首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
This work focuses on the effects of variable amount of genomic information in the Bayesian estimation of unknown variance components associated with single‐step genomic prediction. We propose a quantitative criterion for the amount of genomic information included in the model and use it to study the relative effect of genomic data on efficiency of sampling from the posterior distribution of parameters of the single‐step model when conducting a Bayesian analysis with estimating unknown variances. The rate of change of estimated variances was dependent on the amount of genomic information involved in the analysis, but did not depend on the Gibbs updating schemes applied for sampling realizations of the posterior distribution. Simulation revealed a gradual deterioration of convergence rates for the locations parameters when new genomic data were gradually added into the analysis. In contrast, the convergence of variance components showed continuous improvement under the same conditions. The sampling efficiency increased proportionally to the amount of genomic information. In addition, an optimal amount of genomic information in variance–covariance matrix that guaranty the most (computationally) efficient analysis was found to correspond a proportion of animals genotyped ***0.8. The proposed criterion yield a characterization of expected performance of the Gibbs sampler if the analysis is subject to adjustment of the amount of genomic data and can be used to guide researchers on how large a proportion of animals should be genotyped in order to attain an efficient analysis.  相似文献   

2.
Genomic selection relies on single-nucleotide polymorphisms (SNPs), which are often collected using medium-density SNP arrays. In mink, no such array is available; instead, genotyping by sequencing (GBS) can be used to generate marker information. Here, we evaluated the effect of genomic selection for mink using GBS. We compared the estimated breeding values (EBVs) from single-step genomic best linear unbiased prediction (SSGBLUP) models to the EBV from ordinary pedigree-based BLUP models. We analyzed seven size and quality traits from the live grading of brown mink. The phenotype data consisted of ~20,600 records for the seven traits from the mink born between 2013 and 2016. Genotype data included 2,103 mink born between 2010 and 2014, mostly breeding animals. In total, 28,336 SNP markers from 391 scaffolds were available for genomic prediction. The pedigree file included 29,212 mink. The predictive ability was assessed by the correlation (r) between progeny trait deviation (PTD) and EBV, and the regression of PTD on EBV, using 5-fold cross-validation. For each fold, one-fifth of animals born in 2014 formed the validation set. For all traits, the SSGBLUP model resulted in higher accuracies than the BLUP model. The average increase in accuracy was 15% (between 3% for fur clarity and 28% for body weight). For three traits (body weight, silky appearance of the under wool, and guard hair thickness), the difference in r between the two models was significant (P < 0.05). For all traits, the regression slopes of PTD on EBV from SSGBLUP models were closer to 1 than regression slopes from BLUP models, indicating SSGBLUP models resulted in less bias of EBV for selection candidates than the BLUP models. However, the regression coefficients did not differ significantly. In conclusion, the SSGBLUP model is superior to conventional BLUP model in the accurate selection of superior animals, and, thus, it would increase genetic gain in a selective breeding program. In addition, this study shows that GBS data work well in genomic prediction in mink, demonstrating the potential of GBS for genomic selection in livestock species.  相似文献   

3.
The effectiveness of the incorporation of genomic pre‐selection into dairy cattle progeny testing (GS‐PT) was compared with that of progeny testing (PT) where the fraction of dam to breed bull (DB) selected was 0.01. When the fraction of sires to breed bulls (SB) selected without being progeny tested to produce young bulls (YB) in the next generation was 0.2, the annual genetic gain from GS‐PT was 13% to 43% greater when h2 = 0.3 and 16% to 53% greater when h2 = 0.1 compared with that from PT. Given h2 = 0.3, a selection accuracy of 0.8 for both YB and DB, and selected fractions of 0.117 for YB and 0.04 for DB, GS‐PT produced 40% to 43% greater annual genetic gain than PT. Given h2 = 0.1, a selection accuracy of 0.6 for both YB and DB, and selected fractions of 0.117 for YB and 0.04 for DB, annual genetic gain from GS‐PT was 48% to 53% greater than that from PT. When h2 = 0.3, progeny testing capacity had little effect on annual genetic gain from GS‐PT. However, when h2 = 0.1, annual genetic gain from GS‐PT increased with increasing progeny testing capacity.  相似文献   

4.
Economically important traits are usually complex traits influenced by genes, environment and genotype-by-environment (G × E) interactions. Ignoring G × E interaction could lead to bias in the estimation of breeding values and selection decisions. A total of 1,778 pigs were genotyped using the PorcineSNP80 BeadChip. The existence of G × E interactions was investigated using a single-step reaction norm model for growth traits of days to 100 kg (AGE) and backfat thickness adjusted to 100 kg (BFT), based on a pedigree-based relationship matrix (A) or a genomic–pedigree joint relationship matrix (H). In the reaction norm model, the herd-year-season effect was measured as the environmental variable (EV). Our results showed no G × E interactions for AGE, but for BFT. For both AGE and BFT, the genomic reaction norm model (H) produced more accurate predictions than the conventional reaction norm model (A). For BFT, the accuracies were greater based on the reaction norm model than those based on the reduced model without exploiting G × E interaction, with EV ranging from 0.5 to 1, and accuracy increasing by 3.9% and 4.6% in the reaction norm model based on A and H matrices, respectively, while reaction norm model yielded approximately 8.4% and 7.9% lower accuracy for EVs ranging from 0 to 0.4, based on A and H matrices, respectively. In addition, for BFT, the highest accuracy was obtained in the BJLM6 farm for realizing directional selection. This study will help to apply G × E interactions to practical genomic selection.  相似文献   

5.
This study used simulation to evaluate the performance of alternative selection index configurations in the context of a breeding programme where a trait with a non‐linear economic value is approaching an economic optimum. The simulation used a simple population structure that approximately mimics selection in dual purpose sheep flocks in New Zealand (NZ). In the NZ dual purpose sheep population, number of lambs born is a genetic trait that is approaching an economic optimum, while genetically correlated growth traits have linear economic values and are not approaching any optimum. The predominant view among theoretical livestock geneticists is that the optimal approach to select for nonlinear profit traits is to use a linear selection index and to update it regularly. However, there are some nonlinear index approaches that have not been evaluated. This study assessed the efficiency of the following four alternative selection index approaches in terms of genetic progress relative to each other: (i) a linear index, (ii) a linear index updated regularly, (iii) a nonlinear (quadratic) index, and (iv) a NLF index (nonlinear index below the optimum and then flat). The NLF approach does not reward or penalize animals for additional genetic merit beyond the trait optimum. It was found to be at least comparable in efficiency to the approach of regularly updating the linear index with short (15 year) and long (30 year) time frames. The relative efficiency of this approach was slightly reduced when the current average value of the nonlinear trait was close to the optimum. Finally, practical issues of industry application of indexes are considered and some potential practical benefits of efficient deployment of a NLF index in highly heterogeneous industries (breeds, flocks and production environments) such as in the NZ dual purpose sheep population are discussed.  相似文献   

6.
A simulation analysis and real phenotype analysis were performed to evaluate the impact of three different relationship matrices on heritability estimation and prediction accuracy in a closed‐line breeding of Duroc pigs. The numerator relationship matrix (NRM), single nucleotide polymorphism (SNP)‐based genomic relationship matrix (GRM) (GS), and haplotype‐based GRM (GH) were applied in this study. We used PorcineSNP60 genotype array data (38 114 SNPs) of 831 Duroc pigs with four selection traits. In both heritability estimation and prediction accuracy, the accuracy depended on the number of animals with records. For heritability estimation, a large difference in the results among three relationship matrices was not shown, but the trend of the estimated heritabilities between GRMs, that is GS < GH, was shown in this population. For the accuracy of prediction values in test animals, the accuracies of prediction values obtained by two GRMs were higher than that by the NRM in this population. The accuracies obtained by GRMs using animals with no records were lower than that by the NRM using animals with their performance records, but were close to that by the NRM using animals with full‐sib testing records.  相似文献   

7.
Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium‐density single nucleotide polymorphism (SNP) array. Here, the impact of lower‐density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)‐flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single‐step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree‐based prediction (0.50–0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL‐flanking SNP (0.65–0.72) was similar to the panel with 35K SNP (0.65–0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r2 ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long‐range LD likely contributed to the accurate genomic predictions with the low‐density SNP panels. Population structure analysis supported the hypothesis that long‐range LD in this population may be caused by admixture. Results suggest that lower‐cost, low‐density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs.  相似文献   

8.
Our objective was to evaluate changes in breeding values for carcass traits of two meat‐type quail (Coturnix coturnix) strains (LF1 and LF2) to changes in the dietary (methionine + cystine):lysine ([Met + Cys]:Lys) ratio due to genotype by environment (G × E) interaction via reaction norm. A total of 7000 records of carcass weight and yield were used for analyses. During the initial phase (from hatching to day 21), five diets with increasing (Met + Cys):Lys ratios (0.61, 0.66, 0.71, 0.76 and 0.81), containing 26.1% crude protein and 2900 kcal ME/kg, were evaluated. Analyses were performed using random regression models that included linear functions of sex (fixed effect) and breeding value (random effect) for carcass weight and yield, without and with heterogeneous residual variance adjustment. Both fixed and random effects were modelled using Legendre polynomials of second order. Genetic variance and heritability estimates were affected by both (Met + Cys):Lys ratio and strain. We observed that a G × E interaction was present, with changes in the breeding value ranking. Therefore, genetic evaluation for carcass traits should be performed under the same (Met + Cys):Lys ratio in which quails are raised.  相似文献   

9.
Although non‐destructive deformation is relevant for assessing eggshell strength, few long‐term selection experiments are documented which use non‐destructive deformation as a selection criterion. This study used restricted maximum likelihood‐based methods with a four‐trait animal model to analyze the effect of non‐destructive deformation on egg production, egg weight and sexual maturity in a two‐way selection experiment involving 17 generations of White Leghorns. In the strong shell line, corresponding to the line selected for low non‐destructive deformation values, the heritability estimates were 0.496 for non‐destructive deformation, 0.253 for egg production, 0.660 for egg weight and 0.446 for sexual maturity. In the weak shell line, corresponding to the line selected for high non‐destructive deformation values, the heritabilities were 0.372, 0.162, 0.703 and 0.404, respectively. An asymmetric response to selection was observed for non‐destructive deformation, egg production and sexual maturity, whereas egg weight decreased for both lines. Using non‐destructive deformation to select for stronger eggshell had a small negative effect on egg production and sexual maturity, suggesting the need for breeding programs to balance selection between eggshell traits and egg production traits. However, the analysis of the genetic correlation between non‐destructive deformation and egg weight revealed that large eggs are not associated with poor eggshell quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号