首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate the effect of intermittent oral administration of ponazuril on immunoconversion against Sarcocystis neurona in horses inoculated intragastrically with S neurona sporocysts. ANIMALS: 20 healthy horses that were seronegative for S neurona-specific IgG. PROCEDURES: 5 control horses were neither inoculated with sporocysts nor treated. Other horses (5 horses/group) each received 612,500 S neurona sporocysts via nasogastric tube (day 0) and were not treated or were administered ponazuril (20 mg/kg, PO) every 7 days (beginning on day 5) or every 14 days (beginning on day 12) for 12 weeks. Blood and CSF samples were collected on day - 1 and then every 14 days after challenge for western blot assessment of immunoconversion. Clinical signs of equine protozoal myeloencephalitis (EPM) were monitored, and tissues were examined histologically after euthanasia. Results: Sera from all challenged horses yielded positive western blot results within 56 days. Immunoconversion in CSF was detected in only 2 of 5 horses that were treated weekly; all other challenged horses immunoconverted within 84 days. Weekly administration of ponazuril significantly reduced the antibody response against the S neurona 17-kd antigen in CSF. Neurologic signs consistent with EPM did not develop in any group; likewise, histologic examination of CNS tissue did not reveal protozoa or consistent degenerative or inflammatory changes. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of ponazuril every 7 days, but not every 14 days, significantly decreased intrathecal anti-S neurona antibody responses in horses inoculated with S neurona sporocysts. Protocols involving intermittent administration of ponazuril may have application in prevention of EPM.  相似文献   

2.
Neurologic disease in horses caused by Sarcocystis neurona is difficult to diagnose, treat, or prevent, due to the lack of knowledge about the pathogenesis of the disease. This in turn is confounded by the lack of a reliable equine model of equine protozoal myeloencephalitis (EPM). Epidemiologic studies have implicated stress as a risk factor for this disease, thus, the role of transport stress was evaluated for incorporation into an equine model for EPM. Sporocysts from feral opossums were bioassayed in interferon-gamma gene knockout (KO) mice to determine minimum number of viable S. neurona sporocysts in the inoculum. A minimum of 80,000 viable S. neurona sporocysts were fed to each of the nine horses. A total of 12 S. neurona antibody negative horses were divided into four groups (1-4). Three horses (group 1) were fed sporocysts on the day of arrival at the study site, three horses were fed sporocysts 14 days after acclimatization (group 2), three horses were given sporocysts and dexamethasone 14 days after acclimatization (group 3) and three horses were controls (group 4). All horses fed sporocysts in the study developed antibodies to S. neurona in serum and cerebrospinal fluid (CSF) and developed clinical signs of neurologic disease. The most severe clinical signs were in horses in group 1 subjected to transport stress. The least severe neurologic signs were in horses treated with dexamethasone (group 3). Clinical signs improved in four horses from two treatment groups by the time of euthanasia (group 1, day 44; group 3, day 47). Post-mortem examinations, and tissues that were collected for light microscopy, immunohistochemistry, tissue cultures, and bioassay in KO mice, revealed no direct evidence of S. neurona infection. However, there were lesions compatible with S. neurona infection in horses. The results of this investigation suggest that stress can play a role in the pathogenesis of EPM. There is also evidence to suggest that horses in nature may clear the organism routinely, which may explain the relatively high number of normal horses with CSF antibodies to S. neurona compared to the prevalence of EPM.  相似文献   

3.
Equine protozoal myeloencephalitis (EPM) is a serious neurologic disease of horses caused primarily by the protozoal parasite Sarcocystis neurona. Currently available antemortem diagnostic testing has low specificity. The hypothesis of this study was that serum and cerebrospinal fluid (CSF) of horses experimentally challenged with S neurona would have an increased S neurona-specific IgM (Sn-IgM) concentration after infection, as determined by an IgM capture enzyme linked immunoassay (ELISA). The ELISA was based on the S neurona low molecular weight protein SNUCD-1 antigen and the monoclonal antibody 2G5 labeled with horseradish peroxidase. The test was evaluated using serum and CSF from 12 horses experimentally infected with 1.5 million S neurona sporocysts and 16 horses experimentally infected with varying doses (100 to 100,000) of S neurona sporocysts, for which results of histopathologic examination of the central nervous system were available. For horses challenged with 1.5 million sporocysts, there was a significant increase in serum Sn-IgM concentrations compared with values before infection at weeks 2-6 after inoculation (P < .0001). For horses inoculated with lower doses of S neurona, there were significant increases in serum Sn-IgM concentration at various points in time after inoculation, depending on the challenge dose (P < .01). In addition, there was a significant increase between the CSF Sn-IgM concentrations before and after inoculation (P < .0001). These results support further evaluation of the assay as a diagnostic test during the acute phase of EPM.  相似文献   

4.
A vaccine against Sarcocystis neurona, which induces equine protozoal myeloencephalitis (EPM), has received conditional licensure in the United States. A major concern is whether the immunoglobulin G (IgG) response elicited by the vaccine will compromise the use of Western blotting (WB) as a diagnostic tool in vaccinated horses with neurologic disease. Our goals were to determine if vaccination (1) causes seroconversion: (2) causes at least a transient increase in S neurona-specific IgG in the cerebrospinal fluid (CSF); and (3) induces an IgG response that can be differentiated from that induced by natural exposure. Horses included in the study (n = 29) were older than 6 months with no evidence of neurologic disease. The presence or absence of anti-S neurona antibodies in the serum of each horse was determined by WB analysis. Seropositive horses had CSF collected and submitted for cytology, CSF index, and WB analysis. The vaccine was administered to all the horses and boostered 3-4 weeks later. On day 14 after the 2nd administration, serum and CSF were collected and analyzed. Eighty-nine percent (8 of 9) of the initial seronegative horses seroconverted after vaccination, of which 57% (4 of 7) had anti-S neurona IgG in their CSE Eighty percent (16 of 20) of the seropositive horses had an increase in serum S neurona IgG after vaccination. Of the 6 of 20 horses that were initially seropositive/CSF negative, 2 were borderline positive for anti-S neurona IgG in the CSF, 2 tested positive, and 2 were excluded because the CSF sample had been contaminated by blood. There were no WB banding patterns that distinguished samples from horses that seroconverted due to vaccination versus natural exposure. Caution must be used in interpreting WB analysis from neurologic horses that have been recently vaccinated for EPM.  相似文献   

5.
Sarcocystis neurona is the most important cause of a neurologic disease of horses, equine protozoal myeloencephalitis (EPM). Cats and other carnivores can act as its intermediate hosts and horses are aberrant hosts. Little is known of the sero-epidemiology of S. neurona infections in cats. In the present study, antibodies to S. neurona were evaluated by the S. neurona agglutination test (SAT). Cats fed sporocysts from the feces of naturally infected opossums or inoculated intramuscularly with S. neurona merozoites developed high levels (> or =1:4000) of SAT antibodies. Antibodies to S. neurona were not found in a cat inoculated with merozoites of the closely related parasite, Sarcocystis falcatula. These results should be useful in studying sero-epidemiology of S. neurona infections in cats.  相似文献   

6.
Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in the Americas. The protozoan most commonly associated with EPM is Sarcocystis neurona. The complete life cycle of S. neurona is unknown, including its natural intermediate host that harbors its sarcocyst. Opossums (Didelphis virginiana, Didelphis albiventris) are its definitive hosts. Horses are considered its aberrant hosts because only schizonts and merozoites (no sarcocysts) are found in horses. EPM-like disease occurs in a variety of mammals including cats, mink, raccoons, skunks, Pacific harbor seals, ponies, and Southern sea otters. Cats can act as an experimental intermediate host harboring the sarcocyst stage after ingesting sporocysts. This paper reviews information on the history, structure, life cycle, biology, pathogenesis, induction of disease in animals, clinical signs, diagnosis, pathology, epidemiology, and treatment of EPM caused by S. neurona.  相似文献   

7.
Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome in horses from the Americas and is usually caused by infection with the apicomplexan parasite, Sarcocystis neurona. A horse model of EPM is needed to test the efficacy of chemotherapeutic agents and potential vaccines. Five horses that were negative for antibodies to S. neurona in their serum and cerebrospinal fluid (CSF) were injected in the subarachnoid space with living merozoites of the SN2 isolate of S. neurona. None of the horses developed clinical disease or died over a 132-day observation period. All five horses developed antibodies to S. neurona in their CSF and serum 3-4 weeks after injection. Two of the horses were examined at necropsy and no parasite induced lesions were observed in their tissues and no parasites were recovered from portions of their spinal cords inoculated on to cell cultures. Results of this study demonstrate that merozoites of the SN2 isolate of S. neurona will induce seroconversion but not clinical disease when inoculated directly into the CSF of nonimmune horses.  相似文献   

8.
Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in Americans. Most cases are attributed to infection of the central nervous system with Sarcocystis neurona. Parasitemia has not been demonstrated in immunocompetent horses, but has been documented in one immunocompromised foal. The objective of this study was to isolate viable S. neurona from the blood of immunocompetent horses. Horses used in this study received orally administered S. neurona sporocysts (strain SN 37-R) daily for 112 days at the following doses: 100/day for 28 days, followed by 500/day for 28 days, followed by 1000/day for 56 days. On day 98 of the study, six yearling colts were selected for attempted culture of S. neurona from blood, two testing positive, two testing suspect and two testing negative for antibodies against S. neurona on day 84 of the study. Two 10 ml tubes with EDTA were filled from each horse by jugular venipuncture and the plasma fraction rich in mononuclear cells was pipetted onto confluent equine dermal cell cultures. The cultures were monitored weekly for parasite growth for 12 weeks. Merozoites grown from cultures were harvested and tested using S. neurona-specific PCR with RFLP to confirm species identity. PCR products were sequenced and compared to known strains of S. neurona. After 38 days of in vitro incubation, one cell culture from a horse testing positive for antibodies against S. neurona was positive for parasite growth while the five remaining cultures remained negative for parasite growth for all 12 weeks. The Sarcocystis isolate recovered from cell culture was confirmed to be S. neurona by PCR with RFLP. Gene sequence analysis revealed that the isolate was identical to the challenge strain SN-37R and differed from two known strains UCD1 and MIH1. To our knowledge this is the first report of parasitemia with S. neurona in an immunocompetent horse.  相似文献   

9.
Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in the Americas. The apicomplexan protozoan most commonly associated with EPM is Sarcocystis neurona. A direct agglutination test (SAT) was developed to detect antibodies to S. neurona in experimentally infected animals. Merozoites of the SN6 strain of S. neurona collected from cell culture were used as antigen and 2-mercaptoethanol was added to the antigen suspension to destroy IgM antibodies when mixed with test sera. Mice fed sporocysts of S. speeri or S. falcatula-like sporocysts from opossums did not seroconvert in the SAT. The sensitivity of the SAT was 100% and the specificity was 90% in mice.  相似文献   

10.
Equine protozoal myeloencephalitis (EPM) is one of the most common neurologic diseases of horses in the United States. The primary etiologic agent is Sarcocystis neurona. Currently, there is limited knowledge regarding the protective or pathophysiologic immune response to S. neurona infection or the subsequent development of EPM. The objectives of this study were to determine whether S. neurona infected horses with clinical signs of EPM had altered or suppressed immune responses compared to neurologically normal horses and if blood sample storage would influence these findings. Twenty clinically normal horses and 22 horses with EPM, diagnosed by the presence of S. neurona specific antibodies in the serum and/or cerebrospinal (CSF) and clinical signs, were evaluated for differences in the immune cell subsets and function. Our results demonstrated that naturally infected horses had significantly (P<0.05) higher percentages of CD4 T-lymphocytes and neutrophils (PMN) in separated peripheral blood leukocytes than clinically normal horses. Leukocytes from naturally infected EPM horses had significantly lower proliferation responses, as measured by thymidine incorporation, to a non-antigen specific mitogen than did clinically normal horses (P<0.05). Currently, studies are in progress to determine the role of CD4 T cells in disease and protection against S. neurona in horses, as well as to determine the mechanism associated with suppressed in vitro proliferation responses. Finally, overnight storage of blood samples appears to alter T lymphocyte phenotypes and viability among leukocytes.  相似文献   

11.
Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome in horses from the Americas and is usually caused by infection with the apicomplexan parasite, Sarcocystis neurona. Little is known about the role of immunobiological mediators to this parasite. Nitric oxide (NO) is important in resistance to many intracellular parasites. We, therefore, investigated the role of inducible and endothelial NO in resistance to clinical disease caused by S. neurona in mice. Groups of interferon-gamma gene knockout (IFN-gamma-KO) mice, inducible nitric oxide synthase gene knockout (iNOS-KO) mice, endothelial nitric oxide synthase gene knockout (eNOS-KO) and appropriate genetic background mice (BALB/c or C57BL/6) were orally fed sporocysts or Hanks balanced salt solution. Mice were observed for signs of clinical disease and examined at necropsy. Clinical disease and deaths occurred only in the IFN-gamma-KO mice. Microscopic lesions were seen only in the brains of IFN-gamma-KO mice. Results of this study indicate that iNOS and eNOS are not major mediators of resistance to S. neurona infections. Results of this study suggest that IFN-gamma mediated immunity to S. neurona may be mediated by non-NO-dependent mechanisms.  相似文献   

12.
The aim of this study was to compare two serologic tests used to support a diagnosis of equine protozoal myeloencephalitis (EPM). Serum and cerebrospinal fluid (CSF) samples were analyzed for antibodies to Sarcocystis neurona and Neospora hughesi by indirect fluorescent antibody testing (IFAT) and surface antigens of S. neurona and N. hughesi by enzyme-linked immunosorbent assay (ELISA). The samples originated from neurologic horses with confirmed and suspected EPM (nine S. neurona, three N. hughesi), from neurologic horses with confirmed neurologic diseases other than EPM (16 horses) and from healthy horses (10). The IFAT on CSF and ELISA titer ratios showed equal sensitivity in diagnosing EPM caused by S. neurona. The ELISA titer ratios showed slightly greater specificity in diagnosing EPM than the IFAT on CSF. Overall agreement between the IFAT on CSF and ELISA titer ratio was 90.9%. The IFAT on CSF and ELISA serum/CSF ratio are indicated to help support a laboratory diagnosis of EPM.  相似文献   

13.
Sarcocystis neurona is an important cause of equine protozoal myeloencephalitis (EPM) in horses in the Americas. An EPM-like neurological disease also has been reported from other mammals but it is difficult to induce this disease in the laboratory. A 4-month-old male domestic cat developed neurological signs 3 days following castration. The cat was euthanized 12 days later because of paralysis. Encephalomyelitis was the only lesion and was associated with numerous Sarcocystis schizonts and merozoites in the brain and spinal cord. The protozoa reacted positively with S. neurona-specific polyclonal rabbit antibody. Two unidentified sarcocysts were present in the cerebellum. It may be possible that stress of surgery triggered relapse of S. neurona infection in this cat.  相似文献   

14.
OBJECTIVE: To investigate the use of a specific antibody index (AI) that relates Sarcocystis neurona-specific IgG quotient (Q(SN)) to total IgG quotient (Q(IgG)) for the detection of the anti-S neurona antibody fraction of CNS origin in CSF samples obtained from horses after intragastric administration of S neurona sporocysts. ANIMALS: 18 adult horses. PROCEDURES: 14 horses underwent intragastric inoculation (day 0) with S neurona sporocysts, and 4 horses remained unchallenged; blood and CSF samples were collected on days - 1 and 84. For purposes of another study, some challenged horses received intermittent administration of ponazuril (20 mg/kg, PO). Sarcocystis neurona-specific IgG concentrations in CSF (SN(CSF)) and plasma (SN(plasma)) were measured via a direct ELISA involving merozoite lysate antigen and reported as ELISA units (EUs; arbitrary units based on a nominal titer for undiluted immune plasma of 100,000 EUs/mL). Total IgG concentrations in CSF (IgG(CSF)) and plasma (IgG(plasma)) were quantified via a sandwich ELISA and a radial immunodiffusion assay, respectively; Q(SN), Q(IgG), and AI were calculated. RESULTS: Following sporocyst challenge, mean +/- SEM SN(CSF) and SN(plasma) increased significantly (from 8.8 +/- 1.0 EUs/mL to 270.0 +/- 112.7 EUs/mL and from 1,737 +/- 245 EUs/mL to 43,169 +/- 13,770 EUs/mL, respectively). Challenge did not affect total IgG concentration, Q(SN), Q(IgG), or AI. CONCLUSIONS AND CLINICAL RELEVANCE: S neurona-specific IgG detected in CSF samples from sporocyst-challenged horses appeared to be extraneural in origin; thus, this experimental challenge may not reliably result in CNS infection. Calculation of a specific AI may have application to the diagnosis of S neurona-associated myeloencephalitis in horses.  相似文献   

15.
OBJECTIVE: To investigate risk factors for development of equine protozoal myeloencephalitis (EPM) in horses. DESIGN: Case-control study. ANIMALS: 251 horses admitted to The Ohio State University Veterinary Teaching Hospital from 1992 to 1995. PROCEDURE: On the basis of clinical signs of neurologic disease and detection of antibody to Sarcocystis neurona or S neurona DNA in cerebrospinal fluid, a diagnosis of EPM was made for 251 horses. Two contemporaneous series of control horses were selected from horses admitted to the hospital. One control series (n = 225) consisted of horses with diseases of the neurologic system other than EPM (neurologic control horses), and the other consisted of 251 horses admitted for reasons other than nervous system diseases (nonneurologic control horses). Data were obtained from hospital records and telephone conversations. Risk factors associated with disease status were analyzed, using multivariable logistic regression. RESULTS: Horses ranged from 1 day to 30 years old (mean +/- SD, 5.7 +/- 5.2 years). Risk factors associated with an increased risk of developing EPM included age, season of admission, prior diagnosis of EPM on the premises, opossums on premises, health events prior to admission, and racing or showing as a primary use. Factors associated with a reduced risk of developing EPM included protection of feed from wildlife and proximity of a creek or river to the premises where the horse resided. CONCLUSIONS AND CLINICAL RELEVANCE: Development of EPM was associated with a number of management-related factors that can be altered to decrease the risk for the disease.  相似文献   

16.
Opossums (Didelphis spp.) are the definitive host for the protozoan parasite Sarcocystis neurona, the causative agent of equine protozoal myeloencephalitis (EPM). Opossums shed sporocysts in feces that can be ingested by true intermediate hosts (cats, raccoons, skunks, armadillos and sea otters). Horses acquire the parasite by ingestion of feed or water contaminated by opossum feces. However, horses have been classified as aberrant intermediate hosts because the terminal asexual sarcocyst stage that is required for transmission to the definitive host has not been found in their tissues despite extensive efforts to search for them [Dubey, J.P., Lindsay, D.S., Saville, W.J., Reed, S.M., Granstrom, D.E., Speer, C.A., 2001b. A review of Sarcocystis neurona and equine protozoal myeloencephalitis (EPM). Vet. Parasitol. 95, 89-131]. In a 4-month-old filly with neurological disease consistent with EPM, we demonstrate schizonts in the brain and spinal cord and mature sarcocysts in the tongue and skeletal muscle, both with genetic and morphological characteristics of S. neurona. The histological and electron microscopic morphology of the schizonts and sarcocysts were identical to published features of S. neurona [Stanek, J.F., Dubey, J.P., Oglesbee, M.J., Reed, S.M., Lindsay, D.S., Capitini, L.A., Njoku, C.J., Vittitow, K.L., Saville, W.J., 2002. Life cycle of Sarcocystis neurona in its natural intermediate host, the raccoon, Procyon lotor. J. Parasitol. 88, 1151-1158]. DNA from schizonts and sarcocysts from this horse produced Sarcocystis specific 334bp PCR products [Tanhauser, S.M., Yowell, C.A., Cutler, T.J., Greiner, E.C., MacKay, R.J., Dame, J.B., 1999. Multiple DNA markers differentiate Sarcocystis neurona and Sarcocystis falcatula. J. Parasitol. 85, 221-228]. Restriction fragment length polymorphism (RFLP) analysis of these PCR products showed banding patterns characteristic of S. neurona. Sequencing, alignment and comparison of both schizont and sarcocyst DNA amplicons showed 100% identity. Although Koch's postulates have not been demonstrated in this case study, the finding of mature, intact S. neurona schizonts and sarcocysts in the tissues of this single horse strongly suggests that horses have the potential to act as intermediate hosts. Further studies are needed to demonstrate Koch's postulates with repeated transfer of S. neurona between opossums and horses.  相似文献   

17.
Horses that are exposed to Sarcocystis neurona, a causative agent of equine protozoal myeloencephalitis, produce antibodies that are detectable in serum by western blot (WB). A positive test is indicative of exposure to the organism. Positive tests in young horses can be complicated by the presence of maternal antibodies. Passive transfer of maternal antibodies to S. neurona from seropositive mares to their foals was evaluated. Foals were sampled at birth (presuckle), at 24h of age (postsuckle), and at monthly intervals. All foals sampled before suckling were seronegative. Thirty-three foals from 33 seropositive mares became seropositive with colostrum ingestion at 24h of age, confirming that passive transfer of S. neurona maternal antibodies occurs. Thirty-one of the 33 foals became seronegative by 9 months of age, with a mean seronegative conversion time of 4.2 months. These results indicate that evaluation of exposure to S. neurona by WB analysis of serum may be misleading in young horses.  相似文献   

18.
OBJECTIVE: To investigate risk factors for use in predicting clinical improvement and survival of horses with equine protozoal myeloencephalitis (EPM). DESIGN: Longitudinal epidemiologic study. ANIMALS: 251 horses with EPM. PROCEDURE: Between 1992 and 1995, 251 horses with EPM were admitted to our facility. A diagnosis of EPM was made on the basis of neurologic abnormalities and detection of antibody to Sarcocystis neurona or S neurona DNA in CSF. Data were obtained from hospital records and through telephone follow-up interviews. Factors associated with clinical improvement and survival were analyzed, using multivariable logistic regression. RESULTS: The likelihood of clinical improvement after diagnosis of EPM was lower in horses used for breeding and pleasure activities. Treatment for EPM increased the probability that a horse would have clinical improvement. The likelihood of survival among horses with EPM was lower among horses with more severe clinical signs and higher among horses that improved after EPM was diagnosed. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment of horses with EPM is indicated in most situations; however, severity of clinical signs should be taken into consideration when making treatment decisions. Response to treatment is an important indicator of survival.  相似文献   

19.
Equine protozoal myeloencephalitis (EPM) is a serious neurologic disease in the horse most commonly caused by Sarcocystis neurona. The domestic cat (Felis domesticus) is an intermediate host for S. neurona. In the present study, nine farms, known to have prior clinically diagnosed cases of EPM and a resident cat population were identified and sampled accordingly. In addition to the farm cats sampled, samples were also collected from a mobile spay and neuter clinic. Overall, serum samples were collected in 2001 from 310 cats, with samples including barn, feral and inside/outside cats. Of these 310 samples, 35 were from nine horse farms. Horse serum samples were also collected and traps were set for opossums at each of the farms. The S. neurona direct agglutination test (SAT) was used for both the horse and cat serum samples (1:25 dilution). Fourteen of 35 (40%) cats sampled from horse farms had circulating S. neurona agglutinating antibodies. Twenty-seven of the 275 (10%) cats from the spay/neuter clinic also had detectable S. neurona antibodies. Overall, 115 of 123 (93%) horses tested positive for anti-S. neurona antibodies, with each farm having greater than a 75% exposure rate among sampled horses. Twenty-one opossums were trapped on seven of the nine farms. Eleven opossums had Sarcocystis sp. sporocysts, six of them were identified as S. neurona sporocysts based on bioassays in gamma-interferon gene knockout mice with each opossum representing a different farm. Demonstration of S. neurona agglutinating antibodies in domestic and feral cats corroborates previous research demonstrating feral cats to be naturally infected, and also suggests that cats can be frequently infected with S. neurona and serve as one of several natural intermediate hosts for S. neurona.  相似文献   

20.
Sarcocystis neurona is the principal etiologic agent of equine protozoal myeloencephalitis (EPM). An immunodominant protein of S. neurona, SnSAG-1, is expressed by the majority of S. neurona merozoites isolated from spinal tissues of horses diagnosed with EPM and may be a candidate for diagnostic tests and prophylaxis for EPM. Five horses were vaccinated with adjuvanted recombinant SnSAG1 (rSnSAG1) and 5 control (sham vaccinated) horses were vaccinated with adjuvant only. Serum was evaluated pre- and post-vaccination, prior to challenge, for antibodies against rSnSAG1 and inhibitory effects on the infectivity of S. neurona by an in vitro serum neutralization assay. The effect of vaccination with rSnSAG1 on in vivo infection by S. neurona was evaluated by challenging all the horses with S. neurona merozoites. Blinded daily examinations and 4 blinded neurological examinations were used to evaluate the presence of clinical signs of EPM. The 5 vaccinated horses developed serum and cerebrospinal fluid (CSF) titers of SnSAG1, detected by enzyme-linked immunosorbent assay (ELISA), post-vaccination. Post-vaccination serum from vaccinated horses was found to have an inhibitory effect on merozoites, demonstrated by in vitro bioassay. Following the challenge, the 5 control horses displayed clinical signs of EPM, including ataxia. While 4 of the 5 vaccinated horses did not become ataxic. One rSnSAG-1 vaccinated horse showed paresis in 1 limb with muscle atrophy. All horses showed mild, transient, cranial nerve deficits; however, disease did not progress to ataxia in rSnSAG-1 vaccinated horses. The study showed that vaccination with rSnSAG-1 produced antibodies in horses that neutralized merozoites when tested by in vitro culture and significantly reduced clinical signs demonstrated by in vivo challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号