首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
为研究IFN-γ对妊娠的免疫调控机制,本文采用免疫组化SP法,对大鼠胚泡植入期卵巢组织内IFN-γ的分布进行了研究。结果表明,IFN-γ在不同发育阶段卵泡的颗粒细胞中均有分布,原始卵泡、初级卵泡、次级卵泡和成熟卵泡的卵母细胞呈中等阳性反应,在原始卵泡、初级卵泡及次级卵泡的卵泡内膜细胞呈IFN-γ强阳性反应,成熟卵泡内膜细胞则呈弱阳性反应;在卵巢组织基质细胞、血管内皮细胞、粒性黄体细胞、生殖上皮也出现强阳性反应,卵泡液呈阳性着色。结果表明,妊娠有机体生理剂量的IFN-γ通过影响卵巢功能参与了胚泡的植入,与妊娠的建立和维持密切相关。  相似文献   

2.
Our study was conducted to assess the follicular development and availability of sound ovarian oocytes for in vitro production (IVP) of embryos in pre‐pubertal cats. The relationship between body and ovarian weight was examined in 93 cats. The results revealed that ovarian weight rapidly increased until 100 days of estimated age. By histological evaluation of ovaries obtained from 11 pre‐pubertal cats with estimated age of <20, 20–40 and 100–120 days, it was clarified that the increase in ovarian weight during kitten growth accompanied the increase in the number and size of antral follicles. The follicular diameter and percentage of normal oocytes in secondary/antral follicles also increased as estimated age (body weight) increased. The oocytes obtained from pre‐pubertal cats with 100–120 days of estimated age were used for IVP of embryos. The results showed that the success rates of in vitro maturation, in vitro fertilization and development to blastocysts after in vitro culture in pre‐pubertal cats were lower than in sexually mature cats. However, the percentage of blastocysts based on the cleaved embryos and cell number of blastocysts in pre‐pubertal cats were comparable to those in mature cats. In conclusion, these results suggest that the ovaries of pre‐pubertal cats with ≥100 days of age contain oocytes with in vitro developmental competence to blastocysts.  相似文献   

3.
The mammalian ovary contains a huge number of small follicles of various sizes, and each follicle encloses a small oocyte. Only a small number of non-growing oocytes (30 microm in the pig and cow) grow to their final size (120 microm), mature, and are ovulated. In vitro growth (IVG) culturing of small oocytes will provide a new source of mature oocytes for livestock production. Using the IVG culture system, non-growing mouse oocytes in primordial follicles grow to their final size and acquire full developmental competence. Among large animals, babies were produced from ovarian oocytes by IVG culture only in the cow. However, the oocytes used were not non-growing ones but at the mid-growth stage (90-99 microm in diameter) in early antral follicles. Xenotransplantation of the follicles at an early stage to immuno-deficient mice is a substitute for an effective long-term IVG culture of much smaller oocytes. IVG and xenotransplantation of small oocytes at a specific size will provide a new understanding of the mechanisms regulating oogenesis and folliculogenesis in the complex mammalian ovary.  相似文献   

4.
卵巢组织玻璃化冷冻可替代直接冷冻卵母细胞或胚胎。玻璃化冷冻卵巢组织在辅助生殖上具有优越性。它无需控制供体的生殖周期 ,也无需取出卵泡。同样这一技术可用于保存濒危动物或受意外伤害的人或动物的卵母细胞 ;可为性成熟前失去生殖能力的动物或人提供生殖保险以及增加卵母细胞的来源 ;可用于建立生殖细胞 (卵母细胞 )的冷冻库。而传统的冷冻技术存在很多弊端。文章综述了玻璃化冷冻卵巢组织的研究背景和现状 ,并指出了其广阔的应用前景  相似文献   

5.
The objective of the present study was to examine the feasibility of the production of autologous porcine somatic cell nuclear transfer (SCNT) blastocysts using oocytes and donor cells from slaughtered ovaries. Therefore, we attempted to optimize autologous SCNT by examining the effects of electrical fusion conditions and donor cell type on cell fusion and the development of SCNT embryos. Four types of donor cells were used: 1) denuded cumulus cells (DCCs) collected from in vitro-matured (IVM) oocytes; 2) cumulus cells collected from oocytes after 22 h of IVM and cultured for 18 h (CCCs); 3) follicular cells obtained from follicular contents and cultured for 40 h (CFCs); and 4) adult skin fibroblasts. The DCCs showed a significantly (p < 0.01) lower rate of fusion than the CCCs when two pulses of 170 V/mm DC were applied for 50 µsec (19 ± 2% vs. 77 ± 3%). The rate of DCC fusion with oocytes was increased by the application of two DC pulses of 190 V/mm for 30 µsec, although this was still lower than the rate of fusion in the CCCs (33 ± 1% vs. 80 ± 2%). The rates of cleavage (57 ± 5%) and blastocyst formation (1 ± 1%) in the DCC-derived embryos did not differ from those (55 ± 6% and 3 ± 1%, respectively) in the CCC-derived SCNT embryos. Autologous SCNT embryos derived from CFCs (5 ± 2%) showed higher levels of blastocyst formation (p < 0.01) than CCC-derived autologous SCNT embryos (1 ± 0%). In conclusion, the results of the present study show that culturing cumulus and follicular cells before SCNT enhances cell fusion with oocytes and that CFCs are superior to CCCs in the production of higher numbers of autologous SCNT blastocysts.  相似文献   

6.
Chemoradiotherapy in young women with cancer has substantially improved life expectancy in these patients, but these treatments often cause infertility. One method of preserving fertility is to cryopreserve ovarian tissue. In this study, an automatic open-vessel freezing system with self-seeding was tested for cryopreservation of murine ovarian tissue; the mouse is a species widely used in human and veterinary medical research. The freezing system concerned, is used for cryopreservation of oocytes and embryos in Europe. Twenty severe combined immunodeficiency (SCID) mice were ovariectomized. The ovarian tissue was either directly transplanted heterotopically into the neck muscle (group 1, n = 6) or cryopreserved after equilibration with 1.5 M dimethylsulphoxide and propanediol. After thawing, the tissue was transplanted in SCID mice (group 2, n = 6). Before and after thawing, a part of the ovarian tissue was examined with the LIVE/DEAD fluorescent viability staining. The count of follicles revealed intact (fresh 24.1%/thawed 21.7%), impaired (fresh 35.1%/thawed 35.4%), and dead follicles (fresh 40.8%/thawed 42.9%). The healthy follicular loss because of the cryopreservation was 10.0%. All recipient mice were killed after 3 weeks. Transplanted ovarian tissue was found macroscopically in all mice. Histological examination showed several growing follicles in all developmental phases in both groups of SCID mice [group 1 (fresh grafts): 315 +/- 76.3 (mean +/- SD); group 2 (cryopreserved grafts): 237 +/- 63.4]. These results demonstrate that the use of an open-freezing system allows the survival of cryopreserved mouse ovarian tissue.  相似文献   

7.
Embryonic stem (ES) cells are pluripotent cell lines with the capacity of self-renewal and a broad differentiation plasticity. They are derived from pre-implantation embryos and can be propagated as a homogeneous, uncommitted cell population for an almost unlimited period of time without losing their pluripotency and their stable karyotype. Murine ES cells are able to reintegrate fully into embryogenesis when returned into an early embryo, even after extensive genetic manipulation. In the resulting chimeric offspring produced by blastocyst injection or morula aggregation, ES cell descendants are represented among all cell types, including functional gametes. Therefore, mouse ES cells represent an important tool for genetic engineering, in particular via homologous recombination, to introduce gene knock-outs and other precise genomic modifications into the mouse germ line. Because of these properties ES cell technology is of high interest for other model organisms and for livestock species like cattle and pigs. However, in spite of tremendous research activities, no proven ES cells colonizing the germ line have yet been established for vertebrate species other than the mouse (Evans and Kaufman, 1981; Martin, 1981) and chicken (Pain et al., 1996). The in vitro differentiation capacity of ES cells provides unique opportunities for experimental analysis of gene regulation and function during cell commitment and differentiation in early embryogenesis. Recently, pluripotent stem cells were established from human embryos (Thomson et al., 1998) and early fetuses (Shamblott et al., 1998), opening new scenarios both for research in human developmental biology and for medical applications, i.e. cell replacement strategies. At about the same time, research activities focused on characteristics and differentiation potential of somatic stem cells, unravelling an unexpected plasticity of these cell types. Somatic stem cells are found in differentiated tissues and can renew themselves in addition to generating the specialized cell types of the tissue from which they originate. Additional to discoveries of somatic stem cells in tissues that were previously not thought to contain these kinds of cells, they also appear to be capable of developing into cell types of other tissues, but have a reduced differentiation potential as compared to embryo-derived stem cells. Therefore, somatic stem cells are referred to as multipotent rather than pluripotent. This review summarizes characteristics of pluripotent stem cells in the mouse and in selected livestock species, explains their use for genetic engineering and basic research on embryonic development, and evaluates their potential for cell therapy as compared to somatic stem cells.  相似文献   

8.
The objective of this study was to clarify the effect of ovarian status and follicular size on morphological normality and maturational ability of cat oocytes. Ovarian status was classified into inactive, follicular, luteal and prepubertal, and follicles were classified into three groups according to their diameter (400-800, 800-1200 and 1200-2000 μm). In each ovarian status, the number of follicles decreased but the percentage of morphologically normal oocytes increased with the growth of follicles (p<0.05). Only a single follicle that was 1200-2000 μm in diameter was observed in two of the five prepubertal cats. In follicles that were 800-1200 μm in diameter, the percentage of normal oocytes and maturation rate were higher in prepubertal cats than in mature cats (p<0.05). Oocyte diameter tended to increase with the growth of follicles. After oocytes were cultured individually in droplets of maturation medium, the oocyte maturation rate increased with the growth of follicles in each ovarian status (p<0.05). In conclusion, oocytes collected from larger follicles possess higher maturational ability in vitro in sexually mature cats. In prepubertal cats, a higher maturation rate can be obtained from oocytes derived from small follicles compared with in mature cats.  相似文献   

9.
This is the first report to show morphological evidence of in vitro maturation of oocytes recovered from xenotransplanted antral follicles. To develop a suitable tool for studing the growth and maturation of follicles and oocytes, we xenotransplanted small pieces of ovarian cortical tissue from sows, which contained small preantral follicles (primordial, primary, and secondary follicles; less than 0.05, 0.1 and 0.3 mm in diameter, respectively), under the capsules of kidneys of adult female severe combined immunodeficient (SCID) mice for 2 and 8 weeks, and then recovered cumulus-oocyte complexes from the growing tertiary follicles in xenografted tissues. The distribution of processes from cumulus cells to oocytes and the follicular growth, development, and maturation during xenotransplantation were histochemically analyzed. Tertiary follicles, 0.5 to 3.0 mm in diameter, were obtained from grafted tissues 2 (85%: 52 follicles/61 grafted tissues) and 8 (50%: 15/30) weeks after xenotransplantation, and then oocytes, which were tightly attached to cumulus cells, were collected from each tertiary follicle and cultured to assess their quality. At 2 weeks after grafting, 17.6% of the oocytes had matured to the metaphase II stage, but no such maturation was observed 8 weeks after grafting. Thus, in the 2 weeks group, preantral follicles rapidly grew in xenotransplanted porcine ovarian tissues to the tertiary stage, and oocytes could be recovered and matured from them by in vitro culture.  相似文献   

10.
To improve the reproductive performance of water buffalo to level can satisfy our needs, the mechanisms controlling ovarian follicular growth and development should be thoroughly investigated. Therefore, in this study, the expressions of growth differentiation factor‐9 (GDF‐9) in buffalo ovaries were examined by immunohistochemistry, and the effects of GDF‐9 treatment on follicle progression were investigated using a buffalo ovary organ culture system. Frozen–thawed buffalo ovarian follicles within slices of ovarian cortical tissue were cultured for 14 days in the presence or absence of GDF‐9. After culture, ovarian slices were fixed, sectioned and stained. The follicles were morphologically analysed and counted. Expression pattern of GDF‐9 was detected in oocytes from primordial follicles onwards, besides, also presented in granulosa cells. Moreover, GDF‐9 was detected in mural granulosa cells and theca cells of pre‐antral follicles. In antral follicles, cumulus cells and theca cells displayed positive expression of GDF‐9. In corpora lutea, GDF‐9 was expressed in both granulosa and theca lutein cells. After in vitro culture, there was no difference in the number of primordial follicles between cultured plus GDF‐9 and cultured control that indicated the GDF‐9 treatment has no effect on the primordial to primary follicle transition. GDF‐9 treatment caused a significant decrease in the number of primary and secondary follicles compared with controls accompanied with a significant increase in pre‐antral and antral follicles. These results suggest that a larger number of primary and secondary follicles were stimulated to progress to later developmental stages when treated with GDF‐9. Vitrification/warming of buffalo ovarian tissue had a little remarkable effect, in contrast to culturing for 14 days, on the expression of GDF‐9. In conclusion, treatment with GDF‐9 was found to promote progression of primary follicle that could provide an alternative approach to stimulate early follicle development and to improve therapies for the most common infertility problem in buffaloes (ovarian inactivity).  相似文献   

11.
In vitro production of embryos, including in vitro maturation, fertilization of oocytes and their subsequent culture to the embryo stage, has become the most popular method of studying gametogenesis and embryogenesis in pigs. As well as their utility for basic studies, these procedures now enable us to generate viable embryos and offspring as a means of conserving genetic resources and rare animal breeds. Recently, more advanced technologies such as xenografting of gonadal (testicular and ovarian) tissues into immunodeficient experimental animals have been developed. In combination with in vitro embryo production techniques, this approach may provide many benefits. We have been carrying out studies to acquire basic information about the application of this method to porcine species, and to improve the existing techniques. Recently, we obtained oocytes from ovarian tissue xenografted and grown in nude mice that had the capacity to be fertilized and the ability to develop into early‐stage embryos. We also obtained spermatozoa from the xenografted testicular tissues and injected them intracytoplasmically into in vitro‐matured oocytes to produce piglets. Here we discuss the further possibilities of conservation and utilization of porcine gonadal tissue by xenografting into immunodeficient mice.  相似文献   

12.
This study was conducted to examine the effects of the reproductive cycle of donor cat on the quality of oocytes at recovery and developmental competence of oocytes after in vitro fertilization (IVF) and somatic cell nuclear transfer (NT). Based on the presence or absence of follicles and corpora lutea, the ovarian pairs collected were classified into inactive, follicular or luteal stages. After collection of oocytes, the oocytes were classified into four grades according to the morphological condition of oocyte cytoplasm and cumulus cells. A total of 16 558 oocytes were obtained from 198 ovarian pairs. The total mean numbers of oocytes and the mean numbers of oocytes with high quality (grade I) were significantly higher in ovarian pairs at the inactive stage (111.1 and 19.0 oocytes, respectively) than in ovarian pairs at the follicular stage (67.1 and 11.4 oocytes, respectively). A significant difference in the proportions of oocytes with grade I out of the total examined oocytes was observed between the follicular and luteal stages of ovaries (14.9% vs 20.2%, p < 0.05). The proportions of IVF embryos cleaved and developed to blastocysts significantly decreased with decreased quality of oocytes at recovery, irrespective of the reproductive status of ovaries. Moreover, there were no significant differences in the proportions of cleavage and development to the blastocyst stage of IVF and NT embryos among three oestrous stages of ovaries. These results indicate that the reproductive cycle stage of donor cat ovaries has no apparent effects on the in vitro development of oocytes after IVF and NT, but the quality of oocytes at recovery influences the development of IVF embryos.  相似文献   

13.
This study is aimed at investigating the developmental potential of the primordial follicles from ovaries of newborn mice after cryopreservation in liquid nitrogen for long-term storage, thawing, and heterografting into the kidney capsules of ovariectomized adult female mice. After stimulation of recipient mice with pregnant mare serum gonadotropin on day-19 after heterografting, the primordial follicles of the transplanted ovaries could develop into antral follicles. When the oocyte-cumulus cell complexes were retrieved from these antral follicles, they could mature after in vitro culture for 16–17 h. After in vitro fertilization, the rates of embryos derived from these oocytes that developed into the two-cell stage and the blastocyst stage after 16–17 h and after day-4, respectively, in the culture medium were 55.40% (55/107) and 9.09% (5/55), respectively. In the ovarian transplantation groups, no pups were derived from the 410 embryos that were transferred into 10 pseudopregnant mothers at the pronuclear stage. However, of the 10 surrogate mothers in whom 570 embryos were transferred at the two-cell stage, four achieved pregnancy and gave birth to 20 live offspring. These results demonstrated that primordial follicles in newborn mice ovaries were capable of sustaining their developmental potential after freezing and thawing. Once transplanted into the kidney capsules of ovariectomized adult female mice, these primordial follicles could develop and respond to gonadotropin stimulation and reach the antral stage; further, live offspring could be derived from these follicles.  相似文献   

14.
To establish a tool for the study of follicular growth and development, we xenotransplanted small pieces (approximately 1 mm3) of porcine ovarian cortical tissues containing only primordial follicles and small preantral follicles under the capsules of kidneys of severe combined immunodeficient (SCID) mice (8-10 weeks old). The changes in cell proliferation and cell death/apoptosis, and vascularization in xenotransplanted follicles during follicular growth and development were analyzed histochemically at 1-26 weeks after operation. Follicles in grafted ovarian tissues grew rapidly forming an antral cavity (a hallmark of tertiary follicles) at 1 week after grafting. The diameter of the follicles in transplanted tissues ranged from 0.5 to 1.5 mm, from 0.5 to 2.0 mm and from 0.5 to 3.0 mm at 1, 2 and 26 weeks after the operation, respectively. Histological observation of ovarian tissues at 26 weeks after grafting revealed that all grafts had abundant capillary vessels, which invaded from murine organs and surrounded the growing follicles. Grafted small preantral follicles developed to the antral stages at 1 week after grafting and growing antral follicles survived at 26 weeks after grafting. The oocytes in the growing follicles were easily recovered for evaluating the quality. Our simple xenografting system is easy to use and a good experimental tool for the study of folliclular growth and development in porcine ovaries.  相似文献   

15.
16.
Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.  相似文献   

17.
Recent studies have shown that factors from adipose tissue influence and regulate the reproductive system. Hormones such as leptin and resistin are now known to regulate several reproductive processes. Adiponectin is the most abundant protein secreted by adipose tissue, and its circulating concentration is inversely related to adiposity and body mass index. Little is known about the involvement of adiponectin in reproduction. In the present study, the effect of recombinant adiponectin on the meiotic maturation and early embryo development in vitro was investigated, using porcine oocytes. Adiponectin receptors, AdipoR1 and AdipoR2, were found to be expressed in porcine oocytes and cumulus cells of both small and large follicles. Both AdipoR1 and AdipoR2 were immunolocalized to cumulus-oocyte complexes (COCs), oocytes, and early developing embryos. When included in oocyte maturation medium for 46 h, adiponectin significantly decreased the frequency of meiotic immature oocytes derived from large follicles (3-6 mm) but not from small follicles (<3mm). From studies of oocytes matured in the presence of adiponectin and mitogen-activated protein kinase (MAPK) pathway inhibitors MEK1 (PD98059), MEK1/2 (U0126), and p38MAPK (SB203580) it was concluded that adiponectin enhances oocyte maturation thought the p38MAPK pathway. Finally, a superior rate of embryo development to the blastocyst stage was achieved by embryos cultured in the presence of adiponectin. These results indicate that adiponectin has a positive effect on the meiotic maturation and in vitro embryo development of porcine oocytes and suggests a physiological role for this adipokine in early development in mammals.  相似文献   

18.
屠宰绵羊卵巢卵母细胞的体外培养   总被引:2,自引:0,他引:2  
为了使屠宰绵羊卵巢卵母细胞能够用于体外受精,本文着重探索了使卵巢卵母细胞体外培养成熟的方法和条件。实验结果表明,以TCM-199加10%FCS作为基本培养基,培养24~25小时,可以使绵羊卵巢卵母细胞培养成熟,其成熟率可达55.5%(435/784)。如果在培养液内添加hCG(0.02mg/ml)或LH(0.01mg/ml),并且尽可能保持卵丘细胞的完整,则可以使成熟率提高到76.9%(140/182)~82.9%(112/135)。  相似文献   

19.
Cryopreservation of ovarian cortex has important implications in the preservation of fertility and biodiversity in animal species. Slow freezing of cat ovarian tissue resulted in the preservation of follicular morphology and in the follicular development after xenografting. Vitrification has been recently applied to ovarian tissues of different species, but no information is available on the effect of this method on feline ovarian cortex. Moreover, meiotic competence of fully grown oocytes isolated from cryopreserved tissue has not been reported. The aim of this study was to evaluate the effect of vitrification of feline ovarian cortex on follicular morphology and oocyte integrity, as well as meiotic competence. A total of 352 fragments (1.5-2 mm(3) ) were obtained from ovarian cortical tissues: 176 were vitrified and 176 were used fresh as control. Histological evaluation of fresh and vitrified fragments showed intact follicles after cryopreservation procedures with no statistically significant destructive effect from primordial to antral follicles. After IVM, oocytes collected from vitrified ovarian fragment showed a higher proportion of gametes arrested at germinal vesicle (GV) stage compared to those isolated from fresh control tissue (33.8% vs 2.9%; p < 0.001). However, oocytes isolated from vitrified tissues were able to resume meiosis, albeit at lower rate than those collected from fresh tissues (39.8% vs 85.9%; p < 0.00001). Vitrification induced changes in the organization of cytoskeletal elements (actin microfilaments and microtubules) of oocytes, but significantly only for actin network (p < 0.001). Finally, chromatin configuration within the GV was not affected by the cryopreservation procedure. Our study demonstrated that vitrification preserves the integrity of ovarian follicles and that oocytes retrieved from cryopreserved tissue maintain the capability of resuming meiosis. To our knowledge, this has not previously been reported in the cat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号