首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

2.
The wheat (Triticum aestivum L.) gene Lr34/Yr18 conditions resistance to leaf rust, stripe rust, and stem rust, along with other diseases such as powdery mildew. This makes it one of the most important genes in wheat. In Canada, Lr34 has provided effective leaf rust resistance since it was first incorporated into the cultivar Glenlea, registered in 1972. Recently, molecular markers were discovered that are either closely linked to this locus, or contained within the gene. Canadian wheat cultivars released from 1900 to 2007, breeding lines and related parental lines, were tested for sequence based markers caSNP12, caIND11, caIND10, caSNP4, microsatellite markers wms1220, cam11, csLVMS1, swm10, csLV34, and insertion site based polymorphism marker caISBP1. Thirty different molecular marker haplotypes were found among the 375 lines tested; 5 haplotypes had the resistance allele for Lr34, and 25 haplotypes had a susceptibility allele at this locus. The numbers of lines in each haplotype group varied from 1 to 140. The largest group was represented by the leaf rust susceptible cultivar “Thatcher” and many lines derived from “Thatcher”. The 5 haplotypes that had the resistance allele for Lr34 were identical for the markers tested within the coding region of the gene but differed in the linked markers wms1220, caISBP1, cam11, and csLV34. The presence of the resistance or susceptibility allele at the Lr34 locus was tracked through the ancestries of the Canadian wheat classes, revealing that the resistance allele was present in many cultivars released since the 1970s, but not generally in the older cultivars.  相似文献   

3.
Pyramiding Asian soybean rust (ASR) resistance (Rpp) genes in a single genotype has been shown to increase ASR resistance in soybean. However, it remains unclear which combinations of Rpp genes are superior. Therefore, here, we developed six new Rpp‐pyramided lines carrying different combinations of Rpp genes and evaluated their resistance against 13 Bangladeshi rust (Phakopsora pachyrhizi) isolates (BdRPs) alongside seven previously developed Rpp‐pyramided lines. We found that lines carrying one, two and three Rpp genes had high ASR resistance without sporulation in 13.8%, 35.2% and 73.1% of the assays, respectively. Among the new lines that were developed, those with Rpp3 + Rpp4 and Rpp3 + Rpp4 Rpp5 had high levels of ASR resistance, while the line containing Rpp2 + Rpp4 Rpp5 showed immunity phenotype at two weeks after inoculation by the BdRP‐22 infection. Thus, pyramiding larger numbers of Rpp genes confers soybean with a higher level of resistance to ASR pathogens and can produce an immunity phenotype at two weeks after inoculation.  相似文献   

4.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified. These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably.  相似文献   

5.
Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is an important disease of wheat (Triticum aestivum L.) globally. Use of host resistance is an important strategy to manage the disease. The cultivar Flinor has temperature-sensitive resistance to stripe rust. To map quantitative trait loci (QTLs) for these temperature-sensitive resistances, Flinor was crossed with susceptible cultivar Ming Xian 169. The seedlings of the parents, and F1, F3 progeny were screened against Chinese yellow rust race CYR32 in controlled-temperature growth chambers under different temperature regimes. Genetic analysis confirmed two genes for temperature-sensitive stripe rust resistance. A linkage map of SSR markers was constructed using 130 F3 families derived from the cross. Two temperature-sensitive resistance QTLs were detected on chromosome 5B, designated QYr-tem-5B.1 and QYr-tem-5B.2, respectively, and are separated by a genetic distance of over 50 cM. The loci contributed 33.12 and 37.33% of the total phenotypic variation for infection type, respectively, and up to 70.45% collectively. Favorable alleles of these two QTLs came from Flinor. These two QTLs are temperature-sensitive resistance loci and different from previously reported QTLs for resistance to stripe rust.  相似文献   

6.
Three recombinant inbred line populations from the crosses RL6071/Thatcher, RL6071/RL6058 (Thatcher Lr34), and Thatcher/RL6058, were used to study the genetics of stem rust resistance in Thatcher and TcLr34. Segregation of stem rust response in each population was used to determine the number of genes conferring resistance, as well as the effect of the leaf rust resistance gene Lr34 on stem rust resistance. The relationship between resistance in seedling and adult plants was also examined, and an attempt was made to identify microsatellite markers linked to genes that were effective in adult plants. In field plot tests at least three additive resistance genes segregated in the RL6071/RL6058 population, whereas two resistance genes segregated in the RL6071/Thatcher population. The presence of the gene Lr34 permitted the expression of additional stem rust resistance in Thatcher-derived lines both at the seedling and adult plant stages. Seedling resistance to races TPMK and RKQQ was significantly associated with resistance in adult plants, whereas seedling resistance to races QCCD and QCCB may have made a minor contribution. The seedling resistance genes Sr16 and Sr12 may have contributed to resistance in adult plants. A molecular marker linked to resistance in adult plants was identified on chromosome 2BL.  相似文献   

7.
The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1.  相似文献   

8.
Aphis glycines Matsumura, the soybean aphid, first arrived in North America in 2000 and has since become the most important insect pest of domestic soybean, causing significant yield loss and increasing production costs annually in many parts of the USA soybean belt. Research to identify sources of resistance to the pest began shortly after it was found and several sources were quickly identified in the USDA soybean germplasm collection. Characterization of resistance expression and mapping of resistance genes in resistant germplasm accessions resulted in the identification of six named soybean aphid resistance genes: Rag1, rag1c, Rag2, Rag3, rag4, and Rag5 (proposed). Simple sequence repeat markers flanking the resistance genes were identified, facilitating efforts to use marker-assisted selection to develop resistant commercial cultivars. Saturation or fine-mapping with single nucleotide polymorphism markers narrowed the genomic regions containing Rag1 and Rag2 genes. Two potential NBS-LRR candidate genes for Rag1 and one NBS-LRR gene for Rag2 were found within the regions. Years before the release of the first resistant soybean cultivar with Rag1 in 2009, a soybean aphid biotype, named biotype 2, was found that could overcome the resistance gene. Later in 2010, biotype 3 was characterized for its ability to colonize plants with Rag2 and other resistance genes. At present, three biotypes have been reported that can be distinguished by their virulence on Rag1 and Rag2 resistance genes. Frequency and geographic distribution of soybean aphid biotypes are unknown. Research is in progress to determine the inheritance of virulence and develop DNA markers tagging virulence genes to facilitate monitoring of biotypes. With these research findings and the availability of host lines with different resistance genes and biotypes, the soybean aphid-soybean pest-host system has become an important model system for advanced research into the interaction of an aphid with its plant host, and also the tritrophic interaction that includes aphid endosymbionts.  相似文献   

9.
We have previously reported that expression of salt-responsive genes, including Bruguiera gymnorhiza ankyrin repeat protein 1 (BgARP1), enhances salt tolerance in both Agrobacterium tumefaciens and Arabidopsis. In this report, we further characterized BgARP1-expressing Arabidopsis to elucidate the role of BgARP1 in salt tolerance. BgARP1-expressing plants exhibited more vigorous growth than wild-type plants on MS plates containing 125–175 mM NaCl. Real-time PCR analysis showed enhanced induction of osmotin34 in the 2-week-old transformants under 125 mM NaCl. It was also showed that induction of typical salt-responsive genes, including RD29A, RD29B, and RD22, was blunted and delayed in the 4-week-old transformants during 24 h after 200 mM NaCl treatment. Ion content analysis showed that transgenic plants contained more K+, Ca2+, and NO3 , and less NH4 +, than wild-type plants grown in 200 mM NaCl. Our results suggest that BgARP1-expressing plants may reduce salt stress by up-regulating osmotin34 gene expression and maintaining K+ homeostasis and regulating Ca2+ content. These results indicate that BgARP1 is functional on a heterogeneous background.  相似文献   

10.
Wild Aegilops species related to cultivated wheat (Triticum spp.) possess numerous genes of agronomic interest and can be valuable sources of resistance to diseases, pests and extreme environmental factors. These genes can be incorporated into the wheat genome via intergeneric crossing, following, where necessary, the development of chromosome addition and substitution lines from the resulting hybrids. The transfer of a single segment from an alien chromosome can be achieved by translocations. The Aegilops (goatgrass) species, which are the most closely related to wheat, exhibit great genetic diversity, the exploitation of which has been the subject of experimentation for more than a century. The present paper gives a survey of the results achieved to date in the field of wheat–Aegilops hybridisation and gene transfer. The Aegilops genus consists of 11 diploid, 10 tetraploid and 2 hexaploid species. Of these 23 Aegilops species, most of the diploids (Ae. umbellulata Zhuk., Ae. mutica Boiss., Ae. bicornis (Forssk.) Jaub. & Spach, Ae. searsii Feldman & Kislev ex Hammer, Ae. caudata L., Ae. sharonensis Eig, Ae. speltoides Tausch, Ae. longissima Schweinf. & Muschl.) and several polyploids (Ae. ventricosa Tausch, Ae. peregrina (Hack. In J. Fraser) Marie & Weiller, Ae. geniculata Roth, Ae. kotschyi Boiss., Ae. biuncialis L.) have been used to develop wheat–Aegilops addition lines. Wheat–Aegilops substitution lines were developed using several species, including Ae. umbellulata, Ae. caudata, Ae. tauschii, Ae. speltoides, Ae. sharonensis, Ae. longissima and Ae. geniculata. Translocations carrying genes responsible for useful agronomic traits were developed with Ae. umbellulata, Ae. comosa, Ae. ventricosa, Ae. longissima, Ae. speltoides and Ae. geniculata. A large number of genes were transferred from Aegilops species to cultivated wheat, including those for resistance to leaf rust, stem rust, yellow rust and powdery mildew, and various pests (cereal cyst nematode, root knot nematode, Hessian fly, greenbug). Many molecular markers are linked to these resistance genes. The development of new molecular markers is also underway. There are still many untapped genetic resources in Aegilops species that could be used as resistance sources for plant breeding.  相似文献   

11.
A set of 105 European wheat cultivars was assessed for seedling resistance and adult plant resistance (APR) to stripe (yellow) rust in greenhouse and field tests with selected Australian isolates of Puccinia striiformis f. sp. tritici (Pst). Twelve cultivars were susceptible to all pathotypes, and among the remainder, 11 designated seedling genes (Yr1, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr27, Yr32, YrHVII and YrSP) and a range of unidentified seedling resistances were detected either singly or in combination. The identity of seedling resistance in 43 cultivars could not be determined with the available Pst pathotypes, and it is considered possible that at least some of these may carry uncharacterised seedling resistance genes. The gene Yr9 occurred with the highest frequency, present in 19 cultivars (18%), followed by Yr17, present in 10 cultivars (10%). Twenty four cultivars lacked seedling resistance that was effective against the pathotype used in field nurseries, and all but two of these displayed very high levels of APR. While the genetic identity of this APR is currently unknown, it is potentially a very useful source of resistance to Pst. Genetic studies are now needed to characterise this resistance to expedite its use in efforts to breed for resistance to stripe rust. Colin R. Wellings seconded from NSW Department of Primary Industries.  相似文献   

12.
The inheritance of the resistance to Fusarium oxysporum f. sp. melonis (F.o.m.) races 0 and 2 in ‘Tortuga’, a Spanish cantalupensis accession, was studied from crosses of ‘Tortuga’ by the susceptible line ‘Piel de Sapo’ and the resistant one ‘Charentais-Fom1’ that carries the resistance gene Fom-1. The segregation patterns observed in the F2 (‘Tortuga’ × ‘Piel de Sapo’) and the backcross (‘Piel de Sapo’ × (‘Tortuga’ × ‘Piel de Sapo’) populations, suggest that resistance of ‘Tortuga’ to races 0 and 2 of F.o.m. is conferred by two independent genes: one dominant and the other recessive. In the F2 derived from the cross between accessions ‘Tortuga’ and ‘Charentais-Fom1’, the lack of susceptible plants indicated that the two accessions are carrying the same resistance gene (Fom-1). The analysis of 158 F2 plants (‘Tortuga’ × ‘Piel de Sapo’) with a Cleaved Amplified Polymorphic Sequence marker 618-CAPS, tightly linked to Fom-1 (0.9 cM), confirmed that ‘Tortuga’ also carries a recessive gene, that we propose to symbolize by fom-4.  相似文献   

13.
Based on studies of the distribution of alleles at the important Rht and Ppd loci on wheat chromosomes 4B, 4D and 2D, different groups of winter wheat cultivars registered in the Czech and Slovak Republics during the period 1976–2007 were examined for a range of agronomic traits using official data from multi-location trials. Significant variation for all traits was detected among and between genotype groups. The frequent introduction of ‘Rht-D1b’ cultivars from the UK and Western Europe to the Czech Republic since 1995 has positively influenced lodging resistance and undoubtedly also yielding ability, but negatively affected winter-hardiness and bread making quality. An improved opportunity for earlier flowering cultivars with high winter-hardiness levels, in combination with high bread-making quality, can be obtained with genotypes carrying the Xgwm261 allele 192-bp that is probably indicative of the presence of Rht8. While GA insensitive Rht genes caused approximately a 10 cm reduction of plant height, the 192-bp allele at Xgwm261 was not associated, in these conditions, with a significant reduction in plant height when compared to Xgwm261 alleles 165- and 174-bp. Likewise, the photoperiod insensitive allele Ppd-D1a did not have a significant effect on plant height and it had not adversely affected other characters. Later heading genotypes carrying Xgwm261 alleles174- and 165-bp, often in combination with Ppd-D1b, could probably guarantee broader adaptability, which is highly desirable for changeable weather conditions. While the presence of the 192-bp allele was clearly associated with suitability for cultivation in the warmer maize growing regions, this was not so obvious for Ppd-D1a, particularly when combined with the 174-bp allele. GA responsive genes did not, apparently, influence adaptability to the different growing conditions. These studies reveal that there were both shortcomings and benefits attributable to the use of germplasm from different origins when introducing Rht and Ppd alleles. These results should be helpful to breeders in optimizing the choice of parents for crossing, and selection strategy in these target environments.  相似文献   

14.
15.
Phytophthora root and stem rot caused by Phytophthora sojae, is one of the most damaging diseases of soybean, for which management is principally done by planting resistant cultivars with race specific resistance which are conferred by Rps (Resistance to Phytophthora sojae) genes. The Rps8 locus, identified in the South Korean landrace PI 399073, is located in a 2.23 Mbp region on soybean chromosome 13. In eight cv. Williams (rps8/rps8) × PI 399073 (Rps8/Rps8) populations, this region exhibited strong segregation distortion. In a cross between the South Korean lines PI 399073 (Rps8/Rps8) and PI 408211B (multiple Rps genes) this region segregated in a Mendelian fashion. In this study, microsporogenesis was evaluated to identify meiotic abnormalities that may be associated with the segregation distortion of the Rps8 region. Pollen was collected from greenhouse-grown plants of the parental genotypes: Williams, PI 399073, and PI 408211B; as well as selected Rps8/rps8 RILs from Williams × PI 399073 BC4F2:3 and PI 399073 × PI 408211B F4:5 populations. There were no differences for pollen viability among the genotypes. However, for PI 399073, a mix of dyads, triads, tetrads and pentads was observed. A high frequency of meiotic abnormalities including fragments, laggards, multinucleated microspores; and microcytes containing DNA was also observed in Rps8/rps8 Williams × PI 399073 BC4F2:3 RILs. These meiotic abnormalities may contribute to the high degree of segregation distortion present in the Williams × PI 399073 populations.  相似文献   

16.
Pseudomonas syringae is the main pathogen responsible for bacterial blight disease in pea and can cause yield losses of 70%. P. syringae pv. pisi is prevalent in most countries but the importance of P. syringae pv. syringae (Psy) is increasing. Several sources of resistance to Psy have been identified but genetics of the resistance is unknown. In this study the inheritance of resistance to Psy was studied in the pea recombinant inbred line population P665 × ‘Messire’. Results suggest a polygenic control of the resistance and two quantitative trait loci (QTL) associated with resistance, Psy1 and Psy2, were identified. The QTL explained individually 22.2 and 8.6% of the phenotypic variation, respectively. In addition 21 SSR markers were included in the P665 × ‘Messire’ map, of which six had not been mapped on the pea genome in previous studies.  相似文献   

17.
Leaf rust caused by Puccinia triticina is the most common and widely distributed of the three wheat rusts. Losses from leaf rust are usually less damaging than those from stem rust and stripe rust, but leaf rust causes greater annual losses due to its more frequent and widespread occurrence. Yield losses from leaf rust are mostly due to reductions in kernel weight. Many laboratories worldwide conduct leaf rust surveys and virulence analyses. Most currently important races (pathotypes) have either evolved through mutations in existing populations or migrated from other, often unknown, areas. Several leaf rust resistance genes are cataloged, and high levels of slow rusting adult plant resistance are available in high yielding CIMMYT wheats. This paper summarizes the importance of leaf rust in the main wheat production areas as reflected by yield losses, the complexity of virulence variation in pathogen populations, the role cultivars with race-specific resistance play in pathogen evolution, and the control measures currently practiced in various regions of the world.  相似文献   

18.
Eucalypts are susceptible to a wide range of diseases. One of the most important diseases that affect Eucalyptus plantations worldwide is caused by the rust fungus Puccinia psidii. Here, we provide evidence on the complex genetic control of rust resistance in Eucalyptus inter-specific hybrids, by analyzing a number of full-sib families that display different patterns of segregation for rust resistance. These families are totally unrelated to those previously used in other inheritance studies of rust resistance. By using a full genome scan with 114 genetic markers (microsatellites and expressed sequence tag derived microsatellites) we also corroborated the existence and segregation of a resistance locus, explaining 11.5% of the phenotypic variation, on linkage group 3, corresponding to Ppr1. This find represents an additional validation of this locus in totally unrelated pedigree. We have also detected significant additive × additive digenic interactions with LOD >10.0 on several linkage groups. The additive and epistatic QTLs identified explain between 29.8 and 44.8% of the phenotypic variability for rust resistance. The recognition that both additive and non-additive genetic variation (epistasis) are important contributors to rust resistance in eucalypts reveals the complexity of this host-pathogen interaction and helps explain the success that breeding has achieved by selecting rust-resistant clones, where all the additive and non-additive effects are readily captured. The positioning of epistatic QTLs also provides starting points to look for the underlying genes or genomic regions controlling this phenotype on the upcoming E. grandis genome sequence.  相似文献   

19.
Stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases of rapeseed (Brassica napus L.) which causes huge loss in rapeseed production. Genetic sources with high level of resistance has not been found in rapeseed. In this study, 68 accessions in six Brassica species, including 47 accessions of B. oleracea, were evaluated for leaf and stem resistance to S. sclerotiorum. Large variation of resistance was found in Brassica, with maximum differences of 5- and 57-folds in leaf and stem resistance respectively. B. oleracea, especially its wild types such as B. rupestris, B. incana, B. insularis, and B. villosa showed high level of resistance. Our data suggest that wild types of B. oleracea possess tremendous potential for improving S. sclerotiorum resistance of rapeseed.  相似文献   

20.
7–7365AB is a recessive genic male sterile (RGMS) two-type line, which can be applied in a three-line system with the interim-maintainer, 7–7365C. Fertility of this system is controlled by two duplicate dominant epistatic genes (Bn;Ms3 and Bn;Ms4) and one recessive epistatic inhibitor gene (Bn;rf). Therefore an individual with the genotype of Bn;ms3ms3ms4ms4Rf_ exhibits male sterility, whereas, plant with Bn;ms3ms3ms4ms4rfrf shows fertility because homozygosity at the Bn;rf locus (Bn;rfrf) can inhibit the expression of two recessive male sterile genes in homozygous Bn;ms3ms3ms4ms4 plant. A cross of 7–7365A (Bn;ms3ms3ms4ms4RfRf) and 7–7365C (Bn;ms3ms3ms4ms4rfrf) can generate a complete male sterile population served as a mother line with restorer in alternative strips for the multiplication of hybrid seeds. In the present study, molecular mapping of the Bn;Rf gene was performed in a BC1 population from the cross between 7–7365A and 7–7365C. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) technique was used to identify molecular markers linked to the gene of interest. From a survey of 768 primer combinations, seven AFLP markers were identified. The closest marker, XM5, was co-segregated with the Bn;Rf locus and successfully converted into a sequence characterized amplified region (SCAR) marker, designated as XSC5. Two flanking markers, XM3 and XM2, were 0.6 cM and 2.6 cM away from the target gene, respectively. XM1 was subsequently mapped on linkage group N7 using a doubled-haploid (DH) mapping population derived from the cross Tapidor × Ningyou7, available at IMSORB, UK. To further confirm the location of the Bn;Rf gene, additional simple sequence repeat (SSR) markers in linkage group N7 from the reference maps were screened in the BC1 population. Two SSR markers, CB10594 and BRMS018, showed polymorphisms in our mapping population. The molecular markers found in the present study will facilitate the selection of interim-maintainer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号