive thickness swelling of wood-based composites when exposed to moisture. Steam pretreatment can cause partial hydrolysis of hemicellulose for both hardwoods and softwoods which markedly increases the compressibility of wood and in turn significantly reduces the build-up of internal stresses in composites during hot pressing. This steam pretreatment process is a very effective method for producing dimensionally stable wood-based composites. Mild steam pretreatments (e.g. 3 to 4 min at 1.55 MPa) cause a significant reduction of the water insoluble xylan content in hardwoods and the amount of xylan, mannan and galactan in softwoods without any apparent changes in the cellulose or lignin content.The authors wish to thank G. Bastien and B. S. Lethbridge for technical assistance. W. Schwald is grateful to the Fonds zur Förderung der wissenschaftlichen Forschung, Vienna, Austria for granting an Erwin-Schrödinger scholarship (Proj. No. J0128C)  相似文献   

2.
The treatability of wood (sapwood ofCryptomeria japonica D. Don) and wood-based composites (particleboard, waferboard, medium-density fiberboard, plywood) with vapor-boron was good, and the treated materials proved to be resistant to decay fungi and subterranean termites in laboratory bioassays. No difference in effectiveness was noted between vapor-boron and liquid-boron treatment of wood. Toxic threshold values determined for solid wood were 0%–0.24%, 0.26%–0.51%, and 0.26%–0.51% BAE (boric acid equivalent), respectively, against the white-rot fungusTrametes versicolor (L.: Fr.) Pilat, the brown-rot fungusFomitopsis palustris (Berk. et Curt.), and the subterranean termiteCoptotermes formosanus Shiraki. A concentration of less than 1% BAE seemed sufficient to control biological attacks on composites, although the toxic limits could not be determined more accurately because of the tested range of boron retention. High boron retention was needed to meet the performance requirements for slow-burning materials when a fire-retardant agent was not incorporated into the glue line.  相似文献   

3.
In order to reduce the density of wood-based composites without causing a deterioration of their mechanical properties, we studied the process of manufacturing wood-based composites. A combination of polymer foaming technology and flat hot-pressing technology was used. The microscopic structure of the various wood-based composites was analyzed with a scanning electron microscope (SEM). Modulus of rupture (MOR), modulus of elasticity (MOE), impact strength, and thickness expansion rate of water sorption (TS) were all measured. The results showed that fibers loosely interweave, and fibers had been connected by micropore. They also showed that spaces between fibers had big micropore structure. MOR, MOE and impact strength were the highest among three levels of ratio. When the total content of resin and foaming agent were 20% by weight, TS was higher. A hot-pressing temperature of 120°C was optimal. At the low temperatures of 80°C, the foaming process was uncompleted. At a higher temperature, micropores burst at a certain pressure. Based on the variance analysis and maximum difference analysis, a significance test shows that the optimum conditions for the total content of resin and foaming agent is 20% by weight, with a hot pressing temperature of 120°C for 15 min. Under these conditions, the properties of wood-based foaming composites all achieved the industry standard. __________ Translated from Journal of Beijing Forestry University, 2007, 29(3): 154–158 [译自: 北京林业大学学报]  相似文献   

4.
High dimensional stable particlcboards could be produced by usisng saturatedsteam treated wood chip at elevated pressures.Sample Particleboards were made from woodchip of Birch(Platyphylla).The component changes of steam treated wood chip were analysedby infrared.Infrared spectra demonstrated that the hemicelluloses in steam treated chip wereless than those in untreated chip.This is one of the main reasons why steam treatment could im-prove particlcboard stability.The free radical concentration of steam treated chip surfaces wasanalysed by ESR spectroscopy.The results showed that free radical concentration of treatedchip surface was higher than that of untreated chip surface.The glueyness of chip increased andparticlcboard resin content decreased.  相似文献   

5.
 Supercritical carbon dioxide (SC-CO2) was tested for its potential as a carrier solvent for preservative treatment of solid wood and wood-based composites. A preliminary trial showed that the treatability of solid wood varied with its original permeability and that the SC-CO2 treatment was not promising for refractory timber species such a Larix leptolepis Gordon. In contrast, 3-iodo-2-propynyl butylcarbamate (IPBC)/SC-CO2 treatment resulted in enhanced decay resistance without any detrimental physical or cosmetic damage in all structural-use wood-based composites tested: medium density fiberboard, hardwood plywood, softwood plywood, particleboard, and oriented strand board (OSB). Further trials under various treatment conditions [25°C/7.85 MPa (80 kgf/cm2), 35°C/7.85 MPa, 45°C/7.85 MPa, 35°C/11.77 MPa (120 kgf/cm2), and 45°C/11.77 MPa] indicated that although small changes in the weight and thickness of the treated materials were noted the strength properties were not adversely affected, except for a few cases of softwood plywood and oriented strand board. The results of this study clearly indicated that the treatment condition allowed SC-CO2 to transport IPBC into wood-based composites, and the optimum treatment condition seemed to vary with the type of wood-based composite. Received: October 24, 2001 / Accepted: February 15, 2002 Part of this work was presented at the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, April 2001; and the 32nd Annual Meeting of the International Research Group on Wood Preservation, Nara, May 2001 Correspondence to:M. Muin  相似文献   

6.
以强化木地板、中密度纤维板、高密度纤维板、浸渍胶膜纸饰面人造板等5类人造板为试材,研究标准、模拟夏季、模拟冬季等不同温湿度平衡处理条件对上述人造板内结合强度、吸水厚度膨胀率和表面结合强度值等理化性能检测指标结果的影响。结果表明,高温高湿平衡处理使人造板的力学强度增加,吸水厚度膨胀率降低;低温低湿平衡处理使人造板力学强度降低,吸水厚度膨胀率增加;不同平衡处理条件下强化木地板吸水厚度膨胀率差异较大;对饰面板表面结合强度的影响大于素板。  相似文献   

7.
The importance of adhesion in production of wood-based composites is well-known. Adhesive penetration and interphase morphology play an important role in bond strength and product performance. Many studies offered different methods for interphase characterization and analysis. Both qualitative and quantitative methods have been used to analyze the bondline. Most of the quantitative methods were developed for bonded assemblies of veneer or wood blocks. Adhesive penetration measurement in particulate wood-based composites is the main scope of this study. For this purpose, uniform oriented strand board with veneer strands was produced by the use of phenol formaldehyde resin with 2, 6, and 10 % strand moisture content (MC). The strands were formed into well-organized mats to achieve a uniform structure for the composite. Cross-section specimens were prepared from each board and observed by epifluorescence microscopy. Six positions for growth-ring angle in adhesive joints were denoted to evaluate penetration in different directions of the wood. Four parameters were also determined to quantify resin penetration patterns by counting the quantity of the main anatomical elements of wood, which were filled with resin. Finally, it was determined that this method could recognize the differences between adhesive penetration in boards produced with different level of strand MC. Resin penetration in strands with 6 and 10 % MC was the greatest. Growth-ring angle of the strands influenced penetration as it was increased when both strands meet each other in an oblique position, although this effect was significant only in maximum penetration depth in fibers.  相似文献   

8.
The effects of grain angle of face veneer on surface wave velocity and dynamic shear modulus of three types of wood-based composites were examined using a surface wave propagation method. It was found that grain-angle dependence of surface wave velocity and dynamic shear modulus indeed exists for wood-based composites. Grain angles of face veneer were found to have substantial effects on the surface wave velocities and dynamic shear moduli of wood–plastic composite (WP), wood–fiberboard composite (WF), and wood–metal composite (WM). The orthotropic properties of the three composites were defined as the ratio of surface wave velocities at 0° and 90° grain angles (V0/V90), which were 3.7, 2.2, and 2.0 for WP, WF, and WM, respectively. For WP, WF, and WM, the dynamic shear moduli in the 90° grain angle of face veneer were approximately 7%, 19%, and 25% of that in the 0° grain angle, respectively. The relationships between grain angles of face veneer and the shear moduli of the three types of wood-based composites could be represented by Hankinson’s equation, and their optimal n values were 2.1, 1.2, and 1.3 for WP, WF, and WM, respectively.Part of this study was presented at the 15th Annual Meeting of the Chugoku Shikoku Branch of the Japan Wood Research Society, Higashi-Hiroshima, Japan, September 2003  相似文献   

9.
为探索涂饰人造板中苯系物总量的检测方法,本文研究了超声提取、恒温震荡提取和索氏提取3种前处理方式,使用乙酸乙酯为提取试剂,利用气相色谱(配FID检测器)对提取效果进行确认,结果表明索氏提取法能够快速有效的提取涂饰人造板中苯系物。  相似文献   

10.
Wood-based composites (medium density fiberboard, hardwood plywood, softwood plywood, particleboard, and oriented strand board) treated with a mixture formulation of 3-iodo-2-propynyl butylcarbamate (IPBC) and silafluofen using supercritical carbon dioxide as a carrier solvent were evaluated for their resistance to biological attack in a laboratory study. The formulation was pre-pared by mixing 10g of IPBC and 1g of silafluofen in ethanol solution (20ml). Treatments were conducted at 35°C/7.85MPa, 35°C/9.81MPa, and 55°C/11.77MPa with the direct introduction of 20ml of the formulation into the treatment vessel with a capacity of ca. 2000ml at a rate of 2ml/min. Laboratory tests indicated that the treatment conditions used significantly enhanced the resistance of the treated wood-based composites against fungal and termite attacks. Because no significant difference in efficacy against both biodegrading agents was noticed regardless of the treatment conditions, the treatment at 35°C/7.85MPa was thought to be the most economical in terms of energy consumption and performance of treated materials. However, the amount of biocides in a formulation must be carefully selected in accordance with the required treatment condition to ensure satisfactory performance of the treated wood-based composites against any biological agent.  相似文献   

11.
Effects of nanoclay (NC) on physical and mechanical properties of wood-plastic composite (WPC) were studied here. Virgin, recycled, and mixed (50/50% of virgin/recycled) polyvinyl chloride (PVC) were used as the matrix in the WPC. Specimens with three NC contents of 1.5%, 3%, and 5% were manufactured; they were then compared with control specimens. Totally, 12 treatments were manufactured. The physical and mechanical properties were measured in accordance with the ASTM standards. The highest properties were found in specimens made from virgin PVC. Addition of recycled PVC resulted in significant decrease in all properties. NC improved all physical and mechanical properties studied in the present research project; the highest properties were observed in specimens with 5% of NC content. The improvement in properties was as a result of formation of bonds between the hydroxyl groups of NC with the wood flour components. It was concluded that NC would significantly improve the properties in all the three PVC types of virgin, recycled, and mixed. From an industrial point of view, it was concluded that mixing virgin and recycled PVC can be recommended not only to decrease production costs, but also to partially solve the problem of PVC residue which are not bio-degradable.  相似文献   

12.
Wood-based panels are viscoelastic so when a load (stress) is applied to them there is a time lag before a deflection (strain) is produced, which results in hysteresis (a loss of energy). The capture of stress versus strain hysteresis loops is a non-interruptive method of monitoring the damage produced during fatigue testing. Hysteresis loops were captured throughout the flexural fatigue testing of OSB, chipboard and MDF in four-point bending allowing the development of fatigue damage to be followed. The MDF tested had a greater mean bending strength than the OSB and chipboard. When stresses were applied to the materials as a percentage of their bending strengths, the stresses applied to the MDF samples were larger than those applied to the OSB and chipboard samples. As a result the microstrains were greater for MDF than for the chipboard and OSB. The OSB was stiffer than the chipboard and MDF, which were both of similar stiffness. The information gained from the hysteresis loops indicates that the OSB, chipboard and MDF all had fatigue limits just below 20% of their bending strengths. The fatigue limit for the MDF is likely to be slightly lower than for the chipboard and the OSB.  相似文献   

13.
中国人造板工业现状与入世对策   总被引:3,自引:0,他引:3  
世界经济发展的总趋势告诉我们,一个国家及其任何一个产业部门如果不想被世界抛弃的话,就应当使自己融于世界经济之中。对于中国的人造板工业来说更是如此。我国的人造板工业近一二十年发展迅速。根据世界粮农组织(FAO)从192个国家1998年年报中得到的资料统计,目前  相似文献   

14.
Summary Applying modern methods of analyzing floor, wall, and connection subsystems in light-frame wood buildings requires information on the stiffness of nailed joints under long-term loads. Because this information can best be derived by testing nail-joint specimens under constant loads, theoretical procedures were developed that use test data for constant loads to predict stiffness under variable in-service loads; five nonlinear, viscous-viscoelastic models were develpoed on the basis of existing formulations of creep and mechanisms of load transfer between nails and wood. The models incorporated the modified superposition and strain-hardening principles in describing responses to discrete or continuous loading functions. Tests have shown that the models closely predict creep slip of typical nailed joints.This research was jointly supported by the Forest Research Laboratory, Oregon State University, and the Cooperative State Research Service, U.S. Department of Agriculture, Special Grant 85-CRSR-2-2553. This is Paper 2288 of the Forest Research LaboratoryFormerly Graduate Research Assistant Forest Research Laboratory  相似文献   

15.
In Iran, due to abundant restrictions on harvesting wood from northern forests by implementing the preservation project and also lack of possibility for sufficient wood production, development of the area of planting poplar is quite inevitable. Poplar wood properties have special importance to produce many wood production, particularly pulp and paper. Paper factories are the major consumers of poplar wood at the global level and this is because of unique morphological, physical, mechanical and technological properties of poplar wood. Therefore, regarding the importance of using this species in making various printing and writing paper, packaging or carton, cardboard and newsprint, in this study, costs of poplar production in one hectare including planting and harvesting were examined and determined. Then, based on conversion coefficients of FAO, required round wood, productivity and the cost of poplar wood were calculated for the producing various kinds of paper. The results indicate that carton and cardboard paper or packaging allocate the lowest cost and highest return, while printing and writing paper had highest cost and lowest return in terms of poplar wood supply needed for paper production.  相似文献   

16.
The need for a reliable database and a corresponding methodology to predict service life of wood and wood-based products emanates from the European Construction Products Directive, as well as from a strong interest by the building industry. A literature review on decay-influencing factors and on previous approaches to implement methods and tools for service life estimations was the basis for a concept for service life prediction of wooden components. The effect of various indirect decay factors was found to be reducible to a few direct decay factors, with material resistance, as well as wood moisture content, wood temperature and their dynamics among the key factors for fungal decay. Approaches that consider only indirect factors, e.g. climate indices, suffer from poor correlation with service life or decay rates. Therefore, the overall consideration of all possible influences, reduced on the key direct decay factors in first instance, is recommended. To fill a theoretical model with a reliable database, various data sources need to be considered, in decreasing order of priority: in-service performance, field test data, laboratory test data, survey analysis and expert opinion.  相似文献   

17.
Abstract

The need for a reliable database and a corresponding methodology to predict service life of wood and wood-based products emanates from the European Construction Products Directive, as well as from a strong interest by the building industry. A literature review on decay-influencing factors and on previous approaches to implement methods and tools for service life estimations was the basis for a concept for service life prediction of wooden components. The effect of various indirect decay factors was found to be reducible to a few direct decay factors, with material resistance, as well as wood moisture content, wood temperature and their dynamics among the key factors for fungal decay. Approaches that consider only indirect factors, e.g. climate indices, suffer from poor correlation with service life or decay rates. Therefore, the overall consideration of all possible influences, reduced on the key direct decay factors in first instance, is recommended. To fill a theoretical model with a reliable database, various data sources need to be considered, in decreasing order of priority: in-service performance, field test data, laboratory test data, survey analysis and expert opinion.  相似文献   

18.
19.
Thermal insulation and warmth-keeping properties of thick plywood-faced sandwich panels with low-density fiberboard (plywood-faced sandwich, PSW), which were developed as wood-based structural insulation materials for walls and floors, are comprehensively clarified. The properties focused on were thermal conductivity (λ), thermal resistance (R), and thermal diffusivity (D). The results for PSW panels were compared with those for commercial wood-based boards, solid wood, and commercial insulators. The λ values were measured for PSW panels and their core and face elements. As a result, the composite theory of λ was found to be appropriate for PSW composites, because the calculated/experimental λ ratios were approximately 90%. The λ values for PSW panels with densities of 340 kg/m3 (PSW350) and 410kg/m3 (PSW400) were 0.070 and 0.077W/mK, respectively. The R values for PSW350 and PSW400 were 1.4 and 1.2m2K/W, and the D values were 0.00050 and 0.00046m2/h, respectively. Consequently, the PSW provided thermal insulation properties superior to those of the boards and in terms of warmth-keeping properties were greatly advantageous over the insulators. These advantages were due to the moderate densities of PSW panels. The PSW panel with sufficient thickness showed remarkably improved thermal resistance compared with those of the boards.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号