首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Streams are under environmental pressures acting at different scales that influence the ecological organisation of their fish assemblages. However, the relative influence of the different scale‐related variables on assemblage composition and function is poorly understood. We evaluated the importance of local‐ and catchment‐scale environmental variables, as well as the spatial structure of the sampling sites, in shaping fish assemblages in Atlantic Forest streams. Local‐scale variables were those measured at the sampling sites, describing the local habitat conditions (e.g. depth, substrate type, altitude). Catchment‐scale variables were those integrating the upstream landscape of the sampling sites (e.g. catchment land use). Spatial distances were calculated from watercourse distance using principal coordinates of neighbour matrices. Altogether, 28 local and seven catchment variables were initially subjected to two processes of eliminating co‐linearity. Redundancy analysis was applied to the three matrices (spatial, local and catchment) to quantify the variance in the structure of the fish assemblages explained by each matrix. Local variables explained more variability in both taxonomic and functional assemblage structure, than catchment and spatial variables. Local variables also changed along the longitudinal gradient, which consequently influenced fish assemblage structure. This pattern was also influenced by anthropogenic alteration and non‐native species, which were more abundant in downstream sites. These results highlight the need to assess Atlantic Forest streams under different environmental scales, especially through the use of quantitative local‐scale metrics, and to consider the effects of longitudinal patterns in structuring fish assemblages when developing and implementing monitoring programmes, impact studies and conservation plans.  相似文献   

2.
Abstract – Effects of environmental or landscape factors on species composition, species richness and complexity of fish assemblages were examined using our collections of fish from 65 sites on streams in 13 drainages across the midwestern United States. Effects of environmental factors were examined at three scales: broad geographic factors included drainage, latitude, and longitude; local terrestrial factors included features of the riparian zone adjacent to the collecting site as well as local climate and land use; within-stream aquatic factors related to structure and hydrology of the stream reach sampled. Each assemblage property was examined for its relationship to factors at each scale separately, and then for relative importance of all factors found to be significant in the separate analyses. Assemblage composition (summarized as sample scores on two axes of a detrended correspondence analysis) varied significantly as a function of factors at all three scales when each scale was considered separately. With simultaneous consideration of all scales, however, only broad geographic factors (particularly latitude) and local terrestrial factors explained significant variation in assemblage composition. Species richness (the number of species we captured) was explained by longitude and within-stream aquatic factors both when considered separately and together. Assemblage complexity (quantified as slope of relative abundance versus rank abundance) was only related to within-stream aquatic factors. Assemblage composition and emergent assemblage properties (richness and complexity), therefore, were explained by factors acting at different scales. The total variation explained for assemblage composition was much greater than that explained for emergent assemblage properties, suggesting that assemblage composition may vary more as a function of environmental and landscape factors than do species richness and complexity. NOTE  相似文献   

3.
The Amazon rainforest has experienced rapid land‐use changes over the last few decades, including extensive deforestation that can affect riparian habitats and streams. The aim of this study was to assess responses of stream fish assemblages to deforestation and land cover change in the eastern Amazon. We expected that percentage of forest in the catchment is correlated with local habitat complexity, which in turn determines fish assemblage composition and structure. We sampled 71 streams in areas with different land uses and tested for relationships between stream fish assemblages and local habitat and landscape variables while controlling for the effect of intersite distance. Fish assemblage composition and structure were correlated with forest coverage, but local habitat variables explained more of the variation in both assemblage composition and structure than landscape variables. Intersite distance contributed to variance explained by local habitat and landscape variables, and the percentage of variance explained by the unique contribution of local habitat was approximately equivalent to the shared variance explained by all three factors in the model. In these streams of the eastern Amazon, fish assemblages were most strongly influenced by features of instream and riparian habitats, yet indirect effects of deforestation on fish assemblage composition and structure were observed even though intact riparian zones were present at most sites. Long‐term monitoring of the hydrographic basin, instream habitat and aquatic fauna is needed to test for potential legacy effects and time lags, as well as assess species responses to continuing deforestation and land‐use changes in the Amazon.  相似文献   

4.
2013年7-8月对大别山皖河河源1~3级溪流的鱼类进行了调查,着重从河流网络体空间尺度研究了鱼类多样性及群落结构的空间格局,探讨了局域栖息地条件和支流空间位置对鱼类群落的影响.1~3级溪流间,鱼类物种数随溪流级别增大显著增多,但个体数无显著变化(P>0.05);长河、潜水和皖水3条支流间鱼类物种数和个体数均无显著差异(P>0.05).鱼类物种数受局域栖息地条件(海拔)和支流空间位置(河流级别和下游量级)的联合影响,但鱼类个体数仅受局域栖息地条件(海拔)的影响.不同溪流级别和不同支流间的群落结构均无显著差异(P>0.05).同物种数类似,鱼类群落结构也受局域过程(海拔)和空间过程(汇合量级和下游量级)的联合影响.本研究表明,总体上皖河河源溪流网络体中的鱼类群落是局域过程和空间过程联合作用的产物.因此,为合理保护和管理皖河河源的溪流鱼类物种,有必要兼顾局域栖息地条件与河流网络连通性的保护和恢复.  相似文献   

5.
Abstract – Effects of local environmental influences on the structure of fish assemblages were evaluated from 159 sites in two regions of the Great Plains with limited anthropogenic disturbance. These regions offered an opportunity to evaluate the structure and variation of streams and fish assemblages within the Great Plains. We used canonical correspondence analyses to determine the influence of environmental conditions on species abundances, species occurrences and assemblage characteristics. Analysis of regions separately indicated that similar environmental factors structured streams and fish assemblages, despite differences in environmental conditions and species composition between regions. Variance in fish abundance and assemblage characteristics from both regions was best explained by metrics of stream size and associated metrics (width, depth, conductivity and instream cover). Our results provide a framework and reference for conditions and assemblage structure in North American prairie streams.  相似文献   

6.
Abstract – Identifying the underlying mechanisms that explain the spatial variation in stream fish assemblages is crucial for the protection of species diversity. The influences of local habitat and stream spatial position on fish assemblages were examined from first‐order through third‐order streams within a dammed watershed, the Qingyi Stream, China. Based on linear regression models, the most important environmental variables influencing fish species richness were water temperature and wetted width, but stream spatial position variables were less important. Using canonical correspondence analysis, five environmental variables were identified to significantly influence fish assemblages, including three habitats (elevation, substrate and water depth) and two spatial variables (C‐link and Link). Our results suggest that, in a heavily dammed watershed, by blocking the migration routes of fishes, dams weaken the influence of stream spatial position on fish species richness. However, fish species compositions are significantly influenced by both local habitat environment and stream spatial position, which is perhaps owing to the distribution of fish species according to ecological requirements not related to spatial processes.  相似文献   

7.
Understanding the mechanisms that structure communities have been a major challenge in ecological theory. Functional trait-based approaches are increasingly used for studying the processes underlying community assembly. However, species-poor systems of Andean streams these processes are largely unknown. Tropical Andean streams are highly variable in space-time and characterised by the harsh or stable environment, resulting in a high taxonomic and ecological diversity. In this study, we tested the influence of environmental variables on the fish functional structure. We proposed that in ecosystems with harsh environments, environmental filtering will structure fish assemblages, and in ecosystems with a more stable environment, limiting similarity will prevail, increasing functional diversity. We analysed fish assemblages using functional diversity indices, fourth-corner RLQ analyses and multiple regression models. Environmental variables such as altitude, stream width, sub-Andean vegetation and pH influenced functional diversity. For instance, high values of functional redundancy were registered at high elevation streams, reflecting fish assemblages composed of highly dominant species with similar functional traits such as species of the genus Astroblepus. However, we found differences between Astroblepus species in the number and distance of gill rakers which might indicate resource partitioning and coexistence. On the other hand, our results show both stochastic dynamics and environmental filtering are structuring fish assemblages in low and high elevation Andean streams respectively.  相似文献   

8.
9.
Studies of trait–environment relationships provide important tools for the prediction of the response of biological communities to environmental alterations. The Amazon basin presents enormous potential for the development of research on this type of relationship, given the diversity of both its fish fauna and the aquatic ecosystems this fauna inhabits. The present study investigated the association between local environmental variables and the functional traits of fish in 54 streams of six major Amazonian basins. We identified the relationship between the characteristics of the streams (channel morphology, channel habitat units, riparian vegetation cover, large woody fragments and instream cover for aquatic organisms) and fish traits related to locomotion, habitat use and feeding behaviour. The fish fauna of the broader, deeper and more slowly flowing streams was dominated by nektobenthic species that exploit autochthonous resources such as fish and invertebrates. In narrow, fast‐flowing streams, by contrast, there was a predominance of benthic fishes with varying feeding habits, including periphytivorous and invertivorous species. Narrow, shady streams were inhabited by nektonic species adapted for the exploitation of resources from the marginal vegetation. The results of this study contribute to the understanding of the association between the functional structure of fish assemblages and local environmental variables in Amazonian streams. We hope that these findings will stimulate further research into the natural variation in stream fish assemblages that will ensure the development of more effective management strategies that better protect these important aquatic ecosystems.  相似文献   

10.
We hypothesised and tested a hierarchical organisation model where riparian landcover would influence bank composition and light availability, which in turn would influence instream environments and control fish assemblages. The study was conducted during the dry season in 11 headwater tributaries of the Sorocaba River in the upper Paraná River Basin, south‐eastern Brazil. We focused on seven environmental factors each represented by one or multiple environmental variables and seven fish functional traits each represented by two or more classes. Multivariate direct gradient analyses suggested that riparian zone landcover can be considered a higher level causal factor in a network of relations that control instream characteristics and fish assemblages. Our results provide a framework for a hierarchical conceptual model that identifies singular and collective influences of variables from different scales on each other and ultimately on different aspects related to stream fish functional composition. This conceptual model is focused on the relationships between riparian landcover and instream variables as causal factors on the organisation of stream fish assemblages. Our results can also be viewed as a model for headwater stream management in that landcover can be manipulated to influence factors such as bank composition, substrates and water quality, whereas fish assemblage composition can be used as indicators to monitor the success of such efforts.  相似文献   

11.
Abstract – Environmental factors act in a hierarchical manner at multiple spatial scales to influence the organisation of ecological assemblages; however, the relative influence of the different scale‐related factor groups is poorly known. We evaluated the importance of catchment‐scale and site‐scale environmental variables, as well as the spatial context of the sampling sites, in shaping stream fish assemblages in an agriculture‐dominated landscape in Hungary. Beside the variables describing spatial context (principal coordinates of a truncated distance matrix among sites), altogether 60 environmental variables were used to predict variability using a variance‐partitioning procedure in redundancy analysis. Presence–absence‐ and relative abundance‐based data were examined at two assemblage levels (entire assemblage and native assemblage) at 54 stream sites. Incorporation of spatial variables increased largely the total explained variability in case of relative abundance, but not for presence–absence data. Of the environmentally explained variance, catchment‐scale variables (e.g., land cover types, patch density) were relatively more influential for the native assemblage‐level analyses, than for analyses at the entire assemblage level, where site‐scale variables (e.g., altitude, depth) proved to be more influential. In addition, pure catchment‐ and pure site‐scale variables have the primary role in determining fish assemblage patterns, whereas the influence of shared variance and that of site‐scale riparian variables proved to be less important. Our findings demonstrate the importance of incorporating the spatial context of the sampling sites in predicting fish assemblage patterns and the effects of channelisation (dikes) in shaping assemblage–environment relationships in this human‐influenced landscape.  相似文献   

12.
Abstract –  The longitudinal distribution of fish assemblages across a large west European river basin, the Garonne river (south-west France) were investigated using a self-organising map. This nonlinear statistical method was employed to classify sampling sites according to their species composition. We found three main nested patterns in an aggregated hierarchy: a replacement and succession of species along a gradient without defined boundaries, four main zones of fish assemblages and an upstream-downstream shift of fish communities. We suggest that fish assemblages are too complex to be identified with a single species as in the zonation model, and that the diversity patterns found might be part of the same ecological process influencing fish assemblages on different spatial scales. Thus, discrepancies in the analysis of longitudinal patterns of fish communities in streams may have been basically a matter of local conditions and of conceptual perception.  相似文献   

13.
Understanding the role of local and spatial factors in the structuring of aquatic communities is a goal in ecology. The hierarchical structure of stream systems provides opportunities to test the hypothesis that fish assemblages that are more isolated in headwaters are structured by local and/or regional variables. Fishes and abiotic data were collected in 18 stream reaches from two hydrographic basins in the Brazilian Atlantic rainforest. The variance of species composition was partitioned into fractions explained by environmental and spatial factors. The pure environmental fraction explained ≈17% of variance and was represented by regional, habitat availability/heterogeneity and perturbation gradient. The pure spatial fraction explained ≈15% of the individual fraction. Environmental data revealed a species sorting process, and the spatial effect might be a result of different dispersal routes that fish performed during the formation of the hydrographic basins, actual land use and water resources management. The importance of maintaining connectivity in these systems was emphasised because it cannot be guaranteed that the dispersion ability of species is still occurring under current land use change.  相似文献   

14.
15.
Understanding spatial patterns of species diversity and the variables that structure biological communities is critical to successful ecosystem management. Regional diversity (γ) can be considered a combination of local diversity (α) and among sites variation (β). Using abundance data of fish species in 19 stream stretches, an analysis of diversity partitioning was used to determine the contribution of α‐ and β‐diversity to γ‐diversity. Redundancy analysis was applied to find the contribution of environmental variables and spatial configuration to species composition. Intersite variation contributed significantly to γ‐diversity. Spatial configuration and instream heterogeneity (coarse substrate, channel width, water velocity and shading) and riparian vegetation were related to local fish abundances. Conservation actions should consider that all streams are important, and prioritisation of just a small number of the richest sites is not appropriate.  相似文献   

16.
Characterisation of food webs, by summarising energy transfer and trophic relationships, allows more functional measurement of ecosystems and may reveal threats (e.g., land‐cover change) in sensitive environments that are not obvious from conventional biomonitoring. However, typical methods used to achieve this are time‐consuming and expensive. Therefore, we tested the usefulness of fish‐focused food‐web proxies as functional measures, specifically mass–abundance relationships of fish assemblages and stable isotope (SI)‐derived metrics in headwater stream reaches. These metrics have been trialled before for similar use in other settings, but have yielded varying results, and have not been employed in tandem in temperate freshwaters. Sampling reaches (= 46) were spread across a variety of streams, and the effects of habitat predictors at multiple scales on metrics were assessed using model selection. We found that habitat size positively correlated with food‐chain lengths in streams, possibly because of increased abundance of fish at multiple trophic levels in habitats with more space. Additionally, flood disturbance was negatively associated with fish mass–abundance and carbon range, likely due to the harshness of flood‐prone streams. Riparian land‐cover variables were correlated with multiple metrics, indicating the importance of terrestrial–aquatic linkages. Additionally, variations in all metrics were influenced by the presence of native, predatory longfin eels. Overall, we conclude that mass–abundance relationships and SI‐derived metrics are sensitive to drivers of trophic organisation and likely reflect processes occurring at multiple spatial scales in freshwaters. Thus, these metrics could be an insightful monitoring tool for managers because they reflect functional measures of aquatic ecosystems.  相似文献   

17.
18.
Production of biomass is central to the ecology and sustainability of fish assemblages. The goal of this study was to empirically estimate and compare fish assemblage production, production‐to‐biomass (P/B) ratios and species composition for 25 second‐ to third‐order streams spanning the Appalachian Mountains (from Vermont to North Carolina) that vary in their temperature regimes. Fish assemblage production estimates ranged from 0.15 to 6.79 g m?2 year?1, and P/B ratios ranged from 0.20 to 1.07. There were no significant differences in mean assemblage production across northern cold‐water, southern cold‐water and southern cool‐water streams (= .35). Two warm‐water streams, not included in these comparisons, had the highest mean production and biomass values. Mean assemblage P/B was significantly higher in northern cold‐water streams relative to southern cold‐water and cool‐water streams (= .01). Species evenness in production declined with stream temperature and differed significantly across the lower latitude cold‐water, cool‐water and warm‐water streams and the higher latitude (i.e. more northern) cold‐water streams. Our fish assemblage production estimates and P/B ratios were both lower and higher compared to previously published estimates for similar stream habitats. This study provides empirical fish assemblage production estimates to inform future research on southern Appalachian streams and on the potential impacts of varying temperature regimes on cold‐water, cool‐water and warm‐water fish production in the coming decades as climate change continues to threaten fish assemblages.  相似文献   

19.
In this study, we investigated functional structure patterns of tropical headwater and river fish assemblages. We hypothesised that environmental conditions are primarily structuring headwater streams leading to functionally clustered assemblages, whereas processes that favour functional overdispersion would guide river assemblages. For 27 headwater streams and 22 rivers, we used eight functional traits for calculating two functional indexes: mean pairwise distance (MPD) and net relatedness index (NRI). We performed linear regressions between indexes and species richness, a multiple regression between NRI and eight environmental variables and a variation partitioning to disentangle the role of environment and space on NRI. Our findings indicate that fish assemblages of headwaters are structured by environmental conditions as most assemblages in this habitat displayed a tendency to clustering and MPD/NRI were not correlated with species diversity, whereas the opposite pattern was observed for river habitat. Four environmental variables (channel depth, water velocity, dissolved oxygen and turbidity) explain 56% of functional structure variation. These variables seem to function as selective filters in headwaters, whereas channel depth may be determinant for functional overdispersion of river fish assemblages. Components associated with space are also influencing the functional structure. Limitations of species dispersal through space (between both habitat types) appear as a possible cause to this. In this sense, both environmental conditions and processes linked with space are capable of influencing the functional structure of tropical headwater streams and river fish assemblages.  相似文献   

20.
Stream fish distributions are commonly linked to environmental disturbances affecting terrestrial landscapes. In Great Plains prairie streams, the independent and interactive effects of watershed impoundments and land cover changes remain poorly understood despite their prevalence and assumed contribution to declining stream fish diversity. We used structural equation models and fish community samples from third‐order streams in the Kansas River and Arkansas River basins of Kansas, USA to test the simultaneous effects of geographic location, terrestrial landscape alteration, watershed impoundments and local habitat on species richness for stream‐associated and impoundment‐associated habitat guilds. Watershed impoundment density increased from west to east in both basins, while per cent altered terrestrial landscape (urbanisation + row‐crop agriculture) averaged ~50% in the west, declined throughout the Flint Hills ecoregion and increased (Kansas River basin ~80%) or decreased (Arkansas River basin ~30%) to the east. Geographic location had the strongest effect on richness for both guilds across basins, supporting known zoogeography patterns. In addition to location, impoundment species richness was positively correlated with local habitat in both basins; whereas stream‐species richness was negatively correlated with landscape alterations (Kansas River basin) or landscape alterations and watershed impoundments (Arkansas River basin). These findings suggest that convergences in the relative proportions of impoundment and stream species (i.e., community structure) in the eastern extent of both basins are related to positive effects of increased habitat opportunities for impoundment species and negative effects caused by landscape alterations (Kansas River basin) or landscape alterations plus watershed impoundments (Arkansas River basin) for stream species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号