首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Juvenile marine growth (SW1) of salmon and a new temperature change (TC) index were evaluated as ecosystem indicators and predictors for the post age‐0 year class strength (YCS) of groundfish in the Gulf of Alaska (GOA) and eastern Bering Sea (EBS). Our hypothesis was that SW1, as measured on the scales of adult Pacific salmon (Oncorhynchus spp.), is a proxy for ocean productivity on the continental shelf, a rearing area for young salmon and groundfish. Less negative TC index values are the result of a cool late summer followed by a warm spring, conditions favorable for groundfish YCS. In the GOA, SW1 was a positive predictor of age‐1 pollock (Theragra chalcogramma), but not age‐2 sablefish (Anoplopoma fimbria) YCS, indicating that the growth of the Karluk River sockeye salmon that enter Shelikof Strait is a proxy for ocean conditions experienced by age‐0 pollock. Contrary to our hypotheses, the TC index was a negative predictor of GOA pollock YCS; and the SW1 a negative predictor of EBS pollock and cod YCS since the 1980s. Recent fisheries oceanography survey results provide insight into possible mechanisms to support the inverse SW1 and YCS relationship. For the EBS, the TC index was a significant positive predictor for pollock and cod YCS, supporting the hypothesis that a cool late summer followed by a warm spring maximizes the over‐wintering survival of pollock and cod (Gadus macrocephalus), especially since the 1980s. The TC and SW1 index showed value for the assessment of pollock and cod, but not sablefish.  相似文献   

2.
The fishing industry of the western and central regions of the coastal Gulf of Alaska (CGoA) directly employs over 17,000 people and processes fish with a wholesale value of US$618 million annually. Pacific halibut (Hippoglossus stenolepis) are a valued groundfish species because of the high quality of their flesh. In contrast, arrowtooth flounder (Atheresthes stomias) are much more abundant but of low value because their flesh degrades upon heating. Both are high trophic level predators but play different roles in the ecosystem because of differences in abundance and diet. Using an end‐to‐end ecosystem model, we evaluate the impact of alternate levels of fishing effort and large‐scale changes in oceanographic conditions upon both species, the ecosystem, and the fishing economy. Reduction of longline efforts to reduce Pacific halibut mortality led to reduction in total value of all CGoA landings but increase in value landed by sport fisheries, trawl fleets, and fish pot vessels as they exploit a greater share of available halibut, sablefish, and Pacific cod. Increased trawl effort to raise arrowtooth flounder mortality led to increase in total value of all landings but large reductions in value landed by longline, jig, fish pot, and sport fleets with greater competition for available Pacific cod, halibut, and sablefish. Oceanographic conditions that enhance pelagic food chains at the expense of benthic food chains negatively impact groundfish in general, though Pacific halibut and arrowtooth flounder are resilient to these effects because of the high importance of pelagic fish in their diets.  相似文献   

3.
Information on the annual variability in abundance and growth of juvenile groundfish can be useful for predicting fisheries stocks, but is often poorly known owing to difficulties in sampling fish in their first year of life. In the Western Gulf of Alaska (WGoA) and Eastern Bering Sea (EBS) ecosystems, three species of puffin (tufted and horned puffin, Fratercula cirrhata, Fratercula corniculata, and rhinoceros auklet, Cerorhinca monocerata, Alcidae), regularly prey upon (i.e., “sample”) age-0 groundfish, including walleye pollock (Gadus chalcogramma, Gadidae) and Pacific cod (Gadus microcephalus, Gadidae). Here, we test the hypothesis that integrating puffin dietary data with walleye pollock stock assessment data provides information useful for fisheries management, including indices of interannual variation in age-0 abundance and growth. To test this hypothesis, we conducted cross-correlation and regression analyses of puffin-based indices and spawning stock biomass (SSB) for the WGoA and EBS walleye pollock stocks. For the WGoA, SSB leads the abundance of age-0 fish in the puffin diet, indicating that puffins sample the downstream production of the WGoA spawning stock. By contrast, the abundance and growth of age-0 fish sampled by puffins lead SSB for the EBS stock by 1–3 years, indicating that the puffin diet proxies incoming year class strength for this stock. Our study indicates connectivity between the WGoA and EBS walleye pollock stocks. Integration of non-traditional data sources, such as seabird diet data, with stock assessment data appears useful to inform information gaps important for managing US fisheries in the North Pacific.  相似文献   

4.
Walleye pollock (Gadus chalcogrammus) supports one of the largest commercial fisheries in the world. Juvenile pollock are important forage fish in the eastern Bering Sea (EBS) ecosystem, often representing the largest fraction in the diets of major Bering Sea piscivores. Large variability in the EBS pollock stock biomass in recent years has been attributed primarily to fluctuations in recruitment. It has been hypothesized that predation rates on forage fishes increase when the cold pool (a body of cold water < 2°C) is extensive and covers much of the middle continental shelf, which tends to concentrate larger predatory fishes in the outer shelf and slope regions. In contrast, young pollock appear to tolerate colder temperatures than older fish and can stay in the cold pool, thereby reducing predation. We used a multispecies modeling approach to examine the effects of the cold pool size on predation of juvenile pollock. We found that predation on age‐1 pollock by age‐3+ pollock decreased, and predation on age‐1 and age‐2 pollock by arrowtooth flounder increased with increasing bottom temperature, which was used as a proxy for the cold pool size. These results suggest that the cold pool creates spatial separation between juvenile pollock and arrowtooth flounder, but not between adult and juvenile pollock. The model developed in this study could be used to examine the effects of other covariates on interspecific interactions, help explain observed changes in fish communities, and understand implications of climate change on ecosystems and their productivity.  相似文献   

5.
A number of hypotheses have been proposed to explain the most recent decline (1977–2012) of Steller sea lions (SSL; Eumetopias jubatus) in the Gulf of Alaska and Aleutian Islands. We examined hypotheses about fisheries competition, environmental change, predation, anthropogenic effects and disease using observations of modern Aleut and archaeological, ethnohistoric and ethnographic data from the western Gulf of Alaska and Aleutian Islands. These data indicate that Steller sea lion numbers have declined and recovered repeatedly over the past 4500 years and were last at critically low numbers during the 1870s–1930s. Steller sea lions appear to have been more abundant during the cool periods – and lower during the warmer periods. Observations by local peoples, explorers, early government surveyors and biologists since the late 1800s suggest that low populations of SSL have been associated with high populations of Gadidae fishes (Pacific cod – Gadus macrocephalus and walleye pollock – Theragra chalcogramma) and are consistent with the ocean climate hypothesis to explain the decline of sea lions. They suggest that removals by people and killer whales (Orcinus orca) did not cause the sea lion declines, but could have compounded the magnitude of the decline as sea lion numbers approached low densities. Archaeological, anthropological and ethnohistorical analyses demonstrate that fluctuations have occurred in the North Pacific over hundreds to thousands of years and provide context for understanding the changes that occur today and the changes that will continue to occur in the future.  相似文献   

6.
Abiotic and biotic factors affecting the recruitment variability of the Japanese Pacific stock (JPS) of walleye pollock (Theragra chalcogramma) were examined using a bivariate regression and multivariate combined model. Of the abiotic variables around Funka Bay (spawning ground), February sea surface temperature (SST) and wind direction index showed significant bivariate relationships with recruitment. February SST was positively related to recruitment, suggesting that warmer water temperature in February favors JPS recruitment. On the other hand, the relationship between February wind direction index and recruitment predicts high JPS recruitment under predominant northwest winds in February. For the biotic variables in the Doto area (nursery ground), significant and negative bivariate relationships with recruitment were observed for catch per unit effort of Kamchatka flounder (Atheresthes evermanni), Pacific cod (Gadus macrocephalus), and walleye pollock, implying an important impact of predation by these groundfishes on JPS recruitment. The overall model incorporating these abiotic and biotic factors successfully reproduced the variability in JPS recruitment. Temperature and wind conditions around the spawning ground along with predator condition in the nursery ground appear to play a dominant role in the recruitment dynamics of JPS. Based on these results and prior knowledge, we propose a new hypothesis to explain the processes controlling JPS recruitment.  相似文献   

7.
The general warming of the eastern Bering Sea (EBS) and the wide range of abundance exhibited by several eastern Bering Sea flatfish motivated an examination of how density‐dependent and density‐independent factors may influence the spatial distributions of EBS flatfish. In this study, EBS trawl survey data from 1982 to 2006 were used to examine how temporal changes in the distributions of six flatfish species groups [yellowfin sole (Limanda aspera), rock sole (Lepidopsetta sp.), flathead sole (Hippoglossoides sp.), Alaska plaice (Pleuronectes quadrituberculatus), arrowtooth flounder (Atheresthes sp.), and Greenland turbot (Reinhardtius hippoglossoides)] are related to temporal changes in the location of the ‘cold pool’ (bottom water < 2°C), and how the area occupied by flatfish are related to the cold pool and population abundance. Rock sole and flathead sole distributions have generally moved northwest since 1982 and are significantly correlated with the movement of the cold pool, whereas arrowtooth flounder avoid the cold pool and their area occupied is inversely related to the size of the cold pool. The area occupied by arrowtooth flounder and rock sole are also significantly related to stock abundance. Multivariate statistical models indicate that the location of rock sole is more strongly related to stock abundance than to the cold pool, whereas the area occupied by arrowtooth flounder is more strongly related to the area of the cold pool rather than abundance. The temperatures occupied by several flatfish stocks indicate a substantial variability in suitable temperatures. These results suggest that a complex suite of density‐dependent and density‐independent factors may determine the response of EBS flatfish spatial distributions to increasing temperatures.  相似文献   

8.
The role of behavior, especially vertical migration, is recognized as a critical component of realistic models of larval fish dispersion. Unfortunately, our understanding of these behaviors lags well behind our ability to construct three-dimensional flow-field models. Previous field studies of vertical behavior of larval Pacific cod ( Gadus macrocephalus ) were limited to small, preflexion stages (≤11 mm SL) in a narrow range of thermal conditions. To develop a more complete picture of larval behavior, we examined the effects of ontogeny, temperature, and light on vertical responses of larval Pacific cod in experimental columns. While eggs were strictly demersal, yolk-sac larvae displayed a strong surface orientation as early as 1 day post hatch (∼ 5 mm SL). Consistent with field observations, small preflexion larvae (<10 mm SL) showed no response to varying light levels. However, there was a direct effect of temperature on larval behavior: Pacific cod larvae exhibited a stronger surface orientation at 4°C than at 8°C. The behavior of larger, postflexion larvae (>15 mm SL) in experimental columns was consistent with a diel vertical migration and independent of water temperature: fish were more widely distributed in the column, and median positions were consistently deeper at higher light levels. These laboratory observations are combined with observations from discrete-depth (MOCNESS) sampling in the Gulf of Alaska to characterize the vertical distribution of larval Pacific cod and contrast ontogenetic patterns with walleye pollock ( Theragra chalcogramma ). The vertical movements of larval Pacific cod described here will be applied in the development of dispersal projections from Gulf of Alaska spawning grounds.  相似文献   

9.
Larval and early juvenile fishes were sampled from the eastern Bering Sea (EBS) shelf from 2001 to 2005, and in 2007. Data from these collections were used to examine spatial and temporal patterns in species assemblage structure and abundance. The years 2001–2005 were unusual because the EBS water temperature was ‘warm’ compared with the long‐term mean temperature. In contrast, 2007 was a ‘cold’ year. The abundance of the five most numerous taxa at 12 stations common to all years sampled (1996–2005, 2007) were significantly different among years. Larval and early juvenile stage Theragra chalcogramma (walleye pollock), a commercially important gadid, were by far the most abundant fish in all years. Bottom depth alone best explained assemblage structure in most years, but in others, bottom depth and water column temperature combined and percent sea‐ice coverage were most important. Abundance of T. chalcogramma larvae increases with water column temperature until 5°C and then becomes level. Higher abundances of Gadus macrocephalus (Pacific cod) larvae occur in years with the greatest percent sea‐ice cover as indicated by GAM analysis. Larvae of Lepidopsetta polyxystra (northern rock sole) increase in abundance with increasing maximum wind speed, but decrease at a later date during the last winter storm. The data are consistent with the hypothesis that oceanographic conditions, specifically water temperature and sea‐ice coverage, affect the spatial and temporal pattern of larval abundances. In general, ichthyoplankton species assemblages can be important early indicators of environmental change in the Bering Sea and potentially other subarctic seas as well.  相似文献   

10.
Abstract. In an effort further to define the current health status of demersal fish in the Bering Sea, 36 618 fish captured by otter trawl during 1976 were examined for pathological conditions. Of the 26 species examined, 22 were found to have no detectable abnormalities. The four species with abnormalities were Pacific cod Gadus macrocephalus Tilesius with pseudobranchial tumours and skin lesions, walleye pollock Theragra chalcogramma (Pallas) with pseudobranchial tumours, yellowfin sole Limanda aspera (Pallas) with lymphocystis, and rock sole Lepidopsetta bilineata (Ayres) with epidermal papillomas. The prevalence, geographical distribution and biological and pathological characteristics of affected individuals were determined.
Pseudobranchial tumours of both Pacific cod and walleye pollock were occasionally found to be invasive. Fish bearing these tumours were distributed throughout the sampling area. The epidermal papillomas on rock sole resembled similar tumours found on several flatfish species along the West Coast of North America. The distribution of this disease appeared to be depth related. The virus-caused lymphocystis growths were located on the 'blind' side of yellowfin sole. The highest frequencies of fish with lymphocystis were in the south-eastern Bering Sea. Two main types of skin lesions were seen on Pacific cod: ulcers and ring-shaped lesions. Isolates of bacteria ( Pseudomonas sp.) were routinely obtained from the cod ulcers and may be the cause of this disease. The ring-shaped skin lesions, when examined microscopically, contained unidentified epidermal basophilic bodies.  相似文献   

11.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

12.
Little is known about the population structure of Alaskan rockfishes, including Pacific ocean perch (POP, Sebastes alutus), and how persistent and variable oceanographic features may influence their structures. Moreover, early life history information is sparse for many species. We used data from 14 microsatellite loci to characterize the genetic structure of young‐of‐the‐year Pacific ocean perch collected during 1998–2003 from the Gulf of Alaska and Bering Sea. Broad‐scale geographic variation in genetic structure of the young‐of‐the‐year (FST = 0.005, P < 10?4) had similarities to that observed in a previous adult study. The overall correlation between genetic and geographic distance (isolation by distance) was nearly identical to that observed in the adults. Fine‐scale geographic divergence was also observed and may be the result of oceanographic circulation features within the Gulf of Alaska. Interannual variation (between cohorts) at locations sampled in more than one year is consistent with variable oceanography and fine‐scale population structure rather than the influence of a sweepstakes effect. The similarities of the young‐of‐the‐year with the adults and the pattern of genetic divergence confirm that dispersal of Pacific ocean perch is limited in all life stages.  相似文献   

13.
Several species of marine teleosts have evolved blood plasma antifreeze polypeptides which enable them to survive in ice-laden seawater. Four distinct antifreeze protein classes differing in carbohydrate content, amino acid composition, protein sequence and secondary structure are currently known. Although all of these antifreezes are relatively small (2.6–33 kd) it was generally thought that they were excluded from the urine by a variety of glomerular mechanisms. In the present study antifreeze polypeptides were found in the bladder urine of winter flounder (Pseudopleuronectes americanus), sea raven (Hemitripterus americanus), ocean pout (Macrozoarces americanus) and Atlantic cod (Gadus morhua). Since the plasma of each of these fish contains a different antifreeze class it would appear that all four classes of antifreeze can enter the urine. The major antifreeze components in the urine of winter flounder were found to be identical to the major plasma components in terms of high performance liquid chromatography retention times and amino acid composition. It is concluded that plasma antifreeze peptides need not be chemically modified before they can enter the urine.  相似文献   

14.
We examine the hypothesis that recruitment is more variable in populations on isolated offshore banks than nearby shelf populations. Recruitment of cod (Gadus morhua) and American plaice (Hippoghssoides plates-soides) on Flemish Cap is more variable than in any comparable population. Recruitment of haddock (Melanogrammus aeglefinus) on Rockall Bank is also more variable than in surrounding populations. These results are confirmed both by estimates obtained by virtual population analysis and by research surveys. Recruitment of haddock and herring (Clupea harengus) on Georges Bank is also more variable than in surrounding populations; however, the results for two other groundfish populations, cod and yellowtake flounder (Limanda ferruginae), on Georges Bank are ambiguous. We conclude that marine fish populations on isolated banks are more variable than those on nearby shelf regions.  相似文献   

15.
Offshore‐ and deepwater‐spawning flatfish species face the problem of transport of their planktonic stages to shallow juvenile nursery grounds that are often far shoreward in bays or estuaries. We compare life history attributes of four offshore‐spawning flatfish species in the Gulf of Alaska: Pacific halibut (Hippoglossus stenolepis), arrowtooth flounder (Atheresthes stomias), rex sole (Glyptocephalus zachirus) and Dover sole (Microstomus pacificus) to examine how their larvae get from a spawning location at the edge or beyond the continental shelf to specific inshore nursery zones. We utilize historical records of survey catches of different life stages to characterize the stage‐specific changes in distribution of spawning, planktonic stages and juvenile nursery areas. We infer transport mechanisms based on the shifts in distribution of the life stages and in comparison with local physical oceanography. This comparison provides insight into the different mechanisms marine species may use to solve the common ‘problem’ of planktonic drift and juvenile settlement.  相似文献   

16.
  1. The Gilbert Bay Marine Protected Area (MPA), Labrador, was created in 2005 to protect a resident, locally adapted population of Atlantic cod and its habitat. Twenty years of monitoring has shown a 90% decline in this bay-cod population since the creation of the MPA.
  2. The decline of large commercial-sized cod in the bay was accompanied with increases in the abundance of other fish species, including rock cod (Gadus macrocephalus ogac), sculpin (Myoxocephlalus scorpius), and winter flounder (Pseudopleuronectes americanus), suggesting loss of strong top-down community control.
  3. These changes suggest a positive feedback mechanism leading to a fish community tipping point, which could severely impact the recovery potential of the protected Atlantic cod population in the MPA.
  4. We suggest that managers should be including this possibility in their management decisions for the Gilbert Bay MPA.
  相似文献   

17.
In 2003, the Alaska walleye pollock industry reported product quality issues attributed to an unspecified parasite in fish muscle. Using molecular and histological methods, we identified the parasite in Bering Sea pollock as Ichthyophonus. Infected pollock were identified throughout the study area, and prevalence was greater in adults than in juveniles. This study not only provides the first documented report of Ichthyophonus in any fish species captured in the Bering Sea, but also reveals that the parasite has been present in this region for nearly 20 years and is not a recent introduction. Sequence analysis of 18S rDNA from Ichthyophonus in pollock revealed that consensus sequences were identical to published parasite sequences from Pacific herring and Yukon River Chinook salmon. Results from this study suggest potential for Ichthyophonus exposures from infected pollock via two trophic pathways; feeding on whole fish as prey and scavenging on industry‐discharged offal. Considering the notable Ichthyophonus levels in pollock, the low host specificity of the parasite and the role of this host as a central prey item in the Bering Sea, pollock likely serve as a key Ichthyophonus reservoir for other susceptible hosts in the North Pacific.  相似文献   

18.
19.
Fish species identification techniques for authentic food labeling were developed using species-specific PCR primers for cod roe products. A salted, seasoned fish roe product, karashimentaiko (chilli cod roe), is produced from the eggs of Alaska pollock, Theragra chalcogramma, according to the fair trade competition agreement authorized by the Fair Trade Commission of the Japanese government. To examine whether Alaska pollock ovaries or those of other fish species are being used as raw materials for the fish roe products, we developed species identification techniques using PCR amplification of a 255-bp fragment encoding the mitochondrial ATP synthase Fo subunit 6 (ATP6) gene with a species-specific primer set for Alaska pollock mitochondrial DNA. We also designed two species-specific primer sets corresponding to the mitochondrial ATP6 and cytochrome b (cytb) for Gadus spp. and Micromesistius spp. by PCR amplification of 332- and 223-bp fragments, respectively. We examined the species specificity of these PCR-based methods among nine commercially important Gadidae species.  相似文献   

20.
We sought to provide a useful indicator of the presence of endocrine-disrupting contaminants along the marine coast of the South Pacific using Chilean flounder (Paralichthys adspersus). In light of the lack of information on vitellogenin for this species, we induced, purified, and identified the plasma vitellogenin of Chilean flounder inhabiting the Chilean coast. Vitellogenin (Vg) from Chilean flounder was purified by size exclusion and ion-exchange chromatography using plasma from juvenile males induced by injecting 17β-estradiol. The Vg was detected by SDS–PAGE and Western blot analyses using an antibody against turbot (Scophthalmus maximus) vitellogenin. These analyses revealed a protein band of 205 kDa and three minor bands of 120, 90, and 68 kDa. These proteins were identified as Vg by means of mass spectrometry (LCQ Duo ESI-IT-MS), matching sequences of tryptic peptides to known sequences for several other fish species. The matches showed the presence of vitellogenin (VgI, VgII, Vg A and Vg B) in Chilean flounder, similar to species such as mummichog (Fundulus heteroclitus), Japanese medaka (Oryzias latipes), and white perch (Morone americana). These results are discussed in terms of identifying Vg in Paralichthys adspersus with the antibody to turbot Vg. Moreover, we compare the molecular size of Vg from Chilean flounder (large) with that of other flatfish species. Finally, we discuss the potential use of this molecule as a biomarker for the presence of xeno-estrogenic compounds along the Chilean coastline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号