首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly pathogenic avian influenza viruses (HPAIV) of H5N1 subtype are a major global threat to poultry and public health. Export of poultry products, such as chicken and duck meat, is a known source for the cross‐boundary spread of HPAI H5N1 viruses. Humans get infected with HPAI H5N1 viruses either by close contact with infected poultry or through consumption of fresh/undercooked poultry meat. Skeletal muscle is the largest soft tissue in chicken that has been shown to contain virus during systemic HPAIV infection and supports productive virus infection. However, the time between infection of a chicken with H5N1 virus and presence of virus in muscle tissue is not yet known. Further, it is also not clear whether chicken infected with low doses of H5N1 virus that cause non‐fatal subclinical infections continue to accumulate virus in skeletal muscle. We investigated the amount and duration of virus detection in skeletal muscle of chicken experimentally infected with different doses (102, 103 and 104 EID50) of a HPAI H5N1 virus. Influenza viral antigen could be detected as early as 6 hr after infection and live virus was recovered from 48 hr after infection. Notably, chicken infected with lower levels of HPAI H5N1 virus (i.e., 102 EID50) did not die acutely, but continued to accumulate high levels of H5N1 virus in skeletal muscle until 6 days post‐infection. Our data suggest that there is a potential risk of human exposure to H5N1 virus through meat from clinically healthy chicken infected with a low dose of virus. Our results highlight the need to implement rigorous monitoring systems to screen poultry meat from H5N1 endemic countries to limit the global spread of H5N1 viruses.  相似文献   

2.
As well as H5 highly pathogenic avian influenza viruses (HPAIV), H7 HPAIV strains have caused serious damages in poultry industries worldwide. Cases of bird-to-human transmission of H7 HPAIV have also been reported [11]. On the outbreak of avian influenza, rapid diagnosis is critical not only for the control of HPAI but also for human health. In the present study, a rapid diagnosis kit based on immunochromatography for the detection of H7 hemagglutinin (HA) antigen of influenza A virus was developed using 2 monoclonal antibodies that recognize different epitopes on the H7 HAs. The kit detected each of the tested 15 H7 influenza virus strains and did not react with influenza A viruses of the other subtypes than H7 or other avian viral and bacterial pathogens. The kit detected H7 HA antigen in the swabs and tissue homogenates of the chickens experimentally infected with HPAIV strain A/chicken/Netherlands/2586/03 (H7N7). The results indicate that the present kit is specific and sensitive enough for the diagnosis of HPAI caused by H7 viruses, thus, recommended for the field application as a pen-site test kit.  相似文献   

3.
Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.  相似文献   

4.
禽流感病毒(avian influenza virus,AIV)是一种重要的人兽共患病病原,严重制约养禽业的健康发展,并对公共卫生安全构成极大威胁。其中,H5(H5N1、H5N2、H5N6、H5N8等)和H7N9亚型高致病性禽流感病毒(highly pathogenic avian influenza virus,HPAIV)引起的高致病性禽流感(highly pathogenic avian influenza,HPAI)对我国养禽业危害巨大。通过实施强制免疫,疫情得到了控制,但在禽群中仍散状暴发,并出现多种新型病毒,防控形势依然严峻。本文总结了截至2021年9月我国禽类暴发H5和H7N9亚型HPAI的所有官方公布的疫情暴发事件以及监测数据,分析了其流行特点,以期为禽流感的预警和防控提供参考。  相似文献   

5.
Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7–virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.  相似文献   

6.
Highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide and produce co-infections especially in areas of the world where both viruses are endemic; but little is known about the interactions between these two viruses. The objective of this study was to determine if co-infection with NDV affects HPAIV replication in chickens. Only infections with virulent NDV strains (mesogenic Pigeon/1984 or velogenic CA/2002), and not a lentogenic NDV strain (LaSota), interfered with the replication of HPAIV A/chicken/Queretaro/14588-19/95 (H5N2) when the H5N2 was given at a high dose (106.9 EID50) two days after the NDV inoculation, but despite this interference, mortality was still observed. However, chickens infected with the less virulent mesogenic NDV Pigeon/1984 strain three days prior to being infected with a lower dose (105.3–5.5 EID50) of the same or a different HPAIV, A/chicken/Jalisco/CPA-12283-12/2012 (H7N3), had reduced HPAIV replication and increased survival rates. In conclusion, previous infection of chickens with virulent NDV strains can reduce HPAIV replication, and consequently disease and mortality. This interference depends on the titer of the viruses used, the virulence of the NDV, and the timing of the infections. The information obtained from these studies helps to understand the possible interactions and outcomes of infection (disease and virus shedding) when HPAIV and NDV co-infect chickens in the field.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-015-0237-5) contains supplementary material, which is available to authorized users.  相似文献   

7.
为了解广西玉林市2020年规模禽场禽流感病毒感染状况,采用荧光RT-PCR方法,对广西玉林市7个县(市、区)42个规模化禽场采集的1260份禽喉/泄殖腔棉拭子样品进行了通用型禽流感病毒核酸检测(荧光PCR),并对检测为阳性的样本进行H5、H7亚型(双重荧光PCR)和H9亚型(荧光PCR)分型鉴定.结果显示:在42个规模...  相似文献   

8.
禽痘病毒感染对禽流感重组禽痘病毒疫苗免疫效力的影响   总被引:1,自引:0,他引:1  
表达禽流感病毒 (AIV)HA和NA基因的重组禽痘病毒rFPV_HA_NA能够诱导鸡体产生 10 0 %抵抗高致病性禽流感病毒 (HPAIV)H5N1的攻击。而当鸡群已进行禽痘疫苗免疫或者感染了禽痘病毒的情况下 ,此重组疫苗的免疫效力如何 ?首先用禽痘病毒S_FPV_0 17人工感染SPF试验鸡 ,既而在感染后的不同间隔时间接种重组疫苗 ,免疫后检测鸡群的HI抗体水平 ,同时用 10 0LD50 的HPAIVH5N1进行攻击。结果重组疫苗免疫与禽痘病毒人工感染时间间隔在 4周 (或以上 )时 ,预先感染禽痘病毒对重组疫苗的免疫效力不构成影响 ,对禽流感的保护力为 10 0 % ,而间隔时间在 1、2、3周时 ,重组疫苗的免疫保护效力则受到不同程度的影响。  相似文献   

9.
ABSTRACT: An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.  相似文献   

10.
To analyze the contribution of neuraminidase (NA) toward protection against avian influenza virus (AIV) infection, three different recombinant Newcastle disease viruses (NDVs) expressing hemagglutinin (HA) or NA, or both, of highly pathogenic avian influenza virus (HPAIV) were generated. The lentogenic NDV Clone 30 was used as backbone for the insertion of HA of HPAIV strain A/chicken/Vietnam/P41/05 (H5N1) and NA of HPAIV strain A/duck/Vietnam/TG24-01/05 (H5N1). The HA was inserted between the genes encoding NDV phosphoprotein (P) and matrixprotein (M), and the NA was inserted between the fusion (F) and hemagglutinin-neuraminidase protein (HN) genes, resulting in NDVH5VmPMN1FHN. Two additional recombinants were constructed carrying the HA gene between the NDV P and M genes (NDVH5VmPM) or the NA between F and HN (NDVN1FHN). All recombinants replicated well and stably expressed the HA gene, the NA gene, or both. Chickens immunized with NDVH5VmPMN1FHN or NDVH5VmPM were protected against two different HPAIV H5N1 and also against HPAIV H5N2. In contrast, immunization of chickens with NDVN1FHN induced NDV- and AIV N1-specific antibodies but did not protect the animals against a lethal dose of HPAIV H5N1. Furthermore, expression of AIV N1, in addition to AIV H5 by NDV, did not increase protection against HPAIV H5N1.  相似文献   

11.
12.
Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 104 median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-014-0084-9) contains supplementary material, which is available to authorized users.  相似文献   

13.
Birds of the order Psittaciformes are - besides chickens, turkeys and other birds - also susceptible to infection with avian influenza A viruses (AIV) and succumb following severe disease within one week. Published data prove that various parakeets, amazons, cockatoos, African grey parrots and budgerigars (genera Barnardius, Psittacula, Cacatua, Eolophus, Amazona, Myiopsitta, Psittacus and Melopsittacus) were found dead following natural infections. Natural infections of highly pathogenic avian influenza viruses (HPAIV) of the haemagglutinin subtypes H5 and H7 cause severe disease and high rates of mortality. Experimental transmission studies with AlVs of the subtypes H5 and H7 confirm these data. Viruses of the subtypes H3N8, H4N6, H4N8, H11N6 and H11N8 may cause also clinical signs and occasionally losses in naturally infected psittacine birds. Clinical signs and losses were also noted following experimental infection of budgerigars with a H4N6 virus. In the EU and in other countries, vaccination of exposed exotic and rare birds and poultry is a possible and an acceptable measure to provide protection. Currently, the EU Commission accepts inactivated adjuvanted vaccines whereas in some other countries recently developed vector vaccines are applied. However, birds remain susceptible during the time interval between application of any vaccine and the development of immunity. This critical period can be bridged with antiviral drugs. Our in ovo studies demonstrate that the neuraminidase inhibitor oseltamivir is non-toxic for chicken embryos at concentrations of 0.1, 1.0 and 10.0 mg/kg body weight. These dosages prevented entirely the replication of a HPAIV of the subtype H7N1 when this drug is given shortly prior to, simultaneously or soon after inoculation of chicken embryos with this AIV. Thus, we speculate that exposed valuable birds such as psittacines at risk can be successfully treated.  相似文献   

14.
Kwon YK  Swayne DE 《Avian diseases》2010,54(4):1260-1269
The H5N1 type A influenza viruses classified as Qinghai-like virus (clade 2.2) are a unique lineage of type A influenza viruses with the capacity to produce significant disease and mortality in gallinaceous and anseriform birds, including domestic and wild ducks. The objective of this study was to determine the susceptibility and pathogenesis of chickens and domestic ducks to A/Whooper Swan/Mongolia/224/05 (H5N1) high pathogenicity avian influenza (HPAI) virus when administered through respiratory or alimentary routes of exposure. The chickens and ducks were more susceptible to the H5N1 HPAI virus, as evidenced by low infectious and lethal viral doses, when exposed by intranasal as compared to alimentary routes of inoculation (intragastric or oral-fed infected chicken meat). In the alimentary exposure pathogenesis study, pathologic changes included hemorrhage, necrosis, and inflammation in association with virus detection. These changes were generally observed in most of the visceral organs of chickens, between 2 and 4 days postinoculation (DPI), and are similar to lesions and virus localization seen in birds in natural cases or in experimental studies using the intranasal route. Alimentary exposure to the virus caused systemic infection in the ducks, characterized by moderate lymphocytic encephalitis, necrotized hepatitis, and pancreatitis with a corresponding demonstration of virus within the lesions. In both chickens and ducks with alimentary exposure, lesions, virus, or both were first demonstrated in the upper alimentary tract on 1 DPI, suggesting that the alimentary tract was the initial site affected upon consumption of infected meat or on gavage of virus in liquid medium. However, as demonstrated in the infectivity study in chickens, alimentary infection required higher exposure doses to produce infection as compared to intranasal exposure in chickens. These data suggest that upper respiratory exposure to H5N1 HPAI virus in birds is more likely to result in virus infection and transmission than will consumption of infected meat, unless the latter contains high doses of virus, as found in cannibalized infected carcasses.  相似文献   

15.
The disease syndromes caused by avian influenza viruses are highly variable depending on the host species infected, its susceptibility and response to infection and the virulence of the infecting viral strain. Although avian influenza viruses have a broad host range in general, it is rare for an individual strain or subtype to infect more than one species. The H5N1 highly pathogenic avian influenza virus (HPAIV) lineages of viruses that descended from A/goose/Guandong/96 (H5N1 HPAIV) are unusual in the diversity of species they have infected worldwide. Although the species affected by H5N1 HPAI in the field and those that have been experimentally studied are diverse, their associated disease syndromes are remarkably similar across species. In some species, multi-organ failure and death are rapid and no signs of the disease are observed. Most prominently in this category are chickens and other avian species of the order Galliformes. In other species, neurologic signs develop resulting in the death of the host. This is what has been reported in domestic cats (Carnivora), geese (Anseriformes), ratites (Struthioniformes), pigeons inoculated with high doses (Columbiformes) and ducks infected with H5N1 HPAIV isolated since 2002 (Anseriformes). In some other species, the disease is more prolonged and although multi-organ failure and death are the eventual outcomes, the signs of disease are more extensive. Predominantly, these species include humans (Primates) and the laboratory models of human disease, the ferret (Carnivora), mouse (Rodentia) and cynamologous macaques (Primates). Finally, some species are more resistant to infection with H5N1 HPAIV and show few or no signs of disease. These species include pigeons in some studies (Columbiformes), ducks inoculated with pre-2002 isolates (Anseriformes), and pigs (Artiodactyla).  相似文献   

16.
In early 2006, the highly pathogenic avian influenza virus (HPAIV) H5N1 of the Asian lineage caused the death of wild aquatic birds in Northern Germany. In the mainly affected areas, a trans-species transmission of HPAIV H5N1 to mammals occurred between birds and domestic cats and 1 Stone Marten (Martes foina), respectively. Here, we report lesions and distribution of influenza virus antigen in 3 cats infected naturally with HPAIV H5N1 A/swan/Germany/R65/06. The hemagglutinin partial nucleotide sequences of the viruses were genetically closely related to a H5N1 HPAIV obtained from a dead Whooper Swan (Cygnus cygnus) of the same area. At necropsy, within the patchy dark-red and consolidated lungs, there was granulomatous pneumonia caused by Aelurostrongylus sp. Histologically, the main findings associated with influenza in all cats were bronchointerstitial pneumonia and marked random hepatic necrosis. In addition, all animals displayed lymphoid necrosis in the spleen and Peyer's patches and necrosis of the adrenal cortex. Immunohistochemically, nucleoprotein of HPAIV was present intralesionally in the lungs, liver, adrenal glands, and lymphoid tissues. Oropharyngeal swabs were shown to be suited to detect HPAIV by quantitative real-time polymerase chain reaction (RT-PCR) in these cats, despite the paucity of influenza virus antigen in the upper respiratory tract by means of immunohistochemistry. The results show that outdoor cats in areas affected by HPAIV in wild birds are at risk for lethal infection. In conclusion, hepatic necrosis was, besides bronchointerstitial pneumonia, the primary lesion, suggesting that in naturally infected cats, damage to the liver plays an important role in the pathogenesis of H5N1 influenza.  相似文献   

17.
Natural and experimental infections have shown that cats are susceptible to highly pathogenic avian influenza A virus subtype H5N1 (HPAIV H5N1). Cats can be severely affected and die from the disease, but subclinical infections have also been reported. To learn more about the role of cats in the spread of the virus and about the risk posed to cats, the prevalence of H5N1 virus was examined in 171 cats from areas in Germany and Austria in which birds infected with HPAIV H5N1 had been found. Pharyngeal swabs were examined for H5N1 virus using real-time polymerase chain reaction, and serum samples were tested for antibodies to influenza virus. None of the cats showed evidence of infection with H5N1 virus. Prevalence of H5N1 virus was determined to be <1.8% (95% confidence interval (CI): 0.000000-0.017366); prevalence of antibodies was <2.6% (95% CI: 0.000000-0.025068).  相似文献   

18.
19.
Two low-pathogenicity (LP) and two high-pathogenicity (HP) avian influenza (AI) viruses were inoculated into chickens by the intranasal route to determine the presence of the AI virus in breast and thigh meat as well as any potential role that meat could fill as a transmission vehicle. The LPAI viruses caused localized virus infections in respiratory and gastrointestinal (GI) tracts. Virus was not detected in blood, bone marrow, or breast and thigh meat, and feeding breast and thigh meat from virus-infected birds did not transmit the virus. In contrast to the two LPAI viruses, A/chicken/Pennsylvania/1370/1983 (H5N2) HPAI virus caused respiratory and GI tract infections with systemic spread, and virus was detected in blood, bone marrow, and breast and thigh meat. Feeding breast or thigh meat from HPAI (H5N2) virus-infected chickens to other chickens did not transmit the infection. However, A/lchicken/Korea/ES/2003 (H5N1) HPAI virus produced high titers of virus in the breast meat, and feeding breast meat from these infected chickens to other chickens resulted in Al virus infection and death. Usage of either recombinant fowlpox vaccine with H5 AI gene insert or inactivated Al whole-virus vaccines prevented HPAI virus in breast meat. These data indicate that the potential for LPAI virus appearing in meat of infected chickens is negligible, while the potential for having HPAI virus in meat from infected chickens is high, but proper usage of vaccines can prevent HPAI virus from being present in meat.  相似文献   

20.
Two different wild duck species common in Chile and neighboring countries, Chiloe wigeon (Anas sibilatrix) and cinnamon teal (Anas cyanoptera), were intranasally inoculated with 10(6) mean embryo infective dose (EID50) of the H7N3 low pathogenicity (LP) avian influenza virus (AIV) (A/chicken/Chile/176822/02) or high pathogenicity (HP) AIV (A/chicken/Chile/ 184240-1/02), in order to study the infectivity and pathobiology of these viruses. None of the virus-inoculated ducks had clinical signs or died, but most seroconverted by 14 days postinoculation (DPI), indicating a productive virus infection. Both LPAIV and HPAIV were isolated from oral swabs from two of six Chiloe wigeons and from oral and/or cloacal swabs from all five of the cinnamon teal at 2 DPI. Both LPAIV and HPAIV were efficiently transmitted to cinnamon teal contacts but not to Chiloe wigeon contacts. This study demonstrates that the cinnamon teal and Chiloe wigeons were susceptible to infection with both Chilean H7N3 LPAIV and HPAIV, but only the cinnamon teal showed contact transmission of the virus between birds, suggesting that the cinnamon teal has the potential to be a reservoir for these viruses, especially the LPAIV, as was demonstrated in 2001 with isolation of a genetically related H7N3 LPAIV strain in a cinnamon teal in Bolivia. However, the definitive source of the H7N3 Chilean LPAIV still remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号