首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2‐Deoxy‐2‐[18F]fluoro‐d ‐glucose positron emission tomography/computed tomography (FDG PET/CT) is becoming increasingly available as an imaging modality in veterinary medicine. The purpose of this study was to report semiquantitative standard uptake values (SUV) of malignant and nonmalignant tissues and organs in canine cancer patients. FDG PET/CT was performed in 14 dogs including, nine mesenchymal tumors, four carcinomas, and one incompletely excised mast cell tumor. A generally higher FDG uptake was observed in carcinomas relative to sarcomas. Maximum SUV of carcinomas ranged from 7.6 to 27.0, and for sarcomas from 2.0 to 10.6. The FDG SUV of several organs and tissues, including regional brain uptake is reported, to serve as a reference for future FDG PET studies in canine cancer patients. Several potential pitfalls have been recognized in interpretation of FDG PET images of human patients, a number of these were also observed in this study.  相似文献   

2.
Feline oral squamous cell carcinoma is one of the most refractory feline malignancies. Most patients succumb due to failure in local tumor control. 2‐18F‐fluoro‐2‐deoxy‐D‐glucose positron emission tomography (18F‐FDG PET) is increasingly being used for veterinary oncology staging as it highlights areas with higher glucose metabolism. The goal of the current prospective study was to compare gross tumor volume measurements using 18F‐FDG PET vs. those using computed tomography (CT) for stereotactic radiation therapy planning in cats with oral squamous cell carcinoma. Twelve cats with confirmed oral squamous cell carcinoma underwent pretreatment 18F‐FDG PET/CT. Gross tumor volumes based on contrast‐enhanced CT and 18F‐FDG PET were measured and compared among cats. Mean PET gross tumor volume was significantly smaller than mean CT gross tumor volume in the mandibular/maxillary squamous cell carcinoma group (n = 8, P = 0.002) and for the total number of patients (n = 12, P = 0.006), but not in the lingual/laryngeal group (n = 4, P = 0.57). Mismatch fraction analysis revealed that most of the lingual/laryngeal patients had a large region of high‐18F‐FDG activity outside of the CT gross tumor volume. This mismatch fraction was significantly greater in the lingual/laryngeal group than the mandibular/maxillary group (P = 0.028). The effect of poor spatial resolution of PET imaging was greater when the absolute tumor volume was small. Findings from this study indicated that 18F‐FDG PET warrants further investigation as a supplemental imaging modality in cats with oral squamous cell carcinoma because it detected regions of possible primary tumor that were not detected on CT images.  相似文献   

3.
The purpose of this retrospective analysis was to determine if fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) could potentially be an accurate staging tool for detecting metastatic lymph nodes in dogs with appendicular osteosarcoma based on the quantitative measurement of the maximum standard uptake value (SUVmax) of lymph nodes. A total of 53 dogs were identified that presented for staging via 18F-FDG PET/CT for primary appendicular osteosarcoma. Patients were categorized according to lymph node status of having either metastatic or non-metastatic nodes based on cytological or histological analysis. Maximum standard uptake (SUVmax) values of the sampled lymph node(s) were recorded and 3/77 (3.9%) of sampled lymph nodes were confirmed metastatic. A Mann-Whitney test revealed a statistical difference in the SUVmax of the metastatic versus non-metastatic lymph nodes [median: 6.6 to 95% confidence interval (CI): 2.56 to 14.37 versus 2.18 95% CI: 2.32 to 3.17, respectively, P-value = 0.05]. This retrospective analysis revealed a significant difference in the SUVmax as measured on 18F-FDG PET/CT between metastatic lymph nodes and non-metastatic lymph nodes in canine patients afflicted with appendicular osteosarcoma, in spite of the small numbers analyzed. While these results are promising, they should be interpreted with caution and further studies are justified.  相似文献   

4.
The purpose of this study was to assess the effects of four anesthetic protocols on normal canine brain uptake of 2‐deoxy‐2‐[18F]fluoro‐d ‐glucose (FDG) using positron emission tomography/computed tomography (PET/CT). Five clinically normal beagle dogs were anesthetized with (1) propofol/isoflurane, (2) medetomidine/pentobarbital, (3) xylazine/ketamine, and (4) medetomidine/tiletamine–zolazepam in a randomized cross‐over design. The standard uptake value (SUV) of FDG was obtained in the frontal, parietal, temporal and occipital lobes, cerebellum, brainstem and whole brain, and compared within and between anesthetic protocols using the Friedman test with significance set at P<0.05. Significant differences in SUVs were observed in various part of the brain associated with each anesthetic protocol. The SUV for the frontal and occipital lobes was significantly higher than in the brainstem in all dogs. Dogs receiving medetomidine/tiletamine–zolazepam also had significantly higher whole brain SUVs than the propofol/isoflurane group. We concluded that each anesthetic protocol exerted a different regional brain glucose uptake pattern. As a result, when comparing brain glucose uptake using PET/CT, one should consider the effects of anesthetic protocols on different regions of the glucose uptake in the dog's brain.  相似文献   

5.
18F‐fluorodeoxyglucose positron emission tomography combined with computed tomography (18FDG‐PET/CT) has been shown to be effective for staging human oral squamous cell carcinoma (SCC) but its application for cats with oral SCC is unknown. Twelve cats with biopsy‐proven oral SCC were imaged with whole body 18FDG‐PET/CT to determine its value as a diagnostic imaging and staging tool and fine needle aspirates were obtained of accessible regional lymph nodes. All tumors were FDG avid and conspicuous on 18FDG‐PET/CT images, with an average of the maximum standardized uptake value 9.88 ± 5.33 SD (range 2.9–24.9). Soft tissue infiltrative tumors that were subtle and ill defined on CT were highly visible and more extensive on FDG‐PET/CT. Tumors invading the osseous structures were more similar in extent on 18FDG‐PET/CT and CT although they were more conspicuous on PET images. Three cytologically confirmed metastases were hypermetabolic on PET, while two of those metastases were equivocal on CT.  相似文献   

6.
18F‐Fluoro‐deoxyglucose positron emission computed tomography (FDG‐PET/CT) is an emerging diagnostic imaging modality in veterinary medicine; however, little published information is available on physiologic variants, benign processes, and artifacts. The purpose of this retrospective study was to describe the number of occurrences of non‐neoplastic disease‐related FDG‐PET/CT lesions in a group of dogs and cats. Archived FDG‐PET/CT scans were retrieved and interpreted based on a consensus opinion of two board‐certified veterinary radiologists. Non‐neoplastic disease‐related lesions were categorized as physiologic variant, benign activity, or equipment/technology related artifact. If the exact cause of hypermetabolic areas could not be determined, lesions were put into an indeterminate category. A total of 106 canine and feline FDG‐PET/CT scans were included in the study. In 104 of the 106 scans, a total of 718 occurrences of physiologic variant, areas of incidental benign activity, and artifacts were identified. Twenty‐two of 23 feline scans and 82 of 83 canine scans had at least one artifact. Previously unreported areas of increased radiopharmaceutical uptake included foci associated with the canine gall bladder, linear uptake along the canine mandible, and focal uptake in the gastrointestinal tract. Benign activity was often seen and related to healing, inflammation, and indwelling implants. Artifacts were most often related to injection or misregistration. Further experience in recognizing the common veterinary FDG physiologic variation, incidental radiopharmaceutical uptake, and artifacts is important to avoid misinterpretation and false‐positive diagnoses.  相似文献   

7.
8.
Fever of unknown origin (FUO) is a persistent or recurrent fever for which the underlying source has not been identified despite diagnostic investigation. In people, 18F‐fluoro‐2‐deoxyglucose positron emission tomography (18F‐FDG‐PET) alone or in combination with computed tomography (CT) is often beneficial in detecting the source of fever when other diagnostics have failed. Veterinary reports describing use of these modalities in animals with fever of unknown origin are currently lacking. Aims of this retrospective case series were to describe 18F‐FDG‐PET or 18F‐FDG‐PET/CT findings in a group of dogs with fever of unknown origin. Dogs presenting to a single center between April 2012 and August 2015 were included. A total of four dogs met inclusion criteria and underwent either positron emission tomography (n = 2) or positron emission tomography/CT (n = 2) as a part of their diagnostic investigation. All subjects underwent extensive diagnostic testing prior to 18F‐FDG‐PET/CT. Initial diagnostic evaluation failed to identify either a cause of fever or an anatomic location of disease in these four dogs. In each dog, positron emission tomography or positron emission tomography/CT was either able to localize or rule out the presence of focal lesion thereby allowing for directed sampling and/or informed disease treatment. Follow up 18F‐FDG‐PET/CT scans performed in two patients showed improvement of observed abnormalities (n = 1) or detected recurrence of disease allowing for repeated treatment before clinical signs recurred (n = 1). Fever resolved after specific treatment in each dog. Findings from the current study supported the use of positron emission tomography or positron emission tomography/CT as adjunctive imaging modalities for diagnosis and gauging response to therapy in dogs with fever of unknown origin.  相似文献   

9.
We evaluated the whole body distribution of 2‐deoxy‐2‐[18F]fluoro‐d ‐glucose (18F‐FDG) in seven beagle dogs using positron emission tomography/computed tomography. The mean and maximum standard uptake values (SUV) for various tissues were computed. The SUV of the aortic blood pool was 0.65±0.19. Moderate uptake was present in brain (3.40±1.01). Mild uptake was present in orbital muscles, soft palate, laryngeal and pharyngeal region, mandibular salivary gland, myocardium, liver, pancreas, kidney, and intestine. 18F‐FDG uptake would be normally higher in these tissues because of normal physiologic activity. Mean and maximum SUV values of the eye, skeletal muscle, bone tissue, spleen, adrenal gland, stomach, tongue, gall bladder, and lung were similar to or lower than that of the aortic blood pool. These data provide a normal baseline for comparing pathologic 18F‐FDG uptake.  相似文献   

10.
Regional cerebral metabolism and blood flow can be measured noninvasively with positron emission tomography (PET). 2‐[18F]fluoro‐2‐deoxy‐D‐glucose (FDG) widely serves as a PET tracer in human patients with epilepsy to identify the seizure focus. The goal of this prospective study was to determine whether juvenile or adult dogs with focal‐onset epilepsy exhibit abnormal cerebral glucose uptake interictally and whether glucose uptake changes with age. We used FDG‐PET to examine six Lagotto Romagnolo dogs with juvenile epilepsy, two dogs with adult‐onset epilepsy, and five control dogs of the same breed at different ages. Three researchers unaware of dog clinical status visually analyzed co‐registered PET and magnetic resonance imaging (MRI) images. Results of the visual PET analyses were compared with electroencephalography (EEG) results. In semiquantitative analysis, relative standard uptake values (SUV) of regions of interest (ROI) drawn to different brain regions were compared between epileptic and control dogs. Visual analysis revealed areas of hypometabolism interictally in five out of six dogs with juvenile epilepsy in the occipital, temporal, and parietal cortex. Changes in EEG occurred in three of these dogs in the same areas where PET showed cortical hypometabolism. Visual analysis showed no abnormalities in cerebral glucose uptake in dogs with adult‐onset epilepsy. Semiquantitative analysis detected no differences between epileptic and control dogs. This result emphasizes the importance of visual analysis in FDG‐PET studies of epileptic dogs. A change in glucose uptake was also detected with age. Glucose uptake values increased between dog ages of 8 and 28 weeks and then remained constant.  相似文献   

11.
A 5‐year‐old female spayed bulldog was referred for mild dyspnea, decreased activity and appetite, occasional nonproductive cough, polydipsia, and polyuria. A 2‐deoxy‐2‐[18F]fluoro‐D‐glucose (FDG) positron emission tomography/computed tomography (PET/CT) scan revealed unexpected activity in the heart, lungs, and mild generalized lymphadenopathy that led to the diagnosis of lymphoma of granular lymphocytes after nonspecific findings on imaging with standard modalities of echocardiography, thoracic radiography, and abdominal ultrasound. PET/CT scanning is a useful whole body imaging modality with high sensitivity for changes associated with canine lymphoma.  相似文献   

12.
Positron emission tomography (PET) is often used to stage and monitor human cancer and has recently been used in a similar fashion in veterinary medicine. The most commonly used radiopharmaceutical is 2‐Deoxy‐2‐[18F]‐Fluoro‐d ‐glucose (18F‐FDG), which is concentrated and trapped within cells that use glucose as their energy substrate. We characterized the normal distribution of 18F‐FDG in 10 healthy Hispaniolan Amazon parrots (Amazona ventralis) by performing whole body PET scans at steady state, 60 min after injection. Significant variability was found in the intestinal activity. Avian species are known to reflux fluid and electrolytes from their cloaca into their colon. To evaluate reflux as the cause of variability in intestinal distribution of 18F‐FDG, dynamic PET scans were performed on the coelomic cavity of six Hispaniolan Amazon parrots from time 0 to 60 min postinjection of radiotracer. Reflux of radioactive material from the cloaca into the colon occurred in all birds to varying degrees and occurred before 60 min. To evaluate the intestinal tract of clinical avian patients, dynamic scans must be performed starting immediately after injection so that increased radioactivity due to metabolism or hypermetabolic lesions such as cancer can be differentiated from increased radioactivity due to reflux of fluid from the cloaca.  相似文献   

13.
In human epileptic patients, changes in cerebral glucose utilization can be detected 2‐deoxy‐2‐[18F] fluoro‐d ‐glucose positron emission tomography (FDG‐PET). The purpose of this prospective study was to determine whether epileptic dogs might show similar findings. Eleven Finnish Spitz dogs with focal idiopathic epilepsy and six healthy dogs were included. Dogs were examined using electroencephalography (EEG) and FDG‐PET, with epileptic dogs being evaluated during the interictal period. Visual and semi‐quantitative assessment methods of FDG‐PET were compared and contrasted with EEG findings. Three independent observers, unaware of dog clinical status, detected FDG‐PET uptake abnormalities in 9/11 epileptic (82%), and 4/8 healthy dogs (50%). Occipital cortex findings were significantly associated with epileptic status (P = 0.013). Epileptic dogs had significantly lower standardized uptake values (SUVs) in numerous cortical regions, the cerebellum, and the hippocampus compared to the control dogs. The lowest SUVs were found in the occipital lobe. White matter normalized and left‐right asymmetry index values for all pairs of homologous regions did not differ between groups. Visual evaluation of the EEGs was less sensitive (36%) than FDG‐PET. Both diagnostic tests were consensual and specific (100%) for occipital findings, but EEG had a lower sensitivity for detecting lateralized foci than FDG‐PET. Findings supported the use of FDG‐PET as a diagnostic test for dogs with suspected idiopathic epilepsy. Visual and semiquantitative analyses of FDG‐PET scans provided complementary information. Findings also supported the theory that epileptogenesis may occur in multiple brain regions in Finnish Spitz dogs with idiopathic epilepsy.  相似文献   

14.
Positron emission tomography/computed tomography (PET/CT) utilizing 3′‐deoxy‐3′‐[18F]fluorothymidine (18FLT), a proliferation tracer, has been found to be a useful tool for characterizing neoplastic diseases and bone marrow function in humans. As PET and PET/CT imaging become increasingly available in veterinary medicine, knowledge of radiopharmaceutical biodistribution in veterinary species is needed for lesion interpretation in the clinical setting. The purpose of this study was to describe the normal biodistribution of 18FLT in adult domestic cats. Imaging of six healthy young adult castrated male cats was performed using a commercially available PET/CT scanner consisting of a 64‐slice helical CT scanner with an integrated whole‐body, high‐resolution lutetium oxy‐orthosilicate (LSO) PET scanner. Cats were sedated and injected intravenously with 108.60 ± 2.09 (mean ± SD) MBq of 18FLT (greater than 99% radiochemical purity by high‐performance liquid chromatography). Imaging was performed in sternal recumbency under general anesthesia. Static images utilizing multiple bed positions were acquired 80.83 ± 7.52 (mean ± SD) minutes post‐injection. Regions of interest were manually drawn over major parenchymal organs and selected areas of bone marrow and increased tracer uptake. Standardized uptake values were calculated. Notable areas of uptake included hematopoietic bone marrow, intestinal tract, and the urinary and hepatobiliary systems. No appreciable uptake was observed within brain, lung, myocardium, spleen, or skeletal muscle. Findings from this study can be used as baseline data for future studies of diseases in cats.  相似文献   

15.
Functional imaging using positron emission tomography (PET) plays an important role in the diagnosis, staging, image‐guided treatment planning and monitoring of malignant diseases. PET imaging complements conventional anatomical imaging such as computed tomography (CT) and magnetic resonance imaging (MRI). The strength of CT scanning lies in its high spatial resolution, allowing for anatomical characterization of disease. PET imaging, however, moves beyond anatomy and characterizes tissue based on functions such as metabolic rate. Combined PET/CT scanners were introduced commercially in 2001 and a number of technological advancements have since occurred. Radiolabelled tracers such as 18F‐fluorodeoxyglucose (FDG) and 18F‐fluorothymidine (FLT) allow visualization of various metabolic processes within cancer cells. Many studies in human oncology evaluating the utility of PET/CT have demonstrated clinical benefits. Few veterinary studies have been performed, but initial studies show promise for improved detection of malignancy, more thorough staging of canine cancer and determination of early response and disease recrudescence.  相似文献   

16.
Positron emission tomography (PET) imaging utilizing fluorine‐18 labeled fluorodeoxyglucose is a relatively new imaging modality in veterinary medicine that is becoming more common for oncological staging and for musculoskeletal imaging. Thus, it is important to identify the normal variations on PET imaging that may be mistaken for pathology. Variation in standardized uptake values (SUVmax) have been anecdotally identified in the spinal cord of dogs undergoing fluorodeoxyglucose (FDG) PET–CT examinations for oncological staging, with notable increase in SUVmax values identified in the region of the cervical and lumbar spinal intumescences. The aim of this retrospective, analytical study was to compare the SUVmax values at four different locations throughout the spinal cord (C3, C5‐T1, T13, and L3‐S1) of a group of dogs with no evidence of neurologic disease and compare those findings to histologic specimens from dogs euthanized for unrelated disease. SUVmax values were significantly higher at the cervical and lumbar intumescences in comparison to the control regions (P < .0001 and P < .0001, respectively). Neuronal count and spinal cord gray matter area were also significantly greater at the cervical and lumbar intumescences (neuronal count P = .0025 and P = .0001; area P = .0004 and P = .0009, respectively) while overall neuronal density was lower (P = .003 and P = .028, respectively). We presume the increased SUVmax values at the spinal cord intumescences are the result of overall increased neuron count, increased proportion of gray matter, and increased spinal cord gray matter area. These findings will aid in the interpretation of future PET–CT studies and hopefully prevent the misdiagnosis of spinal cord disease in normal canines.  相似文献   

17.
Positron emission tomography (PET) has found widespread application for staging and monitoring neoplastic diseases in humans. PET is becoming more available in veterinary medicine, therefore biodistribution of 2-deoxy-2-[18F]fluoro-D-glucose (18FDG) in normal dogs is needed for lesion interpretation in disease states. A large field-of-view (FOV) PET scanner with a 70 cm bore diameter and a 53-cm FOV was used in this study to acquire dynamic 18FDG uptake data from parenchymal organs in seven normal dogs. A 2-h, dynamic list-mode acquisition was initiated simultaneously with intravenous 18FDG injection. Regions of interest (ROIs) were manually drawn over liver, spleen, left and right renal cortices, left ventricular free wall, and thymus. Standardized uptake values (SUVs) of these organs were calculated for 24 5-min frames over the 2-h acquisition. This SUV data from parenchymal organs of normal dogs compares favorably with those of normal humans and will be used in ongoing canine studies using PET to evaluate various diseases.  相似文献   

18.
3′‐deoxy‐3′‐[18F]fluorothymidine (18FLT) is a radiopharmaceutical tracer used with positron emission tomography (PET), often in combination with computed tomography (CT), to image DNA synthesis, and thus, cellular proliferation. Characteristic accumulation of the tracer within haematopoietic bone marrow provides a noninvasive means to assess marrow activity and distribution throughout the living animal. The present study utilizes three‐dimensional analysis of 18FLT‐PET/CT scans to quantify the relative skeletal distribution of active marrow by anatomic site in the dog. Scans were performed on six healthy, adult (3–6 years of age), mixed‐breed dogs using a commercially available PET/CT scanner consisting of a 64‐slice helical CT scanner combined with an integrated four ring, high‐resolution LSO PET scanner. Regions of interest encompassing 11 separate skeletal regions (skull, cervical vertebral column, thoracic vertebral column, lumbar vertebral column, sacrum, ribs, sternum, scapulae, proximal humeri, ossa coxarum, and proximal femora) were manually drawn based on CT images and thresholded by standardized uptake value to delineate bone marrow activity. Activity within each skeletal region was then divided by the total skeletal activity to derive the per cent of overall marrow activity within an individual site. The majority of proliferative marrow was located within the vertebral column. Of the sites traditionally accessed clinically for marrow sampling, the proximal humerus contained the largest percentage, followed by the ossa coxarum, proximal femur, and sternum, respectively. This information may be used to guide selection of traditional marrow sampling sites as well as inform efforts to spare important sites of haematopoiesis in radiation therapy planning.  相似文献   

19.
An 8‐year‐old Shih Tzu developed abdominal pain and hyperglobulinemia. A round splenic mass was noted radiographically and sonographically. The patient was evaluated by fluorodeoxyglucose positron emission tomography coupled with computed tomography (FDG‐PET/CT). There was no evidence of metastasis or bone marrow involvement on PET/CT images. The standardized uptake value (SUV) of the splenic mass was increased over the reference range (SUV=4.83). The patient was diagnosed as splenic extramedullary plasmacytoma through immunohistopathologic study. After the splenectomy, the globulin level normalized and the patient is alive without complications.  相似文献   

20.
Palladia(TM) (toceranib phosphate-Pfizer Animal Health) is a novel orally administered receptor tyrosine kinase inhibitor (TKI) approved for treatment of canine mast cell tumors. Receptor tyrosine kinase dysregulation leads to tumor growth, progression, and metastasis. Toceranib's targets include vascular endothelial growth factor receptor (VEGFR-2/Flk-1/KDR), platelet-derived growth factor receptor, and kit. Positron Emission Tomography/Computed Tomography (PET/CT) is used commonly to diagnose, prognosticate, and monitor response to antineoplastic therapy in human patients. In this study, serial PET/CT imaging with (18) F-fluorodeoxyglucose ((18) FDG) was used to assess response to toceranib therapy in dogs with measurable solid malignancies. Six tumor-bearing dogs underwent tumor assessment using both standard RECIST criteria and PET/CT prior to and at a median of 5 weeks postinitiation of toceranib treatment. Toceranib was prescribed initially at a target dose 3.25 mg/kg PO q48 h, with subsequent modifications based on observed toxicity. Treatment was continued in patients achieving stable disease with acceptable drug tolerance. One dog was maintained on drug despite dose modification due to toxicity; measurable clinical and image-based responses were seen after 10 weeks of therapy. All others had stable or progressive disease based on clinical restaging and PET/CT at first recheck. . Due to discordance with anatomic and metabolic imaging, further studies are needed to investigate the role of molecular imaging in assessment of drug response and identify other potential molecular targets of toceranib.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号