首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compares surge flow with conventional steady flow irrigation in 130–160 m field lengths in order to analyze the potential of the former for reducing deep percolation and tailwater runoff together with the improvement of irrigation efficiency. The field experiment comprises of four surge treatments with two inflow rates of 0.0498 and 0.12 m3/min (Q1 and Q2), and two cycle ratios of 0.33 and 0.50 (CR1 and CR2), respectively, with 30 min on-times, along with two steady flow treatments with the same inflow rates. Surge flow irrigation of the level furrows was successfully managed under the field conditions with decreases in the total water applications (2–22%) and the water intake (14–25%), except in the treatments of surge S11 (Q1 CR1) with 9% increase in the latter together with 21–38% decrease in the tailwater runoff and 19–70% decrease in the calculated deep percolation below the root zone of 1.20 m depending on inflow rates and cycle ratios of the permeable Harran soils. Surge flow reduced the water intake of a surface soil loosened by tillage by 13–23% as compared to continuous flow, thus manifesting an incomparable advantage to the level furrow systems.  相似文献   

2.
The objective of this study was to estimate irrigation return flow in irrigated paddy fields considering the soil moisture. The proposed model was applied to examine its feasibility with regard to the growing period of rice. Simulation results showed a good agreement between the observed and simulated values: root mean square error (RMSE) of 6.05-7.27 mm day−1, coefficient of determination (R2) of 0.72-0.73, and coefficient of efficiency (E) of 0.54-0.55. The estimated average annual irrigation return flow during the period from 1998 to 2001 was 306.2 mm, which was approximately 25.7% of the annual irrigation amounts. Of this annual irrigation return flow, 14.1% was attributable to quick and 11.6% to delayed return flow. These results indicate that considerable amounts of irrigation water in the paddy fields were returned to streams and canals by surface runoff and groundwater discharge. The modeling assessment method proposed in this study can be used to manage agriculture water and estimate irrigation return flow under different hydrological and water management conditions.  相似文献   

3.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

4.
The physiological behavior and yield response of maize under irrigation with saline water was studied in the laboratory and in the field. In the laboratory, the germination rate decreased only when the electrical conductivity (EC) of the substrate solution was above 17 dS/m. The osmotic potential of germinating maize seedlings decreased in proportion to the decrease in osmotic potential of the substrate.In the field, two maize cultivars (a field maize and a sweet maize) were irrigated alternately with saline (11 days from sowing), fresh (21 days from emergence), and saline (from day 33 to harvest) water and compared with maize irrigated with saline water continuously throughout the season. Four levels of irrigation water salinity were used (ECi = 1.2, 4.5, 7.0 and 10.5 dS/m).In the field no osmotic adjustment by the leaf sheaths of plants in response to salinity was observed. The osmotic potential of corn leaf sheaths (π) decreased with ontogeny in all treatments. The midday leaf water potential (ψL) in maize irrigated with 10.5 dS/m water was 0.75 MPa lower than in plants irrigated with 1.2 dS/m water.In the continuous treatment grain yield was reduced significantly with each increase in salt concentration, and the relationship between relative yield (y) and ECi could be expressed as y = 100?8.7 (ECi-0.84). With alternating irrigation and 7.0 dS/m treatment the grain yield was the same as in the low EC treatment (6.98 kg/m2).  相似文献   

5.
Due to the competitive use of available water resources, it has become important to define appropriate strategies for planning and management of irrigated farmland. To achieve effective planning, accurate information is needed for crop water use requirements, irrigation withdrawals, runoff and nitrate leaching as a function of crop, soil type and weather conditions at a regional level. Interfacing crop models with a geographic information system (GIS) extends the capabilities of the crop models to a regional level. The objective of this study was to determine the irrigation requirements, annual runoff and annual nitrate leaching for the most important crops of the Tibagi river basin in the State of Parana, Brazil. The computer tool selected for this study was the Decision Support System for Agrotechnology Transfer (DSSAT) version 3.5 (98.0) and its associated crop modeling and spatial application system AEGIS/WIN. It was assumed that farms within the same county use similar management practices. To achieve representative estimates of irrigation requirements, the weather data from stations located within each county or the nearest weather station were used. A weighting factor based on the proportion of soil type and crop acreage was applied to determine total annual irrigation withdrawals, annual runoff and nitrate leaching for each county in the river basin. The model predicted outputs, including yield, irrigation requirements, runoff and nitrate leached for different soil types in each county, were analyzed, using spatial analysis methods. This allowed for the display of thematic maps for irrigation requirements, annual runoff and nitrate leaching, and to relate this information with irrigation management and planning. The maximum annual irrigation withdrawal, runoff and nitrate leaching were 22,969 m3 per year, 31,152 m3 per year and 1488 t N per year in the Tibagi river basin. This study showed that crop simulation models linked to GIS can be an effective planning tool to help determine irrigation requirements for river basins and large watersheds.  相似文献   

6.
Root growth, water potential, and yield of irrigated rice   总被引:3,自引:0,他引:3  
Root length density (Lv), leaf water potential (Ψ leaf) and yield of rice were studied in 1983 and 1984 on a Phool bagh clay loam (Typic Haplaquoll) and on a Beni silty clay loam (Aquic Hapludoll) in the Tarai region of Uttar Pradesh under naturally fluctuating shallow (0.07–0.92 m) and medium-depth (0.13–1.26 m) water table conditions with six water regimes ranging from continuous submergence under 0.05 m ± 0.02 m (Ic) to completely rainfed (Io). In irrigation treatments, Ic1, Ic3, Ic5, and Ic7, 0.07 m irrigation was applied on days 1, 3, 5, and 7 respectively, after the disappearance of ponded water. Maximum rooting depth (0.55 m in the shallow and 0.65 m in the medium-depth water table) was attained at the dough stage (125 days after transplanting) and was more strongly influenced by fluctuations in water table depth than by the water regime. For wet regimes (Ic1–Ic5), roots were concentrated at and above the water table interface and had greater horizontal development, whereas in dry regimes, (Ic7 and Io) they were concentrated in lower horizons and had a more vertical distribution. Like Lv, Ψ leaf was not significantly affected by water regime up to 90–95 days after rice transplanting but was significantly affected thereafter, except for Lv beneath 0.2 m–0.25 m. Grain yields with irrigation treatments Ic1 and Ic3 under shallow and Ic1 under medium-depth water table conditions were not significantly different from those under continuous submergence, but there was a (nonsignificant) trend to lower yield with less water. However, differences among the wet regimes (Ic, Ic1, and Ic3) were small (141–490 kg ha–1) under shallow and 413–727 kg ha–1 under medium-depth water table conditions. The results demonstrate that optimum yield (5500–6000 kg ha–1) could be obtained under Tarai conditions by adopting an intermittent irrigation schedule of 3–5 days after the disappearance of ponded water under shallow, and of 1–3 days under medium-depth water table conditions, in place of continuous submergence. Received: 26 February 1996  相似文献   

7.
This paper presents a water and nitrogen balance model for the surface ponded water and soil profile system of rice (Oryza sativa L.) fields. The model estimates the daily water balance components, as well as, the daily losses and transformations of nitrogen. Data from two neighbouring rice fields during the growing season of 2005 in the Thessaloniki plain of Northern Greece were used for the application of the model. The data set of field A was used for the calibration of the model, while the data set from the field B for validation of model. Simulation results of total inorganic nitrogen in the soil and runoff water exhibited reasonable agreement with the measured data during calibration and verification of the model. Significant amounts of applied irrigation water were lost through surface runoff and deep percolation into the groundwater. The sum of nitrogen inputs from fertilization, mineralization and irrigation water were 292.7 and 280.4 kg ha−1 for field A and B, respectively. Nitrogen uptake by algae in ponding water and plants was one of the main processes of nitrogen reduction in the rice field systems with an amount of 125.7 and 131.8 kg ha−1 for field A and B, respectively. Leaching through percolated water was the other significant process with 118.3 and 120.8 kg ha−1, respectively. Gaseous losses of nitrogen (via volatilization and denitrification) were also substantial processes of nitrogen reduction in the flooded compartment. The study showed that the simple model presents important results for the water and nitrogen management in rice fields. This information can be used for irrigation water saving and prevention of water resources contamination in rice-based agroecosystems.  相似文献   

8.
Annual carbon and nitrogen loadings for a furrow-irrigated field   总被引:1,自引:0,他引:1  
Evaluations of agricultural management practices for soil C sequestration have largely focused on practices, such as reduced tillage or compost/manure applications, that minimize soil respiration and/or maximize C input, thereby enhancing soil C stabilization. Other management practices that impact carbon cycling in agricultural systems, such as irrigation, are much less understood. As part of a larger C sequestration project that focused on potential of C sequestration for standard and minimum tillage systems of irrigated crops, the effects of furrow irrigation on the field C and N loading were evaluated. Experiments were conducted on a laser-leveled 30 ha grower's field in the Sacramento valley near Winters, CA. For the 2005 calendar year, water inflow and runoff was measured for all rainfall and irrigation events. Samples were analyzed for C and N associated with both sediment and dissolved fractions. Total C and N loads in the sediment were always higher in the incoming irrigation water than field runoff. Winter storms moved little sediment, but removed substantial amounts of dissolved organic carbon (DOC), or about one-third of the total C balance. Despite high DOC loads in runoff, the large volumes of applied irrigation water with sediment and DOC resulted in a net increase in total C for most irrigation events. The combined net C input and N loss to the field, as computed from the field water balance, was 30.8 kg C ha−1 yr−1 and 5.4 kg N ha−1 yr−1 for the 2005 calendar year. It is concluded that transport of C and N by irrigation and runoff water should be considered when estimating the annual C field balance and sequestration potential of irrigated agro-ecosystems.  相似文献   

9.
Four different levels of drip fertigated irrigation equivalent to 100, 75, 50 and 25% of crop evapotranspiration (ETc), based on Penman–Monteith (PM) method, were tested for their effect on crop growth, crop yield, and water productivity. Tomato (Lycopersicon esculentum, Troy 489 variety) plants were grown in a poly-net greenhouse. Results were compared with the open cultivation system as a control. Two modes of irrigation application namely continuous and intermittent were used. The distribution uniformity, emitter flow rate and pressure head were used to evaluate the performance of drip irrigation system with emitters of 2, 4, 6, and 8 l/h discharge. The results revealed that the optimum water requirement for the Troy 489 variety of tomato is around 75% of the ETc. Based on this, the actual irrigation water for tomato crop in tropical greenhouse could be recommended between 4.1 and 5.6 mm day−1 or equivalent to 0.3–0.4 l plant−1 day−1. Statistically, the effect of depth of water application on the crop growth, yield and irrigation water productivity was significant, while the irrigation mode did not show any effect on the crop performance. Drip irrigation at 75% of ETc provided the maximum crop yields and irrigation water productivity. Based on the observed climatic data inside the greenhouse, the calculated ETc matched the 75–80% of the ETc computed with the climatic parameters observed in the open environment. The distribution uniformity dropped from 93.4 to 90.6%. The emitter flow rate was also dropped by about 5–10% over the experimental period. This is due to clogging caused by minerals of fertilizer and algae in the emitters. It was recommended that the cleaning of irrigation equipments (pipe and emitter) should be done at least once during the entire cultivation period.  相似文献   

10.
Summary A kinematic wave mathematical model which simulates the hydraulics of continuous flow furrow irrigation was linked with a crop yield model and used in combination with an economic model to analyze the effects of inflow rate, water infiltration characteristics and furrow length on uniformity of infiltrated water, runoff, gross profits and optimal number of 12 hour irrigations for corn (Zea mays) assuming other management practices to be constant. Higher uniformity of infiltrated water but more runoff and, in some cases, more deep percolation resulted from increased flow rates. Increases in uniformity of infiltrated water leads to greater profits, which are however offset by the associated increases in runoff and deep percolation. The study shows economically optimal water management for furrow irrigation can be obtained with proper balance between changes in the input variables and runoff and to some extent deep percolation.Contribution of the Department of Soil and Environmental Sciences, University of California, Riverside 92521. This study was supported by California State Water Resources Control Board Contract # 2-043-300-0  相似文献   

11.
This study deals with the effects of intermittent irrigation on actual evapotranspiration (ET) and leaf area index (LAI) of “Superior” grapevines grown in a semiarid environment in northeastern Brazil. The field experiments were carried out during two consecutive fruiting cycles (dry season and rainy season) of grapevines (Vitis vinifera, L) irrigated by drip at a rate of 2.3 L h−1. Four irrigation time intervals were used as follow: one turn irrigation-time (I-1), two turn irrigation-time (I-2), three turn irrigation-time (I-3), and four turn irrigation-time (I-4). The growing cycles received different amounts of water by irrigation, which for dry and rainy seasons were 470.5 and 243.5 mm, respectively. The ET increased from 5.7 to 7.5 mm day−1 when the irrigation time interval changed from I-1 to I-4 and resulted in a higher value of LAI. The values of ET during the rainy-season growing cycle were much lower throughout the phenological stages, reaching a maximum of 6.4 mm day−1 for I-4 in the maturation stage. For both growing cycles, an increase in the cumulated vineyard evapotranspiration was observed when changing the irrigation time interval from I-1 to I-4, except I-2, which was slightly greater than I-3. Soil water drainage had a very gradual exponential decrease from I-1 to I-4 in both fruiting cycles. The grapevine coefficient under intermittent irrigation can be described as function of days after pruning by polynomial models.  相似文献   

12.
High levels of soil sodicity, resulting from intensive irrigation with saline-sodic waters, lead to an increased soil susceptibility to seal formation and to severe problems of runoff and soil erosion. The objective of this study was to investigate the efficacy of the addition of small amounts of an anionic polyacrylamide (PAM) to the irrigation water in controlling seal formation, runoff and soil erosion. Two predominantly montmorillonitic soils were studied, a grumusol (Typic Haploxerert) and a loess (Calcic Haploxeralf), having naturally occurring exchangeable sodium percentage (ESP)>12. The soils were exposed to 60 mm of simulated irrigation with commonly used tap water (TW, electrical conductivity=0.8 dS m–1; sodium adsorption ratio (SAR)=2), or saline water (SW, electrical conductivity=5.0 dS m–1; SAR>12). PAM effectiveness in controlling runoff and erosion from the sodic soils was compared with runoff and erosion levels obtained from untreated soils having low ESPs (<4). For both soils and for both water qualities and polymer concentrations in the irrigation water, PAM was efficient in controlling runoff at low ESP levels and inefficient at high ESP levels. At moderate ESP levels, PAM's efficacy in controlling runoff was inconsistent and varied with water quality and polymer concentration. Conversely, in general, soil loss originating from rill erosion, was significantly and effectively reduced in moderate and high ESP soils by addition of PAM to the irrigation water, irrespective of water quality and polymer concentration. PAM was more effective in reducing rill erosion than in reducing runoff in the moderate and high ESP samples, because the energy involved in generating runoff is much higher than that involved in rill erosion. PAM treated surface aggregates were not stable against the distructive forces leading to seal formation and runoff production; but they were stable enough to resist the hydraulic shear exerted by the runoff flow.  相似文献   

13.
The HYDRUS-2D model was experimentally verified for water and salinity distribution during the profile establishment stage (33?days) of almond under pulsed and continuous drip irrigation. The model simulated values of water content obtained at different lateral distances (0, 20, 40, 60, 100?cm) from a dripper at 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140 and 160?cm soil depths at different times (5, 12, 19, 26 and 33?days of profile establishment) were compared with neutron probe measured values under both irrigation scenarios. The model closely predicted water content distribution at all distances, times and soil depths as RMSE values ranged between 0.017 and 0.049. The measured mean soil water salinity (ECsw) at 25?cm from the dripper at 30, 60, 90 and 150?cm soil depth also matched well with the predicted values. A correlation of 0.97 in pulsed and 0.98 in continuous drip systems with measured values indicated the model closely predicted total salts in the root zone. Thus, HYDRUS-2D successfully simulated the change in soil water content and soil water salinity in both the wetting pattern and in the flow domain. The initial mean ECsw below the dripper in pulsed (5.25?dSm?1) and continuous (6.07?dSm?1) irrigations decreased to 1.31 and 1.36?dSm?1, respectively, showing a respective 75.1 and 77.6% decrease in the initial salinity. The power function [y?=?ax ?b ] best described the mathematical relationship between salt removal from the soil profile as a function of irrigation time under both irrigation scenarios. Contrary to other studies, higher leaching fraction (6.4–43.1%) was recorded in pulsed than continuous (1.1–35.1%) irrigation with the same amount of applied water which was brought about by the variation in initial soil water content and time of irrigation application. It was pertinent to note that a small (0.012) increase in mean antecedent water content (θ i ) brought about 8.25–9.06% increase in the leaching fraction during the profile establishment irrespective of the emitter geometry, discharge rate, and irrigation scenario. Under similar θ i , water applied at a higher discharge rate (3.876?Lh?1) has resulted in slightly higher leaching fraction than at a low discharge rate (1.91?Lh?1) under pulsing only owing to the variation in time of irrigation application. The influence of pulsing on soil water content, salinity distribution, and drainage flux vanished completely when irrigation was applied daily on the basis of crop evapotranspiration (ETc) with a suitable leaching fraction. Therefore, antecedent soil water content and scheduling or duration of water application play a significant role in the design of drip irrigation systems for light textured soils. These factors are the major driving force to move water and solutes within the soil profile and may influence the off-site impacts such as drainage flux and pollution of the groundwater.  相似文献   

14.
Runoff nitrogen from a large sized paddy field during a crop period   总被引:2,自引:0,他引:2  
Nutrient load management is an important environmental issue because nutrient loads from farmlands degrade surface waters as a result of anthropogenic eutrophication. Nitrogen load from a large sized paddy field during the crop period was examined from the results of field measurements carried out in 2004. The 1.5 ha paddy field was located east of Biwa Lake. Irrigation water volume and ponded water depth were continuously observed. Field measurements were carried out at least once a week to analyze total nitrogen (TN) concentration in the irrigation water and ponded water. Daily inflow and outflow of nitrogen was obtained by multiplication of the nitrogen concentration and transported water volume, consisting of irrigation, precipitation, evapotranspiration, percolation and surface discharge. Water outflow volume was calculated by a tank model that consisted of three small tanks connected to represent ponded water depth differences in the large paddy field. The calculated nitrogen load was 18.8 kg ha−1, with 7.2 kg ha−1 from surface drainage and 11.6 kg ha−1 from percolation loss. The runoff nitrogen value of 18.8 kg ha−1 was within the range of the reported values investigated in a medium-sized paddy field. The observed value was close to the value for a low percolation flux paddy field where less irrigation water has been applied. These results suggest that less irrigation water keep runoff nitrogen low. This also indicates that irrigation water management can reduce nitrogen load from large sized paddy fields.  相似文献   

15.
Lysimetric experiments were conducted to determine the contribution made by groundwater to the overall water requirements of safflower (Carthamus tinctorius L.). The plants were grown in 24 columns, each having a diameter of 0.40 m and packed with silty clay soil. The four replicate randomized complete block factorial experiments were carried out using different treatment combinations. Six treatments were applied during each experiment by maintaining groundwater, with an EC of 1 dS m?1, at three different water table levels (0.6, 0.8 and 1.10 m) with and without supplementary irrigation. The uptake of groundwater as a part of crop evapotranspiration was measured by taking daily readings of the water levels found in Mariotte tubes. The supplementary irrigation requirement for each treatment was applied by adding water (EC of 1 dS m?1). The average percentage contribution from groundwater for the treatments (with and without supplementary irrigation under water table levels of 0.6, 0.8 and 1.10 m) were found to be 65, 59, 38% and 72, 70, 47% of the average annual safflower water requirement (6,466 m3 ha?1). The increase in groundwater depths under supplementary irrigation treatments from 0.6 to 0.80 and 1.10 m caused seed and oil yield reductions of (7, 23.10%) and (48.23, 65.40%), respectively.  相似文献   

16.
Years of ill-managed irrigation have triggered secondary soil salinization in the Khorezm region of Uzbekistan located in the Aral Sea basin. To assess the magnitude and dynamics of secondary soil salinization, to quantify improved management strategies and to derive updated irrigation standards, the soil water model Hydrus-1D was used. Water and soil salinity dynamics in three cotton fields with different soil textures were monitored and simulated for the years 2003 and 2005. Until now in Khorezm, overall soil salinity could only be controlled by pre-season salt leaching using high amounts of water. This water, however, may not be available anymore in the near future because of global climate change and shrinking fresh water resources. Simulations confirmed that the present leaching practice is barely effective. At two out of the three locations within a sandy loam field, leaching did not remove salts from the 2 m profile. Instead, salts were only shifted from the upper (0–0.8 m) to the lower (0.8–2 m) soil layer. Strong groundwater contribution to evapotranspiration triggered secondary (re)-salinization of the topsoil during the cropping season. As a consequence, salt amounts in the top 0.8 m of soil increased from 9 to 22 Mg ha−1 in the field with loamy texture, and from 4 to 12 Mg ha−1 in the field with sandy texture. Management strategy analyses revealed that reducing soil evaporation by a surface residue layer would notably decrease secondary soil salinization. Here, owing to the reduced capillary rise of groundwater, post-season salt contents of the three fields were reduced by between 12 and 19% when compared with residue-free conditions. Even more effective would be improving the efficiency of the drainage system so as to lower the groundwater table. This would require a revision of the current irrigation management schemes, but could, as simulations revealed, reduce the post-season salt content in the 2 m soil profile of the three fields by between 36 and 59% when compared with unaltered conditions. For the revised irrigation management in total not more water than already foreseen by national irrigation recommendations would be needed. Increasing leaching and irrigation efficiency would help sustaining the present cotton production levels while reducing future leaching demands.  相似文献   

17.
The use of digital infrared thermography and thermometry to investigate early crop water stress offers a producer improved management tools to avoid yield declines or to deal with variability in crop water status. This study used canopy temperature data to investigate whether an empirical crop water stress index could be used to monitor spatial and temporal crop water stress. Different irrigation treatment amounts (100%, 67%, 33%, and 0% of full replenishment of soil water to field capacity to a depth of 1.5 m) were applied by a center pivot system to soybean (Glycine max L.) in 2004 and 2005, and to cotton (Gossypium hirsutum L.) in 2007 and 2008. Canopy temperature data from infrared thermography were used to benchmark the relationship between an empirical crop water stress index (CWSIe) and leaf water potential (ΨL) across a block of eight treatment plots (of two replications). There was a significant negative linear correlation between midday ΨL measurements and the CWSIe after soil water differences due to irrigation treatments were well established and during the absence of heavy rainfall. Average seasonal CWSIe values calculated for each plot from temperature measurements made by infrared thermometer thermocouples mounted on a center pivot lateral were inversely related to crop water use with r2 values >0.89 and 0.55 for soybean and cotton, respectively. There was also a significant inverse relationship between the CWSIe and soybean yields in 2004 (r2 = 0.88) and 2005 (r2 = 0.83), and cotton in 2007 (r2 = 0.78). The correlations were not significant in 2008 for cotton. Contour plots of the CWSIe may be used as maps to indicate the spatial variability of within-field crop water stress. These maps may be useful for irrigation scheduling or identifying areas within a field where water stress may impact crop water use and yield.  相似文献   

18.
Field experiments were carried out to investigate water and salt management and its effects on Leymus chinensis growth under drip irrigation on saline-sodic soils of the Songnen Plain, China. The ECe of the experiment soil here is 15.2 dS/m and SARe is 14.6 (mmolc L−1)1/2. The threshold of soil matric potential (SMP) was preset in different treatments (−5, −10, −15, −20 and −25 kPa) to control the timing of the irrigation cycle using vacuum tensiometers buried at 0.2 m depth immediately under drip emitters. Drip irrigation frequency and soil matric potential significantly influenced water and salt distributions and L. chinensis growth. In the root zone, the soil water content increased with the SMP, but at deeper layers there were no significant differences in soil water content due to the effect of groundwater. Electrical conductivity showed that there was a low-salt zone near the emitters and that drip irrigation inhibited the buildup of salts in the root zone. There was more leaching of salts for −5 and −10 kPa treatments than for the −15, −20 and −25 kPa treatments. After two years of drip irrigation, the surface salts were well leached, and had moved down with the water to depths below 40 cm. The pH of each treatment was a little decreased and the soil nutrient of S1-S5 were all increased after reclamation, but there were no obvious differences of the five treatments. The best growth was achieved with soil matric potentials of −5 and −10 kPa: the plant height, number and length of spikes, number of tillers, coverage and aboveground biomass all attained their maximum values during the growth periods of L. chinensis, with no significant differences between those two treatments. Thus, in the Songnen Plain, drip irrigation can be used on transplanted L. chinensis for restoration of saline-sodic soils. The results provide theoretical and technological guidance for sustainable reclamation salt-affected soil and the quick restoration and reconstruction of saline-sodic grassland.  相似文献   

19.
The study was conducted to evaluate surge irrigation against continuous irrigation in terms of irrigation and water use efficiencies to produce onion. It was carried out at Mekelle Agricultural Research Center, Ethiopia on 70 m long and 0.6 m center–center spacing furrows of 0.26% average slope on a clay soil. The treatments consisted of factorial combination of two discharges (Q 1 = 1 l/s and Q 2 = 2 l/s) and three-cycle ratios (CR1 = 1/3, CR2 = 1/2, and C = 1 for continuous irrigation). Surge flow treatments advanced faster than the respective continuous flow treatments with surge flow treatment SF21 being the fastest. The best value of application efficiency (60%) was achieved for SF11 and the least (46%) for CF2. The maximum (87%) and minimum (68%) values of distribution uniformity were obtained for cycle ratios CR1 and C, respectively. Storage efficiency was highest (89%) for CF2 and lowest (78%) for SF12. Onion yield was significantly affected (p < 0.05) by the interaction effect, the highest (14,400 kg/ha) and the lowest (13,363 kg/ha) yields were obtained for SF11 and SF21, respectively. The maximum irrigation water use efficiency (2.27 kg/m3) was observed for SF11 and the minimum (1.68 kg/m3) for CF2. Surge irrigation was found to be a promising irrigation practice for onion production in the study area as it saves water, reduces irrigation period, and increases the crop yield.  相似文献   

20.
A groundwater crisis is going on in the North China Plain (NCP), due to the excessive water consumption of the traditional winter wheat (WW)/summer maize (SM) double cropping system (two harvests in one year). In order to improve the water use efficiency in this particular cropping system and to evaluate the sustainability of water usage in Chinese agroecosystems, two field experiments were conducted from October 2004 to September 2006 at two sites of the North China Plain. The field experiments included four treatments: (1) farmers’ practice (FP) with two harvests in one year (WW/SM rotation), (2) FP with reduced input (RI) of water and nitrogen (WW/SM rotation), (3) three harvests in two years (TW, 1st year: WW/SM; 2nd year: spring maize), and (4) continuous spring-maize monoculture (CS) with one harvest per year (spring maize). In the treatments RI, TW and CS, the amount and timing of irrigation and nitrogen fertilization was optimized using TDR based soil moisture measurements and the Nmin-method, respectively. Data showed that the utilization efficiency of irrigation water can be improved by optimizing soil water management compared to the traditional water management (FP). However, the groundwater net consumption required for RI still surpassed 300 mm yr−1. Both FP and RI, still overused groundwater resources. The groundwater consumption in the continuous spring maize (CS) was on average 139 mm yr−1. Therefore, the CS system can show the potential to use groundwater sustainably in the long term. Water usage of the TW treatment was in between the water usage of the other treatments. The grain yields in the double cropping systems (FP and RI) were higher than that in the two other systems (TW and CS). But the CS treatment showed the higher WUE than others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号