首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
  • 1. The coastal waters surrounding Britain and Ireland became warmer during the 20th century and, according to the UK Climate Impact Programme 2002 scenarios of change and other sources, average annual seawater temperatures may rise a further 2°C or more by the 2050s. This warming is part of a global rise in sea‐ and air‐surface temperatures that will cause changes in the distribution and abundance of species.
  • 2. Initially, there will not be a wholesale movement northwards of southern species or retreat northwards of northern species, because many additional factors will influence the responses of the different organisms. Such factors include the hydrodynamic characteristics of water masses, the presence of hydrographical and geographical barriers to spread and the life history characteristics (reproductive mode, dispersal capability and longevity) of species. Survey data over the past century show how organisms react to changes of the order of 0.5°C, and in the last two decades, when sea temperatures have risen by as much as 1°C, there have been significant local changes in the distribution of intertidal organisms. These past changes provide a clue to more extensive changes expected in the future if global warming develops as predicted.
  • 3. Where species affected by climate change are dominant or key structural or functional species in biotopes, there may be a change in the extent and distribution of those biotopes. Some, dominated by predominantly northern species such as the horse mussel Modiolus modiolus, may decline and reduce their value as rich habitats for marine life. Others, characterized by southern species, for example the sea fan Eunicella verrucosa and the alcyonacean Alcyonium glomeratum, may increase in extent.
  • 4. Using information on the life history characteristics of species, their present distribution and other factors, a key supported by a decision tree has been constructed to identify ‘types’ of organism according to their likely response to temperature rise. Conspicuous and easily identified rocky substratum species are good candidates to track change. Using the key, many species are shown as likely to increase their range northwards significantly. In contrast, fewer will decline in abundance and extent in the north. If, as anticipated, global warming continues, then species with distributions already accurately mapped, or being mapped at present, will provide baseline data to test forecasts.
Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
  1. Atlantic salmon populations have declined in recent decades. Many of the threats to the species during its freshwater and coastal residency periods are known, and management approaches are available to mitigate them. The global scale of climate change and altered ocean ecosystems make these threats more difficult to address.
  2. Managers need to be aware that promoting strong, healthy, and resilient wild populations migrating from rivers is the optimal approach currently to reduce the impacts of changing ecosystems and low marine survival. We argue that a fundamental strategy should be to ensure that the highest number of wild smolts in the best condition leave from rivers and coastal areas to the ocean. There is great scope for water quality, river regulation, migration barriers, and physical river habitat improvements.
  3. Maintenance of genetic integrity and diversity of wild populations by eliminating interbreeding with escaped farmed salmon, eliminating poorly planned stocking, and reducing impacts that reduce population sizes to dangerously low levels will support the ability of Atlantic salmon to adapt to changing environments. Reducing the impacts from aquaculture and other human activities in coastal areas can greatly increase marine survival in affected areas.
  4. As most of the threats to wild salmon are the result of human activities, a focus on human dimensions and improved communication, from scientific and management perspectives, needs to be increasingly emphasized. When political and social will are coupled with adequate resources, managers often have the tools to mitigate many of the threats to wild salmon.
  相似文献   

3.
  1. To facilitate conservation planning, there is a need for improved confidence in forecasts of climate change impacts on species distributions. Towards that end, there have been calls for the development of process-based models to test hypotheses concerning the mechanisms by which temperature shapes distribution and to corroborate forecasts of correlative models.
  2. Models of temperature-dependent growth (TDG) were developed for two Australian riverine blackfishes with disjunct longitudinal distributions: Gadopsis marmoratus (occupies lower, warmer elevations) and Gadopsis bispinosus (occupies higher, cooler elevations). The models were used to (a) predict blackfish monthly and annual growth dynamics under current and future climate scenarios within different elevation bands of their current distribution, and (b) test the hypothesis that, under the current climate, the distributions of each species would be positively correlated with predicted TDG.
  3. Increases in mean annual growth were forecast for both species under all warming scenarios, across all elevation bands. Both species currently occupy annual habitat temperatures below those optimal for growth. Under certain warming scenarios, the predicted increases in annual growth belie forecasts of within-year dynamics that may interact with the phenology of blackfish to impair recruitment.
  4. There was not a significant positive linear relationship between predicted TDG and observed abundance among river segments for either species. Both species were strongly under-represented where annual growth rates were forecast to be optimal and over-represented where growth rates were forecast to be intermediate.
  5. Confidence in forecasts of climate change impacts based on correlative models will increase when those forecasts are consistent with a mechanistic understanding of how specific drivers (e.g. water temperature) affect processes (e.g. growth). This process-based study revealed surprises concerning how future climates may affect fish growth dynamics, showing that although the blackfish distributions are correlated with temperature the temperature-dependent mechanisms underpinning that correlation require further investigation.
  相似文献   

4.
Abstract – In high northern latitudes, a wide range of geomorphic processes associated with fluvial, glacial and permafrost activity may interact with climate change to produce unexpected changes in lake thermal regimes with attendant effects on ecological processes. We coupled output from a hydrodynamics model of lake thermal structure to a bioenergetics model to assess how alternative scenarios of climate change, geomorphic evolution and habitat restoration in a shallow Alaskan lake may affect juvenile sockeye salmon bioenergetics and growth. In particular, we evaluated the metabolic costs of different thermal regimes and the potential for changes in consumption to offset those costs. Increased water temperatures associated with future climate increased metabolic costs which were partially offset if fish were able to maintain feeding rates, expressed as a constant proportion of maximum consumption. In this lake, water levels have declined substantially in the last 50 years. Simulated restored lake level had negligible effects on lake temperature and thus on sockeye salmon growth when compared to current conditions. Maintaining lake connectivity to inlet tributaries (cooling lake temperature) was crucial in reducing sockeye salmon metabolic costs particularly with further drops in lake level and climate warming. While considerable research is focused on predicting future thermal and geomorphic conditions in aquatic ecosystems, these processes are rarely considered together, especially for lakes. Understanding the biological responses to geomorphic–climate interactions will be required for developing scenarios for coping with ecosystem responses to global change and evaluating restoration alternatives, especially in high‐latitude systems that support economically and culturally important fisheries.  相似文献   

5.
Understanding the mechanisms that influence the successful recruitment of marine species is one of the great challenges in marine science, particularly for species that undergo a protracted larval phase. Here we apply a bio‐physical individual‐based model (IBM) which couples data from a high‐resolution oceanographic model with temperature‐related survival characteristics for the early life stage of a temperate marine fish. The IBM was run retrospectively for the years 1993–2007 with spawning locations occurring around Tasmania, Australia. Meso‐scale oceanographic features led to individuals spawned on the west coast, and to a lesser extent the south coast, being washed ashore prior to achieving a competent size to actively influence their migratory paths. Individuals spawned on the east coast had significantly higher survival rates. Temperature‐induced mortality was relatively consistent across years. This indicates that the dispersal envelopes, of pre‐flexion larvae, across all years are predominately within the thermal niche of this species. To further understand the effect of temperature on survival we integrated global climate model warming scenarios into the model. The results indicated that around the year 2050 the predicted warming would have a minor positive effect on the survival of individuals but by 2100 the pejus temperature will frequently be exceeded leading to a significant decline in survival, particularly towards the northern end of the dispersal range.  相似文献   

6.
7.
8.
Forage fish occupy a central position in marine food‐webs worldwide by mediating the transfer of energy and organic matter from lower to higher trophic levels. The lesser sandeel (Ammodytes marinus) is one of the ecologically and economically most important forage fish species in the North‐east Atlantic, acting as a key prey for predatory fish and sea birds, as well as supporting a large commercial fishery. In this case study, we investigate the underlying factors affecting recruitment and how these in turn affect productivity of the North Sea sandeel using long‐term data and modelling. Our results demonstrate how sandeel productivity in the central North Sea (Dogger Bank) depends on a combination of external and internal regulatory factors, including fishing and climate effects, as well as density dependence and food availability of the preferred zooplankton prey (Calanus finmarchicus and Temora longicornis). Furthermore, our model scenarios suggest that while fishing largely contributed to the abrupt stock decline during the late 1990s and the following period of low biomass, a complete recovery of the stock to the highly productive levels of the early 1980s would only be possible through changes in the surrounding ecosystem, involving lower temperatures and improved feeding conditions. To that end, we stress the need for ecosystem‐based management accounting for multiple internal and external factors occurring within the broader context of the ecosystem in which forage fish species, such as sandeel, play an important and integral part.  相似文献   

9.
  1. The natural habitat of the western swamp turtle (Pseudemydura umbrina Siebenrock, 1901) – the ephemeral, winter wet swamps north of Perth, Australia – is in danger owing to climate change and habitat fragmentation. The decline in rainfall in this area over the last five decades is predicted to continue, shortening the annual activity period for the turtles and potentially shifting their optimal climate zone to the south.
  2. Assisted colonization to wetlands in the cooler far south west of the state is one management response. As a contribution to such a measure, the diversity and abundance of food resources and consumption by turtles were evaluated at two potential and one existing colonization site.
  3. Thirty-five captive-bred juvenile P. umbrina were temporarily released into three sites: Moore River Nature Reserve north of Perth (into which the species had already been successfully translocated) and Meerup and East Augusta in the cooler far south of Western Australia.
  4. Food resources were assessed using sweep nets to sample invertebrates on two occasions at each wetland. Separate samples were collected for biomass determination and for assessing invertebrate diversity. Feeding by turtles was assessed by stomach flushing.
  5. Neither biomass nor biodiversity differed significantly between the southern sites and the reference site north of Perth. Stomach contents varied greatly, from 0 to 62 animals per turtle. The main prey items were beetles, ostracods, isopods and tadpoles.
  6. Each candidate wetland provided adequate food resources, indicating that assisted colonization to the cooler south coast of Western Australia has the potential to become a reasonable conservation tool to ensure the long-term survival of P. umbrina.
  相似文献   

10.
Climate change is expected to have major effects on the distribution and abundance of fish. In spite of extensive research on the topic in high‐latitude marine ecosystems, the mechanistic understanding of how temperature impacts recruitment and distribution of arcto‐boreal fish stocks remains elusive. Exemplified by an arcto‐boreal gadoid in the Barents Sea, the Northeast Arctic (NEA) haddock (Melanogrammus aeglefinus), we investigate the effect of ecosystem temperature (here temperature from a fixed reference section) on abundance and distribution boundaries between 1981 and 2008. During this time interval there has been a trend of increasing temperature in the ecosystem. We compare the ecosystem temperature with the species habitat temperature of NEA haddock (i.e., ambient temperature of the population) – two temperature approaches representing the indirect and direct environmental impacts on fish, respectively. In addition to the temperature effects, density‐dependent effects on distribution boundaries are considered. The study is based on swept area density estimates and spatial temperature data collected annually in winter surveys. We found a positive relationship between ecosystem temperature and abundance, a connection related to both direct and indirect mechanisms with short‐term and long‐term pathways. Distribution boundaries are, on a year‐to‐year basis, more related to abundance than ecosystem temperature. The long‐term trends, however, indicate a north‐eastward shift in distribution boundaries, probably indirectly related to the coinciding ecosystem temperature increase. In spite of the gradual increase in ecosystem temperature, the abundance of 4‐ to 7‐ year old NEA haddock expanded into colder waters. Thus, our results show how different the two temperature approaches may be.  相似文献   

11.
Atlantic salmon are an ecologically and economically important migratory fish in the UK, whose stocks have been declining over the past 30 years. Future climate and water use changes have the potential to alter the reproductive behaviour and distribution of salmon within a river, by restricting times and ability to access suitable spawning areas. As the survival of emergent salmon juveniles is density dependent, understanding how climate‐driven changes in flow affect the location of salmon redds is important for future conservation efforts. This study examined how flow conditions affect the distribution of redds within a UK chalk stream, the river Frome in Dorset. Sixteen years of redd distribution and flow data between 1980 and 2015 were analysed using linear mixed‐effects modelling. Generally, highest redd densities occurred within middle reaches of the main river. Mean flow during the river Frome critical migration period (October–December) did not affect the density of redds directly but affected the relationship between redd density and distance from tidal limit: redd densities were spread more uniformly throughout the river under high flow conditions, whereas redds were more aggregated in the middle river reaches under low flow conditions. Together, these findings suggest that access to upstream spawning grounds was limited under low flow conditions, which could have negative repercussions on juvenile survival. This study has revealed the distribution of redds along the river Frome for the first time and provided a basis for further study into the effects of redd distribution on subsequent juvenile life stages.  相似文献   

12.
Much uncertainty exists around how fish communities in shallow lakes will respond to climate change. In this study, we modelled the effects of increased water temperatures on consumption and growth rates of two piscivores (northern pike [Esox lucius] and largemouth bass [Micropterus salmoides]) and examined relative effects of consumption by these predators on two prey species (bluegill [Lepomis macrochirus] and yellow perch [Perca flavescens]). Bioenergetics models were used to simulate the effects of climate change on growth and food consumption using predicted 2040 and 2060 temperatures in a shallow Nebraska Sandhill lake, USA. The patterns and magnitude of daily and cumulative consumption during the growing season (April–October) were generally similar between the two predators. However, growth of northern pike was always reduced (?3 to ?45% change) compared to largemouth bass that experienced subtle changes (4 to ?6% change) in weight by the end of the growing season. Assuming similar population size structure and numbers of predators in 2040–2060, future consumption of bluegill and yellow perch by northern pike and largemouth bass will likely increase (range: 3–24%), necessitating greater prey biomass to meet future energy demands. The timing of increased predator consumption will likely shift towards spring and fall (compared to summer), when prey species may not be available in the quantities required. Our findings suggest that increased water temperatures may affect species at the edge of their native range (i.e. northern pike) and a potential mismatch between predator and prey could exist.  相似文献   

13.
For circumpolar species, little is known on how somatic growth rates can vary at large, transcontinental spatial scales. In this study, a meta‐analysis of growth rates was conducted for northern pike ( Esox lucius) across North America and Eurasia. Growth rates of northern pike did not differ between North American and ‘coastal Eurasian’ pike (e.g., UK, Ireland, Sweden), while growth rates for both of these groups were significantly higher compared to ‘inland Eurasian’ pike (mainly in Russia). There was no difference in growth between lentic and lotic habitats on either continent. In North America, pike growth was positively correlated with temperature, but in Eurasia, pike growth correlated poorly with most climatic variables. Similarly, maximum longevity in pike populations was significantly predicted by latitude in North America, but not in Eurasia. After standardising annual pike growth by the thermal opportunity for growth, a highly significant countergradient growth relationship was found for North American pike, while a significant, but considerably less predictive countergradient growth relationship was found for Eurasian pike. This study provides novel insights into the ecology of a circumpolar species and how populations function at extraordinarily large spatial scales. First, pike appear to be cosmopolitan across hydrologic habitats having fast or slow growth in either lentic or lotic environments. Secondly, continental‐scale differences in pike growth rates are suggestive of major genetic and life‐history differences. Finally, variable climate–growth relationships and countergradient growth patterns indicate that global climate change is likely to affect circumpolar fishes like pike in complex, nonlinear ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号