首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of stem density of tropical swards and age of cattle on their foraging behaviour were evaluated using artificial microswards, consisting of leaves of 20 cm in height and high tensile‐resisting stems of 25 cm in height of Panicum maximum. The treatments consisted of a factorial combination of four stem densities of swards (0, 100, 200 and 400 stems m?2) and two ages of cattle (1‐ and 3‐year‐old steers). There was a significant interaction between stem density of sward and age of cattle for bite area (BA), bite mass (BM) and instantaneous intake rate (IIR). Stem density had a significant negative effect on these variables describing ingestive behaviour which was particularly strong for older steers. In leaf‐only swards, mature cattle achieved a much greater BA (106·5 vs. 57·9 cm2), BM (0·88 vs. 0·47 g DM) and IIR (46·9 vs. 17·2 g DM min?1) than did young cattle. However, these variables were very similar across ages of cattle at the highest stem density of sward. These results show the importance of the high tensile‐resisting stems as deterrents of the grazing process in tropical pastures, particularly in older cattle.  相似文献   

2.
This study was conducted to determine the chemical composition and nutritive value of Prangos ferulacea, a plant found in the Mediterranean and Middle‐east regions, where it is used as animal fodder. Samples of mature plants were collected from S.E. Turkey. Metabolizable energy (ME) values were estimated from in vitro gas production measurements and from chemical composition. ME concentrations of the whole plant, leaves and stems were estimated to be 12·2, 11·9 and 12·7 MJ kg?1 dry matter (DM) respectively, which compares favourably with high‐quality forages commonly used in ruminant feeding. The DM degradability of the whole plant, leaves and stems increased up until 48 h of in situ incubation, 866, 915 and 784 g kg?1 DM respectively, but changed little between 48 and 72 h. In vitro DM and organic matter digestibility of the whole plant, leaves and stems were 0·769 and 0·806, 0·773 and 0·790, and 0·740 and 0·840 respectively. The results show that P. ferulacea may be regarded as a high‐energy forage, but further research is needed on its intake characteristics and the levels of animal performance that can be achieved from its inclusion in the diet.  相似文献   

3.
The effect of spreading mown perennial ryegrass (Lolium perenne) herbage over the total ground area on water loss during field-wilting was compared with leaving herbage in swaths (three swaths put together into one, occupying 0·18 of ground area) in three experiments. Spread crops were not tedded during wilting but were rowed up immediately before harvest. In all experiments, conventional silage-making equipment was used on a field scale. Feeding value was assessed with lactating dairy cows and growing heifers (Experiment 1) and sheep (Experiment 3). The periods of field wilting were 48 h (Experiment 1), 24 h (Experiment 2) and both 24 h and 48 h (Experiment 3). Spreading the crop was associated with larger increases in loss of water in all three experiments compared with leaving grass in swaths. Losses of dry matter (DM) during wilting were similar in Experiment 2 but were higher for the swathed crop wilted for 48 h than for 24 h in Experiment 3. Spreading resulted in restricted fermentations associated with higher crop DM contents at ensiling. In Experiment 1 the concentrations of DM, ash and water-soluble carbohydrate in silage were higher (P < 0·001) for spreading the crop and the concentrations of crude protein and neutral-detergent fibre were lower (P < 0·05) than for swathed material. In Experiment 3, spreading was associated with higher concentrations of water-soluble carbohydrates and ethanol and lower concentrations of fermentation acids, ammonia-N and neutralizing value in silage. Voluntary DM intake of silage by dairy cows and heifers was higher for spread than for swathed material (P < 0·05), but in Experiment 3 (sheep) there were no significant differences between treatments in voluntary intake of DM. The increased intake by dairy cows of silage from spread herbage was reflected in increased concentrations of milk fat (P < 0·01) and protein (P < 0·05) but not in milk yield (P > 0·05). It is concluded that spreading herbage during field wilting prior to ensiling accelerates water loss and has the potential to improve the feeding value of the ensiled product.  相似文献   

4.
Plots of five intermediate‐heading varieties of perennial ryegrass (Lolium perenne L.) [AberDove, Belramo and Glen (diploid); Twins (tetraploid); and AberExcel (tetraploid hybrid)] were continuously stocked with sheep to maintain a target sward surface height of 40–50 mm. Daily dry matter (DM) intake was significantly different (F‐value = 0·032) between the varieties, with the tetraploid hybrid AberExcel having the highest values for daily DM intake and intake rate during eating. Amongst the diploid varieties, intake rate tended to be higher for sheep grazing Glen. The varieties comprised a wide range in potential growth habit, from the relatively prostrate, highly tillered Glen to the more‐erect AberExcel and there were differences between them in the vertical distribution of leaves within the sward canopy. The leaves of AberExcel weighed 3·6 mg DM cm?2 leaf area in contrast to the other varieties (4·3–5·3 mg DM cm?2 leaf area) resulting in a high leaf area index (LAI) in relation to the green leaf mass. Intake rate was not significantly correlated with extended tiller and sheath tube lengths, partition of herbage mass, number of tillers per square metre or LAI. However, canonical variates analysis showed that there were significant differences between the varieties for the morphological and chemical factors examined. Other factors also need to be explored to explain these differences in ingestive behaviour in order to identify plant traits that are correlated with herbage intake rate. These are needed for varieties destined for grazing use, both during the breeding programme and their subsequent evaluation.  相似文献   

5.
The intake of forage grasses by grazing ruminants is closely related to the mechanical fracture properties of grasses. The relationship between the tensile fracture properties of grasses and foraging behaviour is of particular importance in tropical reproductive swards composed of both stems and leaves. This study (i) quantified and compared the tensile fracture properties of stems and leaves of seven tropical grass species and (ii) provided insight into the underlying plant traits that explain differences in fracture properties between species. Fracture force, tensile strength, fracture energy and toughness of stems (in various phenological stages) and leaves were measured and compared among five introduced tropical grasses (Cenchrus ciliaris, Chloris gayana, Digitaria milanjiana, Megathyrsus maximus (syn. Panicum maximum), Setaria sphacelata) and two native tropical grasses (Setaria surgens and Dichanthium sericeum). Species differed significantly in fracture force and fracture energy, with stems and leaves of C. ciliaris and S. surgens requiring less force and energy to fracture and stems and leaves of M. maximus and S. sphacelata requiring more force and energy to fracture in comparison with the other species. Differences in tensile strength and toughness were less pronounced. The differences among species in fracture force and energy mainly resulted from differences in cross‐sectional area of plant parts rather than from differences in tensile strength and toughness.  相似文献   

6.
First and second harvests of lucerne (Medicago sativa L.), perennial ryegrass (Lolium perenne L.) and a lucerne–perennial ryegrass mixture [80 or 144 g kg?1 dry matter (DM) of ryegrass] at the first and second harvests were cut and conditioned, wilted to 500 or 700 g DM kg?1 then baled and stretch‐wrapped for silage on the same dates. Lucerne bales were denser (411 kg m?3) than bales of perennial ryegrass (331 kg m?3) (P < 0·05). After an 8‐month storage period, silage made from high DM‐content forage had a higher concentration of neutral‐detergent fibre (NDF) and was less digestible than that made from low DM‐content forage. Daily DM intakes by beef steers, when the silages of the second harvest were fed ad libitum, were 31·2, 31·2 and 22·3 g kg?1 live weight for lucerne, lucerne–perennial ryegrass mixture and perennial ryegrass silages, respectively (P < 0·01), when the herbage had been wilted to 500 g kg?1. In vivo digestibility of NDF in the lucerne–perennial ryegrass mixture silage (0·587) was significantly lower than that of perennial ryegrass silage (0·763) but higher than lucerne silage (0·518). Higher intakes of baled lucerne silage tended to offset its lower digestibility values. Lucerne–perennial ryegrass mixture silage had a higher DM and NDF digestibility than lucerne silage, indicating perhaps the presence of associative effects.  相似文献   

7.
The selection and feeding of perennial ryegrass (Lolium perenne L.) varieties (PRV) or perennial grass species (PGS) may affect enteric methane (CH4) output because of changes in the fermentation dynamics in the rumen as a result of differences in herbage chemical composition. The objective of this study was to determine the effects of PRV and PGS harvested throughout the growing season on herbage chemical composition, and in vitro rumen fermentation variables and CH4 output per unit of feed using a batch culture technique. Seven PRV (Experiment 1: Alto, Arrow, Bealey, Dunluce, Greengold, Malone, Tyrella) and six perennial grasses [Experiment 2: perennial ryegrass (Navan), perennial ryegrass (Portstewart), cocksfoot, meadow fescue, tall fescue, timothy; defined as PGS], managed under a simulated grazing regime, were incubated for 24 h with buffered rumen fluid in two separate experiments. The CH4 output per unit of feed dry‐matter (DM) incubated was not affected (P > 0·05) by PRV (range of mean values across PRV of 23·9–25·3 (SEM 0·41) mL g?1 DM) or by PGS (25·6–26·6 (SEM 0·37) mL g?1 DM). The CH4 output per unit feed DM disappearing during the in vitro rumen incubation was not affected by PRV (33·9–35·1 (SEM 0·70) mL g?1 DM), and although there was an overall PGS effect (P < 0·05; 37·2–40·3 (SEM 0·71) mL g?1 DM), none of the paired contrasts between PGS were significant when analysed using Tukey adjusted comparisons. This outcome reflected either small‐scale or a lack of treatment effects on individual herbage chemical composition (e.g. 454–483 g NDF kg?1 DM, 215–224 g CP kg?1 DM and 94–122 g water‐soluble carbohydrate (WSC) kg?1 DM across PRV; 452–506 g NDF kg?1 DM, 208–243 g CP kg?1 DM and 73–131 g WSC kg?1 DM across PGS) and in vitro rumen fermentation variables. Hence, these results provide no encouragement that choices among the grasses examined, produced within the management regimes operated, would reduce enteric CH4 output per unit of feed in vivo. However, the technique utilized did not take account of animal × PRV or PGS interactions, such as potential differences in intake between animals, that may occur under farm conditions.  相似文献   

8.
Silvopastoral systems in the Appalachian region of the USA could increase the carrying capacity of livestock and contribute to a reliable supply of high‐quality herbage. In 2000, 2001 and 2002, the influence of solar radiation [0·20, 0·50 or 0·80 of maximum solar radiation (MSR); treatments 20‐, 50‐ and 80‐MSR respectively] on the productivity and nutritive value of a mixture of sown grasses and legumes established under a mature stand of conifers was investigated. Yields of dry matter (DM), crude protein (CP), total non‐structural carbohydrates (TNC) and total digestible nutrients (TDN) were greater for the 80‐MSR treatment except in 2000 when DM yield did not differ. As a proportion of the sward, introduced species (Dactylis glomerata L., Trifolium repens L., and Lolium perenne L.) increased over time for the MSR‐80 treatment, corresponding with a decrease in the proportion of bare area and of non‐introduced species. CP concentration of herbage was 207 g kg?1 DM or greater across treatments and years with higher concentrations on the 20‐ and 50‐MSR treatments. Herbage from the 80‐MSR treatment had a greater concentration of TNC than that of the 20‐ and 50‐MSR treatments. Estimated concentration of TDN was similar for all treatments in 2000 and greater for the 80‐MSR treatment than the other two treatments in 2001 and 2002. High CP concentrations in herbage, as a result of appropriate thinning of trees in an Appalachian silvopastoral systems, could be utilized as a protein supplement to herbage with low CP and higher fibre concentrations.  相似文献   

9.
Four intermediate‐heading perennial ryegrass (Lolium perenne L.) varieties, which in previous studies had been associated with high‐ or low‐intake characteristics when swards containing them had been continuously stocked with sheep, were sown as monocultures. They were rotationally grazed, using 1‐d paddocks, with core groups of four yearling Simmental × Holstein beef heifers in 2002 and 2003 and ingestive and ruminative behaviour, and sward factors, were measured. There were two diploid (Belramo and Glen) and one tetraploid (Rosalin) perennial ryegrass varieties and one tetraploid hybrid (Lolium × boucheanum Kunth) (AberExcel) variety. Intake rate (IR) was significantly higher in August 2003 for heifers grazing Glen than those grazing Belramo [27·5 vs. 20·6 g dry matter (DM) min?1; P = 0·019], but there were no significant differences between varieties in two other measurement periods. This is in contrast to previous results with sheep when IR were significantly higher for Glen than Belramo and for AberExcel than Rosalin. Total jaw movement rates during grazing were significantly higher for heifers on the tetraploid swards than those on the diploid swards (87·7 vs. 83·6 jaw movements min?1; P = 0·023) in September 2002. Ruminating time was significantly lower for heifers on the tetraploid swards than those on the diploid swards (453 vs. 519 min 24 h?1; P = 0·012) in July 2002. Digestibility of grass snips was significantly higher on the tetraploid than the diploid swards [697 vs. 680 g digestible organic matter (DOM) kg?1 DM; P = 0·042] in September 2003 and, within diploids, was significantly higher for Glen than Belramo (696 vs. 663 g DOM kg?1 DM; P = 0·014). There were significant differences in sheath tube and leaf lengths and in the population density of tillers between and within ploidies, which might have been expected to have influenced intake characteristics, but this was not generally found under rotational grazing with cattle. In order to separate the effects of defoliation interval from those of grazing style of the different ruminant species, it is suggested that grass variety evaluations using continuously stocked cattle swards are required.  相似文献   

10.
Regrowth of 3- and 4-month old (‘young’ and ‘old’ respectively) sheep's burnet [Sanguisorba minor ssp. muricata (Spach) Briq.] was studied under limiting and non-limiting moisture conditions in a glasshouse. Moisture deficits were imposed by using a single cycle of withholding moisture until first wilting. Plants of each age were defoliated severely at three levels which represented approximately 80–100% canopy removal. These levels were based on the proportion retained of the eight most mature leaves on each plant and were referred to as complete [0% residual leaf area (rLA)] and partial [50% rLA (four leaves) and 100% rLA (eight leaves)] defoliation. Vegetative growth and total non-structural carbohydrate (TNC) levels were studied. Leaf number (0-8 leaves), area (0-115 cm2) and dry weight (0-1·0 g) differed (P < 0·05) between defoliation intensities at the start of regrowth, while stubble (1·2 g) and root (12.·6 g) dry weights were similar. Soluble sugars [< 6% dry matter (DM)] and starch (< 1% DM) occurred in leaf, stubble and root. Old plants were morphologically and physiologically more developed than young plants. For example, stubble (2·0 g) and root (21·5 g) dry weights of old plants were greater (P < 0·05) than those of young plants (04 and 3·7 g respectively). Defoliation intensity had a major effect on regrowth, with completely defoliated plants at the final harvest having leaf numbers (forty-nine leaves) and areas (235 cm2) almost twice those of partially defoliated plants. Stubble soluble sugar levels (38% DM) were lower than those of partially defoliated plants (5·5% DM), and it was suggested that these contributed to regrowth. Moisture regime had a negligible influence on plant growth. However, plants in the dry regime had soluble sugar levels 1·4 (stubble) -1·7 (roots) times higher than those watered adequately, which suggested that plants adjusted to the water depletion. The effects of plant age on regrowth were similar for most characters, but the larger and physiologically more mature old plants would probably be more tolerant of successive defoliations.  相似文献   

11.
The mechanisms that terminate meals of cattle grazing lucerne (Medicago sativa L.) are not well defined. Sub-acute bloat may lead to cessation of grazing and, consequently, surface active substances used in the treatment and prevention of bloat, such as poloxalene, may extend grazing meals and increase herbage intake. Twelve mature Angus cows (Bos taurus) were offered 0, 12·5 and 25·0 g poloxalene in 0·5 kg of crushed maize (Zea mays L.) kernels each day, immediately before two consecutive 1-h measured parts of a grazing meal on 21- to 24-day-old lucerne swards with a herbage dry matter (DM) mass (> 5 cm) of 2·03 t ha?1 and herbage DM mass allowance of 3·55 kg hd?1h?1. Total herbage DM intake was 2·52 kg hd?1 during the first hour and 1·54 kg hd?1 during the second hour of the 2-h grazing meal. Differences in herbage intake were attributable to a cessation of grazing. Mean rates of biting were 26·3 and 14·8 bites min?1 and mean DM intakes per bite were 1·82 and 4·38 g during the first and second part of meals, respectively. Poloxalene treatments caused a small linear decline in grazing time during the first part of meals and a larger increase in grazing time during the second part of meals. Lower rates of DM intake caused by poloxalene were offset by increases in grazing time. It was concluded that poloxalene moderated ingestive behaviour within grazing meals of immature lucerne and this response may have been at least partly due to the relief of sub-acute bloat.  相似文献   

12.
The selection by sheep (six Coopworth ewe hoggets, 44·3 ± 4·6 kg live weight) and goats (six Saanen/Anglo‐Nubian yearling males, 38·1 ± 3·8 kg live weight) for perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and for sward height was measured in two experiments involving paired turves. Pairs of turves with herbage of differing height and of either the same or different plant species were offered. One sward (fixed height species, FHS) was always offered at 130 mm and the other (variable height species, VHS) at 130, 90 or 50 mm. Turves (450 mm × 220 mm) were cut to a soil depth of 100–150 mm from areas of perennial ryegrass and white clover regrown to the desired height after previously being cut to 30 mm. Each turf in a pair was weighed (±1 g) before and after grazing by penned animals maintained on a barley‐based pelleted diet. The number of prehending bites taken from each turf was recorded over a grazing period (128 ± 12 s). Bite mass, bite rate and intake rate were calculated. As the sward height of the VHS turf declined, an increasing proportion of the diet was selected from the 130 mm turf. When averaged over all height contrasts, both animal species selected a higher proportion (0·776 ± 0·026) of their diet from 130‐mm white clover than from 130‐mm perennial ryegrass (0·591 ± 0·018) turves. On average, goats selected a higher proportion (0·721 ± 0·022) of their dry‐matter (DM) intake from the 130‐mm turf than sheep (0·646 ± 0·019), but the effect was not consistent. In contrasts with perennial ryegrass as the VHS (and both perennial ryegrass and white clover as FHS), the proportion of the diet selected from the 130‐mm turf was very similar for both animal species. However, with white clover as the VHS (and both perennial ryegrass and white clover as FHS), goats selected a higher proportion of their intake from the 130‐mm turf to the extent that in the 130‐mm perennial ryegrass/50‐mm white clover contrast sheep showed as strong selection for 50‐mm white clover as goats did for 130‐mm perennial ryegrass. This lesser selection of goats for white clover as its height in a sward declines is likely to contribute to the higher white clover content observed in swards grazed by goats. Bite mass was greater on white clover (246 ± 5 mg DM bite–1) than on perennial ryegrass (173 ± 5 mg DM bite–1) and was greater for goats (255 ± 6 mg DM bite–1) than for sheep (195 ± 5 mg DM bite–1). Bite rate was greater on perennial ryegrass (45·9 ± 1·0 bites min–1) than on white clover (39·9 ± 1·0 bites min–1) and was greater for sheep (45·5 ± 1·1 bites min–1) than for goats (42·5 ± 1·1 bites min–1). Apparent intake rate by both sheep and goats was lower (mean, 5·0 ± 0·29 g DM min–1) on 130 mm perennial ryegrass/white clover than on 130 mm perennial ryegrass/perennial ryegrass (7·0 ± 0·27 g DM min–1), but was higher (9·62 ± 0·29 g DM min–1) on 130‐mm white clover/perennial ryegrass than on 130‐mm white clover/white clover (8·2 ± 0·29 g DM min–1) combinations.  相似文献   

13.
A field study was undertaken between April 2003 and May 2004 in southern Tasmania, Australia to quantify and compare changes in herbage productivity and water‐soluble carbohydrate (WSC) concentration of perennial ryegrass (Lolium perenne L.), prairie grass (Bromus willdenowii Kunth.) and cocksfoot (Dactylis glomerata L.) under a defoliation regime based on leaf regrowth stage. Defoliation interval was based on the time taken for two, three or four leaves per tiller to fully expand. Dry‐matter (DM) production and botanical composition were measured at every defoliation event; plant density, DM production per tiller, tiller numbers per plant and WSC concentration were measured bimonthly; and tiller initiation and death rates were monitored every 3 weeks. Species and defoliation interval had a significant effect (P < 0·05) on seasonal DM production. Prairie grass produced significantly more (P < 0·001) DM than cocksfoot and ryegrass (5·7 vs. 4·1 and 4·3 t DM ha?1 respectively). Plants defoliated at the two‐leaf stage of regrowth produced significantly less DM than plants defoliated at the three‐ and four‐leaf stages, irrespective of species. Defoliation interval had no effect on plant persistence of any species during the first year of establishment, as measured by plant density and tiller number. However, more frequent defoliation was detrimental to the productivity of all species, most likely because of decreased WSC reserves. Results from this study confirmed that to maximize rates of regrowth, the recommended defoliation interval for prairie grass and cocksfoot is the four‐leaf stage, and for perennial ryegrass between the two and three‐leaf stages.  相似文献   

14.
The effects of defoliation upon root and shoot systems of prairie grass (Bromus catharticus Vahl) were examined in both field and pot studies. The varieties used were 78–32 (HY), a high-yielding variety; 79–42 (LY), a low-yielding variety; and the commercial variety Grasslands Matua. In the field, the presence of roots in early and late spring was estimated by measuring uptake of [32P]phosphate by roots; herbage yields and tiller numbers were recorded. In a pot study, root and shoot dry-matter (DM) yields were analysed. In the field, roots were detected to a depth of 1·2 m. After defoliation to a height of 0·1 m, root presence decreased more than 50% at depths of 0·6 m for LY and 1·0 m for Matua in early spring and at several depths for each variety in late spring. After a second defoliation, the apparent growth rate of shoots decreased by 35% in relation to the first regrowth period. In pots, shoot DM and root DM of control plants (undefoliated) had the following allometric relationship of the form: In (shoot DM) = 0·61 + 1·14 ln (root DM) (r2= 0·81). After defoliation, compared with undefoliated controls, the relative growth rate of shoots and total herbage yields were higher, but root and stubble DM were lower in all three varieties. Pooled root DM means were 10·3 and 6·8 g plant?1 and pooled stubble DM means were 12·7 and 7·6 g plant?1 for control and defoliated plants respectively. HY produced heavier tillers than LY, pooled means being 0·94 and 0·53 g DM tiller?1 (field study) and 3·44 and 2·05 g DM tiller?1 (pot study) for HY and LY respectively. HY had 5–6 green leaves per tiller, whereas LY had 3–4. Developed green leaves were heavier in HY (58 g m?2) than in LY (48 g m?2). It is suggested that differences in both leaf parameters may be related to higher herbage yields for HY than LY.  相似文献   

15.
The aims of the experiment were to (i) test whether the higher leaf elongation rate per tiller (LERT) of Bromus stamineus D. than Lolium perenne L. at moderately low temperatures was maintained at high defoliation frequencies and (ii) explore responses in tiller dynamics during the onset of the cool season in the south‐east of the humid Pampas region in Argentina. The following treatments were applied: defoliation frequency at the 3·0‐leaf stage (i.e. one‐leaf lifespan), which is considered optimal, and higher defoliation frequency at the 1·5‐leaf stage (i.e. half‐of‐a‐leaf lifespan). The higher defoliation frequency reduced leaf elongation rate in both the species but it did not affect the leaf appearance rate. This confirms previous studies on several C3 grasses, suggesting a similar pattern of response. Changes in tiller size are proposed as a possible mechanism to explain such long‐term defoliation effects on leaf elongation rates. Responses in tiller production depended on the species considered. The higher defoliation frequency caused a reduction in site‐filling which led to lower tiller production rates in L. perenne but not in B. stamineus. Thus, B. stamineus maintained the advantage in LERT over L. perenne and its tiller production was not affected when defoliated at frequencies higher than those considered optimal.  相似文献   

16.
Eight multiparous Holstein–Friesian dairy cows in late lactation were used to investigate the potential of using perennial ryegrass with a high concentration of water‐soluble carbohydrate (WSC) to increase the efficiency of milk production. After a pretreatment period on a common pasture, the cows were each given ad libitum access to one of two varieties of zero‐grazed grass continuously for 3 weeks. Treatments were: high sugar (HS), an experimental perennial ryegrass variety bred to contain high concentrations of WSC; or control, a standard variety of perennial ryegrass (cv. AberElan) containing typical concentrations of WSC. The two grass varieties were matched in terms of heading date. All animals also received 4 kg day–1 standard dairy concentrate. Grass dry matter (DM) intake was not significantly different between treatments (11·6 vs. 10·7 kg DM day–1; s.e.d. 0·95 for HS and control diets respectively), although DM digestibility was higher on the HS diet (0·71 vs. 0·64 g g–1 DM; s.e.d. 0·23; P < 0·01) leading to higher digestible DM intakes for that diet. Milk yield from animals offered the HS diet was higher (15·3 vs. 12·6 kg day–1; s.e.d. 0·87; P < 0·05) and, although milk constituent concentrations were unaffected by treatment, milk protein yields were significantly increased on the HS diet. The partitioning of feed N was significantly affected by diet, with more N from the HS diet being used for milk production (0·30 vs. 0·23 g milk N g–1 feed N; s.e.d. 0·012; P < 0·01) and less being excreted in urine (0·25 vs. 0·35; s.e.d. 0·020; P < 0·01). In a separate experiment, using the same grasses harvested earlier in the season, the fractional rate of DM degradation, measured by in situ and gas production techniques, was higher for the HS grass than for the control. It is concluded that increased digestible DM intakes of the HS grass led to increased milk yields, whereas increased efficiency of utilization of the HS grass in the rumen resulted in the more efficient use of feed N for milk production and reduced N excretion.  相似文献   

17.
The grazing behaviour by sheep, after the loss of the temporary incisors and before their replacement with the permanent incisors, was compared with that after the first pair of permanent incisors had completely developed in grazing experiments, conducted from June to September 2001, with three Suffolk castrated male sheep, born in late‐March 2000. A new method was developed to investigate bite mass and bite force, using hand‐constructed swards, which were composed of groups of four (4L), eight (8L), twelve (12L), sixteen (16L) and twenty (20L) leaves of cocksfoot (Dactylis glomerata) arranged 15 cm apart. Each group of leaves was attached to a separate three‐directional load cell. The period of time between loss of temporary incisors and the complete eruption of permanent incisors was c. 1 month. The number of bites per group of leaves increased with increasing leaf density. The number of bites per group of leaves was higher after the loss of temporary incisors than with the permanent incisors. The number of leaves per bite and dry‐matter (DM) intake per bite were almost twice as great with permanent incisors than after the loss of temporary incisors; DM intakes per bite force were 3·9–4·9 mg N?1 and 1·7–2·6 mg N?1 respectively. After the loss of temporary incisors, the proportion of forward‐direction forces accounted for 0·805 of the forces in the 4L treatment and 0·155–0·317 of the forces in the 8L–20L treatments. In contrast, the proportion of forward‐direction forces accounted for only 0·292 in the 4L treatment and 0·026–0·163 in the 8L–20L treatments with permanent incisors. The angles of bite forces were almost the same (54·7–56·3°) when sheep used a forward direction, and were 51·3–57·3° when sheep used a backward direction.  相似文献   

18.
Three silages were prepared from perennial ryegrass; unwilted without additive (UW), unwilted treated with 3·5 litres commercial (85%) formic acid (UWA) and prewilted without additive (WN) with dry matter (DM) concentrations of 189, 209 and 328 g kg−1 respectively. The three silages were offered ad libitum in a 348-d feeding experiment to three groups of eight Belgian white-blue bulls with an initial live weight (LW) of 277 kg. The concentrate (47 g digestible crude protein (CP) kg−1) supplementation was 7·5 g (kg LW)−1. Acid treatment (UWA) slightly improved digestibility of all silage nutrients except CP, whereas wilting generally slightly decreased digestibility of the nutrients except DM and ether extract. The daily LW gain averaged 912 g and was not significantly different on the three different treatments. DM intake per (kg LW)0.75 was higher with the UWA silage, 69·3 g, and with the WN silage, 71·6 g, than with the UW silage, 65·8 g. However, this difference in DM intake was not reflected in either daily LW or carcase gain. The DM of UW silage was more efficiently utilized than DM of UWA or WN silage.  相似文献   

19.
A field experiment was undertaken between April 2003 and May 2004 in southern Tasmania, Australia, to quantify and compare changes in the nutritive value of perennial ryegrass (Lolium perenne L.), prairie grass (Bromus willdenowii Kunth.) and cocksfoot (Dactylis glomerata L.) under a defoliation regime based on stage of leaf regrowth. Defoliation interval was based on the time taken for two, three or four leaves per tiller to fully expand. At every defoliation event, samples were collected and analysed for acid‐detergent fibre (ADF), neutral‐detergent fibre (NDF) and total nitrogen (N) concentrations and to estimate metabolizable energy (ME) and digestible dry matter (DDM) concentrations. Amounts of crude protein (CP) and metabolizable energy (MJ) per hectare values were subsequently calculated. There was a significantly lower (P < 0·001) NDF concentration for perennial ryegrass compared with prairie grass and cocksfoot, and a significantly lower (P < 0·001) ADF concentration for cocksfoot compared with prairie grass and perennial ryegrass, regardless of defoliation interval. The CP concentration of cocksfoot was significantly greater (P < 0·001) compared with the CP concentrations of prairie grass and perennial ryegrass. The estimated ME concentrations in cocksfoot were high enough to satisfy the requirements of a lactating dairy cow, with defoliation at or before the four‐leaf stage maintaining ME concentrations between 10·7 and 10·9 MJ kg?1 DM, and minimizing reproductive plant development. The ME concentrations of prairie grass (10·2–10·4 MJ kg?1 DM) were significantly lower (P < 0·001) than for cocksfoot (as above) and perennial ryegrass (11·4–11·6 MJ kg?1 DM) but a higher DM production per hectare resulted in prairie grass providing the greatest amounts of ME ha?1.  相似文献   

20.
A rare stay‐green allele transferred from meadow fescue (Festuca pratensis L.) to perennial ryegrass (Lolium perenne L.) has improved both the colour of turf and the nutritive value of herbage. In this study its effect on shoot density and forage yield was assessed. Equivalent populations of perennial ryegrass were constructed with and without the stay‐green allele, following eight generations of backcrossing to perennial ryegrass. The stay‐green population, the normal population and the cv. AberStar were compared over two harvest years (2005 and 2006) in a field experiment with six application rates of N fertilizer (100, 200, 300, 400, 500 and 600 kg ha?1 annually). There were no significant interactions between level of N fertilizer and population in any of the traits measured. The mean annual dry‐matter (DM) yield over all populations and fertilizer levels was 6·45 t ha?1 lower in the second harvest year. Mean annual DM yields over all fertilizer levels of the normal population were higher than, or equal to, AberStar while those of the stay‐green population were significantly (proportionately 0·10–0·13) lower than the normal population. In 2005, the mean total yield of N in the herbage of the stay‐green population was 0·09 lower than that of the normal population and the mean concentration of N over all harvests was 1·5 g kg?1 DM higher. The shoot density of the stay‐green population after the last harvest in November 2006 was 0·18 lower than that of the normal population (3689 and 4478 shoots m?2 respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号