首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotypic differences in the translocation of temporarily stored 14C from the stem to the grains in spring wheat (Triticum aestivum L.)
In three field experiments with two spring wheat genotypes (Kolibri and breeding line 93117 ), changes in the total nonstructural carbohydrates (TNC) of the stem were observed after anthesis. Maximum values were measured in the third or fourth week following anthesis when stems contained 300 to 400 mg TNC. Thereafter TNC content declined up to maturity.
Flag leaves of individual shoots or all plants in micro-plots were labelled with 14C 5 days prior to anthesis, at anthesis or 5 days after anthesis to observe long term movements of assimilates during grain filling. After a chase period of two to three days, 60 to 80 % of total 14C recovered in the shoot was in the stem. From total l4C recovered two to three days after labelling, Kolibri had translocated 12.5 to 27.0 % into the grains by maturity whereas this portion was significantly higher for the breeding line 93117 (22.5 to 43.9 %). It was concluded that genotypes differ in the translocation of soluble carbohydrates from the stem to the grains. These differences were not related to parameters describing the 'source-sink' relationship, such as leaf area, grain number or grain size. However, the lower translocation rates of Kolibri coincided with a lower TNC concentration in the stem dry matter. This was due to a higher stem weight at anthesis, a longer period of stem elongation and a higher incorporation of assimilates into structural carbohydrates in non elongating stem parts after anthesis. It was therefore suggested that the accumulation of TNC in the stem and the remobilisation of these reserves for grain filling are determined partly by factors related to the carbohydrate metabolism in the stem.  相似文献   

2.
Effect of plant growth regulators Naphthalene acetic acid (NAA), Gibberellic acid (GA3) and Kinetin on 14CO2 assimilation, partitioning of 14C into major biochemical fractions and translocation of assimilates was studied in different parts of Indian Mustard ( Brassica juncea ) at late ripening stage. Leaves, stem and pod walls are photosynthetically active and are important sources for seed filling. NAA and kinetin increased the 14CO2 assimilation rate in all the three photosynthetically active parts. All the three growth regulators increased the export of 14assimilates out of source organs and increased the movement of assimilates into the reproductive parts (pods). The increased movement of photoassimilates into the developing pods may be due to the stimulation of sink activity by the growth regulators which resulted in the higher demand for photoassimilates. It was suggested that growth regulators may increase yield by altering distribution of assimilates in the mustard plants.  相似文献   

3.
夏玉米各器官氮素积累与分配动态及其对氮肥的响应   总被引:11,自引:0,他引:11  
为探明夏玉米各器官氮素积累与分配动态及其对氮肥的响应,以郑单958为材料,设置5个施氮水平进行了连续2年的大田定位研究。结果表明,除籽粒外各器官的氮素积累进程都呈单峰曲线,茎鞘在吐丝期达到峰值,而叶片、苞叶和穗轴则到吐丝后12 d左右达到峰值,之后逐渐下降;籽粒和整株的氮素积累随生育进程持续增加,成熟期最高。与其他器官相比,叶片对氮素供给更敏感,氮胁迫使叶片氮素积累高峰提前,促进氮素提前向外转运,导致其率先衰老。施氮能提高各器官在各生育时期的氮素积累量和积累速率,但不改变氮素积累变化趋势。总体上,施氮量180 kg N hm-2可满足夏玉米对氮素的需求,获得较高的产量。以各器官氮素积累最大值与成熟期的差值计算,各处理再转运氮素对籽粒的贡献率均表现为叶片>茎鞘>穗轴>苞叶,各器官再转运氮素对籽粒贡献率之和平均为53.3%,其中苞叶和穗轴占12.3%,也是籽粒中氮素来源的重要组成部分。  相似文献   

4.
Allometric relationship (W1=αW2β, where α and β are the parameters) was fitted among growth components in two maize cultivars viz., Decani hybrid and Deccan 101 in order to obtain estimates of other components of the plant system which are time consuming measurements. The results of the agronomic field trial conducted at the University of Agricultural Sciences, Bangalore were used. This model's predictability was compared with linear regression model. In both the cultivars, allometric model using leaf area (LA - W2.) and leaf dry matter (LDM - W2) simulated total dry matter production (DMP - W2) by 79 to 98 % of actual values. Further allometric model fitted well to predict stem dry matter by 91 to 93 % using LDM and LA 89 to 92 % using LDW. Whereas linear regression model estimated total DMP by 95 to 96 % using cob dry matter. In case of LDM - LA association, linear regression model was found to be the best than other model. The leaf area decreased after silking in both the cultivars and the ratio of growth rates of DMP – LA ( β 2) was negative. Between cultivars, cv. Deccan 101 had higher R2 values in most of the relationships than cv. Deccan hybrid indicating the varietal difference.  相似文献   

5.
The role of leaves, stem and reproductive parts in 14CO2 fixation and subsequent photosynthate translocation was studied in Indian mustard ( Brassica juncea L.) at three growth stages. The data indicated that leaves, stem and pods are important sources of photosynthates for seed filling. At bud emergence stage leaves are the principle site of 14CO2, fixation. The contribution of leaves declines at subsequent stages, where as the contribution of pod walls increased from bud emergence stage to ripening stage. The contribution of the stem remains more or less constant at all three growth stages studied. Although stem can fix 14CO2, at bud emergence and flowering stages it imported 14C-photosynthates from leaves. However, stem exported photosynthates during subsequent growth stages.  相似文献   

6.
The effect of fungicides and their combination on yield of barley under different nitrogen, slurry and tillage treatments was investigated at Hohenschulen Experimental Station near Kiel, Germany in 1991–97. Various fungicide treatments (no fungicide, and treatment with stem, leaf and ear fungicides and combinations of these), two nitrogen levels (120 and 240 kg N ha−1), two tillage systems (minimum and conventional tillage) and four slurry applications (no application, and autumn, spring and autumn plus spring applications) were used. On average, fungicide application increased barley yield by 1.1 t ha−1. The fungicide treatments could be classified into four types: (1) fungicides against stem diseases, which slightly increased yield by 0.25 t ha−1, very similar to the results for the untreated control; (2) leaf fungicides and ear fungicides applied separately, and fungicides against a combination of stem and leaf diseases, which increased yield by 1.0 t ha−1 on average; (3) fungicides against a combination of ear and stem diseases, which increased the yield by 1.22 t ha−1, and (4) fungicides against a combination of leaf and ear diseases and a combination of stem, leaf and ear diseases, which increased yield by 1.59 t ha−1 on average. The effects of fungicide on the yield were modified by crop husbandry. It can be concluded that application of fungicides against a combination of leaf and ear diseases could increase barley yield and reduce yield variation.  相似文献   

7.
Accumulation of assimilates in stem-rust-infected wheat leaves
Using wheat plants (cv. 'Prelude'), the effects of stem-rust infection on photosynthesis and assimilate partitioning were studied with the aid of the short-lived carbon isotope 11C. Photosynthesis of strongly infected leaf parts declined by about 30 % within 1 day. This rapid inhibition was caused by the formation of appressoria and the growth of infection tubes into the stomata, leading to a reduction in gas exchange. Further decline of photosynthesis to 5–10 % was accompanied by the degradation of chlorophyll. Nevertheless, during sporulation, the dry weight of the infected leaf area increased by about 50 %. With the use of 11C, the reduced export of photosynthate from the infected leaf part and the capture of labelled compounds from the apical leaf section were quantified. The enhanced storage of assimilates in stem-rust-infected leaves can be attributed to the increase in invertase activity.  相似文献   

8.
Seedlings of a maize hybrid sensitive to chilling initially grew in the growth chamber of the phytotron at 20/ 17°C (day/night) and after the formation of the fourth leaf, the soil temperature was lowered to 5°C. Under such growth conditions the dynamics of dry weight change, gas exchange and the distribution of 14C-assimilates in seedlings were examined. The low soil temperature inhibited daily growth of dry weight of whole seedlings more than their photosynthesis. Simultaneously, it was also responsible for a greater increase in dissimilative losses.
During 37 hours (day-night-day), following exposure to 14CO2, dissimilation in seedlings in cool soil (5°C) and in non-chilling conditions amounted to 35.1 % and 23.4 % of assimilated 14C (AC), respectively. At lower soil temperature relatively high dissimilative losses were observed on the first day after exposure (23.5 %), lower at night (9.9 %) and the lowest on the following day - merely 1.7 % AC. Higher losses of 14C under chilling conditions occurring on the first day were a result of limited photosynthetic refixation of 14CO2 At night, however, they were associated with a prolonged period of intensive translocation of assimilates to the stem. It was assumed that an excessive accumulation of assimilates in leaf blades might be an additional factor responsible for increased dissimilative losses at low temperature during the first twenty-four hours. In the third period of measurements, as a result of a limited transport of 14C, dissimilative losses were lower than in previous ones and were not dependent upon soil temperature.  相似文献   

9.
Grain yield and yield components (grains per ear, grain weight, 1000-grain weight, ear weight, ear seed ratio and dry matter partitioning between ear and seed) were examined in a wheat genotype (PBW-343) with well-filled grains and a Triticale genotype (DT-46) with poorly filled grains (showing grain shrivelling) grown in pots. Six days after anthesis (DAA), benzyladenine (BA) @2 µg ear−1 and abscisic acid (ABA) @4 µg ear−1 were injected at the base of the mother shoot ear in both species. It was observed that, in both wheat and Triticale , BA increased the grain weight, grain number and partitioning of dry matter between ear and seed, whereas ABA decreased the grain weight, grain number and dry matter partitioning between ear and seed. However, these decreases were slower in Triticale than in wheat. BA treatment increased the grain dry matter accumulation, which in turn resulted in better filling of grains and increased the grain weight in both wheat and Triticale . The average grain weight of Triticale was lower than that of wheat. Thus, it appears that variation in grain weight between wheat and Triticale might be due to different availabilities of growth-promoting phytohormones such as cytokinins and assimilates.  相似文献   

10.
The effect of plant water stress on net photosynthesis and leaf growth were investigated in order to determine to what extent leaf water potential during vegetative growth and silking affects maize development.
Two commercial maize hybrids grown in pots in a glasshouse were subjected to leaf water potentials of -1300 and -1700 kPa during the eighth leaf stage and during silking to -1700 and -2300 kPa to previously unstressed, moderately and severely stressed plants. The effect of stress on inhibiting CO2 uptake rates and leaf areas, as well as the recovery after alleviating stress, were compared to that of unstressed plants.
No substantial differences in CO2 uptake rates were found between medium and long seasoned cultivars. The CO2 uptake rates per unit leaf area decreased to negative values under both moderate and severe stress conditions during both growth stages. During silking, the recovery of CO2 uptake rate was much lower than during the eight leaf stage. Leaf area decreased proportionally with increased stress but did not recover after alleviating stress on plants stressed during both the eighth leaf and silking stages.  相似文献   

11.
Excised ears of Triticum durum (HD 4502 and B 449) and T. aestivum (Kalyansona and Kundan) varieties were cultured in 14C-sucrose, and the uptake and distribution of 14C within the ear was examined. Species-level differences in the distribution of 14C to spikelets at basal, middle and apical positions in the wheat ear (vertical distribution) were observed. T. aestivum var. Kalyansona and Kundan showed no limitation in vertical translocation of 14C-sucrose, whereas in T. durum there was a decrease in the distribution of 14C to apical spikelets. Within a spikelet, the distribution of 14C-sucrose to distal grains was significantly less than that to proximal grains in all the genotypes.  相似文献   

12.
Photosynthetic Response of Wheat to Soil Water Deficits in the Tropics   总被引:1,自引:0,他引:1  
The changes in photosynthetic rate and translocation of photosynthates in winter wheat (Triticum Aestivum L.) grown in lysimeters were studied, in response to periodic soil water deficit during late tillering and flowering stages. Soil water deficits were imposed to previously nonstressed plants during late tillering and flowering states. Timing of irrigation was scheduled according to the ratio between irrigation water applied and cumulative pan evaporation (IW/CPE) of 0.75 (low deficit), and 0.5 (moderate deficit), as well as by suspending irrigations after crown root initiation stage (severe deficit). To determine the rate of photosynthesis, a short radioactive pulse of 14CO2 with 300 ppm concentration was given to second leaf from the top at tillering, and to the flag leaf at flowering stages for 20 second exposure time. The translocation of photosynthates was estimated by scanning 14C activity in different plant parts. In late tillering the midday Photosynthetic rate (PR) was significantly 3 mg CO2 dm?2 h?1 lower under low water deficit (WD1) than under zero water deficit (WD0). Under higher stress conditions, soil water acted as a limiting factor to keep the rate from rising above 13.2 during stress at late tillering (WD2), 14.5 flowering (WD4), and 10.0 mg CO2 dm?2 h?1 for stress at both the growth stages (WD5), respectively. The difference in daily accumulated photosynthesis (8 h), between stressed and nonstressed were 15, 40, 42, and 77 mg CO2 dm?2 h?1 respectively at WD1 WD2, WD4, and WD5. The retention of 14C in flag leaf decreased considerably after 24 hours of exposure time when the labelled assimilates were translocated in bulk to the ear head. Under stressed condition a general trend was observed for upward translocation of assimilates towards the ear, even from the stem and root. The percent 14C activity observed in ear after 24 hours was greatest in severely stressed plants. The photosynthetic rate is reasonable predicted by midday LDR and surface moisture.  相似文献   

13.
为探讨不同播期对鲜食玉米果穗特性及经济效益的影响,以水果玉米品种‘超甜1号’为材料,调查不同播期(5月8日、5月18日、5月28日及6月7日,分别用B1、B2、B3、B4处理表示)下鲜食玉米的农艺性状、叶绿素SPAD值、吐丝期光合特性、穗部特征以及经济效益。结果表明:鲜食玉米的株高表现为B1>B3>B2>B4,而茎粗则以5月18日以后播种的较粗。各播期下的玉米叶片叶绿素SPAD值在采摘期内均呈先增加后降低的变化趋势,但在吐丝至采摘阶段表现为B3>B1>B2>B4。不同播期的鲜食玉米在吐丝期穗位叶的净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)均表现为B3>B2>B1>B4,而胞间CO2浓度(Ci)表现趋势正好相反。鲜食玉米的穗行数、穗粒数、穗长和穗粗均表现为B3>B2>B1>B4。从经济效益来看,以B1处理最高,为3.59万元/hm2。  相似文献   

14.
A 2 year field experiment was initiated to compare the effect of ammonium nitrate (AN) and urea (U) fertilizer sources at 0, 45, 90 and 135 kg N acre−1 in combination with 0 and 48 kg K2O acre−1 on dry matter yield (DM), smut index (SI) and ear leaf nutrient composition. The plants at 8-leaf growth stage were exposed to artificial infection and the severity was rated on a 1–9 scale. Elemental leaf (N, K, Ca and Mg) and DM were determined at silking and harvest time, respectively. N:(K+Ca+Mg) ratio in plant tissue was calculated. The plants supplied with AN fertilizer appeared to have had greater advantage in DM yield, accompanied by a marked increase in smut severity at higher N rates than U-treated plants. On average, the relative increases in DM and SI for AN were 8.2 and 9.1%, respectively. Potassium application suppressed smut incidence by 19.6%. The leaf analysis data showed that the plants treated with AN were associated with greater cation uptake than LJ-fed plants. Increasing N rates enhancedsmut severity and resulted in remarkable increases in DM and ear leaf nutrient composition. Leaf Ca and Mg contents were decreased hy increasing K3O rates. The correlation coefficients (r) between ear leaf nutrient contents and SI showed variable significant effects among N sources. Because the plant nutrient levels are determined by many variables, attention was drawn to N:(K+Ca+Mg) ratio in plant tissue for better smut disease interpretations.  相似文献   

15.
A field experiment was conducted to evaluate the effect of long-term exogenous sucrose supply on aspects of corn plant physiology and development during the grain filling period. Concentrated sucrose solution was supplied to corn ( Zea mays L.) stems by an injection technique. This injection technique delivered pressurized solutions through syringe needles sealed to the stem with latex. The pressure was applied to the syringe plunger with ceramic construction bricks. Solutions containing sucrose at 0, 150, and 300 g L−1 were injected over a 32 day period encompassing the duration of the active grain filling period. The primary ears of plants injected with sucrose produced approximately 50% more kernels and 30% more grain weight than those injected with distilled water. The injected internode was also considerably heavier (56%) for plants receiving 300 g sucrose L−1 than plants receiving distilled water. For all measured variables, plants injected with distilled water were either not different from or had larger values than the non-injected controls. After one week sucrose injection caused photo-synthetic inhibition (as measured by chlorophyll fluorescence) in the leaf just above the ear and the ear leaf, and this was more severe for plants receiving 300 g sucrose L−1 than for those receiving 150 g sucrose L−1. For sucrose injected plants, the increased size of the primary ear was concomitant with a large decrease in grain production by the secondary ear and an overall decrease in per plant grain production. These results suggest that the mechanisms for signalling between sinks (the primary and secondary ears) and the primary sink and the source (leaves) are different.  相似文献   

16.
油菜“源”器官中光合产物向籽粒转移的效率是提高油菜收获指数的关键环节,而“源”器官中淀粉酶活性影响同化物向籽粒的运输强度。β-淀粉酶(β-amylase, BAM)及其基因家族成员与油菜高收获指数形成之间的关系还不清楚。本研究选择高产高收获指数型、高产低收获指数型、低产低收获指数型 3 类油菜品种,在终花期后 5、10、15、20、25d 分别取茎杆、叶片、角果皮与种子,分析β-淀粉酶活性及其基因家族成员的表达水平。结果表明,β-淀粉酶活性在所检测“源”器官中酶活性总体随发育时期增加。高收获指数型油菜叶片、角果皮中的β-淀粉酶活性显著高于低收获指数型油菜。β-淀粉酶基因家族中, BAM1、BAM4 与 BAM5 在油菜茎、叶及角果皮中的表达量总体随发育时期增加。花后25 d 时, BAM1与BAM3在高收获指数油菜叶片、角果皮中的表达量显著高于低收获指数油菜。BAM4 与 BAM5 在高收获指数油菜角果皮中的表达量分别于花后 15 d 与 20 d 开始显著高于低收获指数油菜。综合分析认为, BAM1 和 BAM3可能通过促进叶片与角果皮淀粉分解而加强光合产物向籽粒的运输强度;BAM4 与 BAM5 可能主要通过作用于角果皮淀粉分解而调控光合产物向籽粒的运输。BAM4 与 BAM5 也可能参与了油菜种子中淀粉的调控。  相似文献   

17.
王振林  贺明荣 《作物学报》1999,25(2):162-168
灌溉条件下,减源可使小麦叶片光合速率增加,减库光合速率降低。增降幅度因品种而异。鲁215953、山农48-2,鲁麦14和莱州953等品种减源后光合速率增加较少,但减库后光合速率明显降低;鲁麦15、核生2 , D041和太780等品种则相反。旱地无灌溉条件下,无论源或者库的调节对小麦叶片光合速率的影响都比较小。说明源库与光合速率之  相似文献   

18.
Development of maize (Zea mays L.) types that produce leaf area and mature quickly would increase production of maize in mid- to short-season areas. The leafy (Lfy1) and reduced-stature (rd1) traits both make contributions to this end. However, these two traits have not previously been combined. Our objective was to evaluate the yield and yield components of non-leafy normal-stature (NLNS), leafy reduced-stature (LRS), non-leafy reduced-stature (NLRS), and leafy normal-stature (LNS) maize inbred lines. The two genes, ‘Lfy1’ and ‘rd1’, were incorporated into a series of inbred lines resulting in a range of canopy architectures. Ten variables were recorded for each of 30 inbred lines over three years. The 10 variables were: corn heat unit requirement from planting to tasselling, corn heat unit requirement from planting to silking, days between tasselling and silking, grain moisture content, husk dry weight, cob dry weight, ear length, maximum ear circumference, grain yield and ratio of grain yield to moisture content. Reduced-stature inbred lines reached anthesis more quickly than normal-stature inbred lines. Grain moisture content was less in reduced-stature inbred lines than normal stature trait groups. Leafy-reduced stature plants had the highest ratio of grain to moisture content and the lowest grain moisture content at harvest. Inbred lines containing the rd1 trait matured more rapidly than other trait groups. The LRS trait group yielded more than the other groups, and showed great potential for use in mid- to short-season environments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Nitrogen transportation from different organs was investigated by labelling pods, leaves and internodes of upper stem with 15N-urea during flowering. Labelled plants were harvested one month after flowering and determined the amount of 15N in relative parts. The results of the experiment show the directions of 15N applied in different organs during flowering. Transportation of 15N applied in pods of lower terminal of the main stem and first branch was mainly directed to seeds inside the labelled pods, about 17 % of 15N entered into seeds 7 days after last labelling, a little transportation each other between the branch and terminal was found, more than 80 % of 15N applied on leaves during flowering was transported out of the leaves after flowering, 35 % and 67.93 % on average was translocated in pods for early and late flowering, respectively, while 55.97 % of 15N applied on surface of internodes of upper stem below terminal was found in pods. It was corroborated that nitrogen transportation also occurs within pods by labelling different parts of pods, much greater amount of nitrogen was transported from lower part to upper part of pods than those in opposite direction.  相似文献   

20.
为明确不同品种、种植密度、施氮量和播种方式与糯高粱生物性状及产量的关系。试验采用L9(34)正交试验设计,研究了不同品种、种植密度、施氮量和播种方式对糯高粱生物性状及产量的影响。结果表明,糯高粱品种对生物性状的影响差异较大,随着密度的增加,株高随之增高,而穗粒数和单穗重则随之减少,密度对糯高粱的叶片数、茎粗、穗长及千粒重影响不明显,施氮量255 kg/hm2的糯高粱穗长、穗粒数、单穗重和千粒重最好,不同种植方式对生物性状的影响不明显;糯高粱生物性状的株高、叶片数、穗粒数和单穗重与产量成正相关,茎粗、穗长和千粒重与产量成负相关;品种是影响糯高粱产量的主要因子,其次是种植密度,再次是种植方式,产量以组合A2B3C1D2最高,达12257.28 kg/hm2,其次为组合A2B1C2D3,产量为11553.91 kg/hm2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号