首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eruption of the Kasatochi volcano in August 2008 stimulated an anomalously high phytoplankton bloom in the otherwise iron‐limited subarctic Pacific ocean. It has been proposed that this increased production may have been responsible for record returns of some Pacific salmon stocks in the following years. Here, we investigate the potential effect of volcanic‐induced iron fertilization on the entire ecosystem, from phytoplankton through to top predators, using a fully‐coupled end‐to‐end ecosystem model. Our simulations indicate that the volcanic iron fertilization could only stimulate modest increases, at most 10%, in the standing stock biomass of upper trophic level species, including fisheries targets such as Pacific salmon. Propagation of energy to higher trophic levels depends on the timing of the eruption, with more efficient crustaceous zooplankton pathways being favored earlier in the growing season and less‐efficient gelatinous zooplankton pathways dominating during later months. However, effects were of modest magnitude for all eruption timings, and the strong level of connectivity within the food web makes the preferential stimulation of a single salmon stock implausible. This adds additional support to evidence suggesting that the Kasatochi eruption did not play a large role in subsequent high salmon returns and questions the value of much smaller‐scale artificial fertilization for fisheries. Indeed, the onset of macronutrient limitation coupled with the highly‐connected nature of the food web exert strong controls on the fisheries response to even complete removal of iron limitation in the subarctic Pacific.  相似文献   

2.
We investigated the distributional shifts of groundfish in response to anomalous ocean conditions, particularly the recent anomalously warm period (2014–2016; “The Blob”), based on data from ten Gulf of Alaska bottom trawl surveys conducted by the Alaska Fisheries Science Center during 1996–2015. Six groundfish species were considered: Pacific cod (Gadus macrocephalus), arrowtooth flounder (Atheresthes stomias), walleye pollock (Gadus chalcogrammus), Pacific ocean perch (Sebastes alutus), northern rock sole (Lepidopsetta polyxystra), and southern rock sole (Lepidopsetta bilineata). Ontogenetic differences were examined by dividing data for each fish species into size classes. Our study demonstrated that after accounting for size‐specific depth preferences, the spatial responses of groundfish to anomalous ocean conditions differed by species and foraging guild in the central Gulf of Alaska. Pacific cod and arrowtooth flounder showed similar responses to ocean warming, but different responses to cooling. In general, Pacific cod moved to deeper depths in warmer years and moved to shallower depths in colder years. Arrowtooth flounder also moved deeper in warmer years. However, in colder years, large arrowtooth flounder (>40 cm) shifted toward shallower depths while smaller‐sized fish shifted toward deeper depths. In warmer years, large pollock (>30 cm) moved to deeper waters while smaller pollock (10–20 cm) moved to shallower waters. Pacific ocean perch exhibited an opposite response to thermal changes in habitat compared with Pacific cod and arrowtooth flounder. They moved deeper in colder years, but there was no clear change in depth as a function of size in response to warmer habitat.  相似文献   

3.
ABSTRACT:   Barfin flounder and spotted halibut have been selected as target species for stock enhancement in Japan. Understanding the genetic condition of the wild stock is a principal requirement in any stock enhancement program. The genetic variability of barfin flounder and spotted halibut, and the population structure of spotted halibut were evaluated using microsatellite DNA markers (msDNA) and the control region of the mitocondrial DNA (mtDNA). Barfin flounder and spotted halibut showed high genetic variability at the msDNA level. Barfin flounder A was 16.7 and H e was 0.860; spotted halibut A n ranged from 7.7 to 10.2 and H e ranged from 0.710 to 0.774. At the mtDNA level, high haplotype ( h  = 0.922) and low nucleotide (π = 0.002) diversities were observed for barfin flounder; however, low haplotype and nucleotide diversities ( h  = 0.603–0.620 and π = 0.001–0.002), and very low haplotype and nucleotide diversities ( h  = 0.193 and π = 0.0003) were observed for spotted halibut in the north and south locations, respectively. Slight genetic differentiation among spotted halibut sampling locations was observed from the msDNA. MtDNA analyses showed genetic differentiation between north and south locations, but not within them. The designation of north-specific and south-specific management units in the future stock enhancement activities of spotted halibut is recommended.  相似文献   

4.
大亚湾是位于广东省东部的重要经济活动区域,渔业资源捕捞和航道运输等行为改变了其生态系统结构和功能,因此,评估和可持续利用渔业资源需要计算该生态系统各功能组之间的相互作用。该研究通过Ecopath with Ecosim(EwE 6.4)软件,利用2012年大亚湾海域渔业资源调查数据将大亚湾生态系统划分为18个功能组和1个碎屑组,整体了解该生态系统能量流动、总体特征和各食物网结构。研究结果表明:大亚湾生态系统各营养级呈现金字塔结构,营养级范围在1~3.29级之间。食物链通道主要有2条,一条为牧食食物链,另一条为碎屑食物链。大亚湾生态系统营养级转换效率较低,生态系统总转换效率仅为8%。大亚湾生态系统总流量为6 249.573 t·(km~2·年)~(-1),系统总生产量为2 827.584 t·(km~2·年)~(-1),总净初级生产量为2 468.36 t·(km~2·年)~(-1),总初级生产量/总呼吸量(TPP/TR)为2.185,Finn循环指数(FCI)和平均能流路径(MPL)分别为4.8%和3.53,联结指数(CI)和系统杂食性指数(SOI)分别为0.324和0.174。综上,大亚湾生态系统食物网简单,稳定性较差,系统处于幼期阶段,亟须加强捕捞限制和资源环境保护。  相似文献   

5.
While there has been a growing concern for the adverse ecological impacts of fishing, progress on incorporating these into operational fisheries management has been slow. Many fisheries management organizations have addressed the problem of overharvesting and over‐capitalization first. In this domain, the question of access regulation has gained growing recognition as a key dimension of fisheries sustainability, leading to recommendation and progressive implementation of rights‐based systems, in particular Individual Transferrable Quotas (ITQs). While adjustments in fishing capacity resulting from the implementation of these systems may entail a reduction in some unwanted ecosystem impacts of fishing, it is also recognized that they will not be sufficient to achieve the ecological outcomes increasingly demanded by the global community. There is thus a need to examine the possibilities for a common management framework for dealing with both over‐capitalization of fisheries and adverse ecological effects of fishing. In this paper, we examine the feasibility of incorporating greater ecosystem goods and services into ITQ policy instruments initially designed with a narrow focus on commercial target species. We consider the advantages and limitations of alternative approaches in this respect and identify some of the practical issues associated with the different alternatives, in particular the underpinning knowledge requirements. We argue that given the need for increasingly streamlined management processes, further investigation into practical ways forward in this domain is crucial if management of fisheries is to achieve economic efficiency while fully encompassing the ecologically sustainable development objectives of ecosystem‐based fisheries management.  相似文献   

6.
Irish Sea fisheries have undergone considerable change in recent years following the decline of commercially important finfish stocks and their slow response to management's recovery plans. In 2015, the fishing industry called for a holistic exploration into the impact of environmental change and food web effects to identify the drivers underpinning stock dynamics. In this study, we identify correlations between large‐scale climatic indicators, temperature, primary and secondary productivity, and fish recruitment in the Irish Sea and incorporate them into an Ecopath with Ecosim food web model co‐created by scientists and fishers. Negative correlations were found between the North Atlantic Oscillation winter index (NAOw) and large zooplankton abundance and between the Atlantic Multidecadal Oscillation (AMO) and the recruitment of cod (Gadus morhua) and whiting (Merlangius merlangus). Using correlation analyses to direct the addition of environmental drivers to the Irish Sea ecosystem model improved the models fit against observed biomass and catch data and revealed the indirect impacts of environmental change as mitigated through trophic interactions. Model simulations suggest that historic environmental change suppressed the overall production of commercial finfish, limiting opportunities for the fishing industry, whilst also dampening the rate of stock recovery despite marked reductions in fishing effort. These results suggest that failure to account for ecosystem information may lead to misconceived expectations and flawed fisheries management; therefore, there is a need to operationalize ecosystem information through management procedures to support fisheries advice.  相似文献   

7.
Pacific halibut (Hippoglossus stenolepis) are an ecologically, commercially, and culturally important Alaskan groundfish species. Commercial harvest of halibut dates back to the late 19th century and has been managed by the International Pacific Halibut Commission (IPHC) since 1921. IPHC surveys have revealed declining trends in survey biomass in multiple regions and region‐specific declines in mean size‐at‐age (size‐at‐age) over the past two decades (>50% in some areas). Changes in size‐at‐age can arise from a variety of physical, ecological, sampling, and fishery effects, including size‐dependent fishery or predation mortality, alteration in growth from variability in prey quality or quantity, and changes in temperature‐dependent metabolic demands. Here, we develop and apply a bioenergetics model for halibut using survey‐based diet and temperature data for Alaska to evaluate potential environmental drivers of size‐at‐age. In general, juvenile (<40 cm fork length) foraging rates were highest in the Gulf of Alaska concomitant with higher potential growth and elevated basal metabolic demands during warm summer conditions. In contrast, adult (40–120 cm FL) potential growth was highest in the Eastern Bering Sea, potentially reflecting lower metabolic costs and higher rates of prey consumption in that region. We additionally find evidence for interannual variation in potential growth, with a higher frequency of reduced growth potential in the last decade, particularly in the Eastern Bering Sea in 2015 and 2016 for both juvenile and adult halibut. These results suggest the potential for patterns in size‐at‐age to arise from trophic and environmental constraints that collectively limit growth in some regions and years.  相似文献   

8.
捕捞和环境变化对渤海生态系统的影响   总被引:3,自引:2,他引:3  
以1982年的渤海Ecopath静态模型为起始状态,设置17个功能群,利用CPUE和渔业相对捕捞强度作为时间强制序列,构建渤海Ecosim模型,模拟1982—2008年渤海生态系统发育的动态变化及捕捞的影响;利用气候环境时间序列数据,分析环境变化对渤海生态系统渔业资源的影响。研究发现,1982—2008年间,只有口虾蛄的生物量保持上升趋势,主要经济鱼种小黄鱼、蓝点马鲛、鳀、花鲈、黄鲫等的生物量均呈下降趋势,虾蟹类、头足类的生物量相对稳定。渤海渔获物的平均营养级在1982—2008年间明显下降,总捕捞产量在1984年之后一直保持上升趋势,两者之间存在显著的负相关;FIB指数的变动与捕捞产量的变动保持一致。Q-90多样性指数在1982—1987年间处于波动状态,从1988—1994年间保持增长趋势,在1994年之后迅速下降,由2.5降至0.5附近,渔业生物多样性下降;渤海海表盐度、海表水温、黄河径流量对捕捞产量影响显著。Ecosim模型终止状态(2008年)与起始状态(1982年)的比较表明,系统成熟度降低,生态系统出现一定程度的退化,渔业捕捞是渔业生态系统出现退化的主要原因,降低了生态系统总体的生物量水平;除捕捞因素外,环境变化也是影响渤海生态系统渔业资源变动的主要因素。  相似文献   

9.
Knowing how Pacific halibut (Hippoglossus stenolepis) distribute in relation to ocean conditions is of primary importance to halibut managers, as they are tasked with estimating stock size and designing effective monitoring programs amidst a changing climate. This research examined near‐bottom environmental data alongside halibut survey catch data for the years 2006–2009 on the continental shelf of Oregon, Washington, and southern British Columbia. The objectives of the research were to: (1) characterize summer environmental conditions and halibut distribution; (2) explore ranges and possible tolerance thresholds for halibut in relation to temperature, dissolved oxygen (DO), salinity, and pH; and (3) identify the primary environmental factors affecting distribution of halibut and model the observed relationships. Seasonal hypoxia is an annual feature of the study area and results suggest halibut exhibited an apparent DO minimum threshold of 0.9 mL L?1. Ordinary least squares multiple regression analysis indicated that depth, temperature, and DO were significant variables in predicting halibut distribution, whereas salinity and bottom type were not. Ambiguity in model results led to the use of two additional analytical methods, geographically weighted regression (GWR) and tree regression, to examine regional variation and the overarching structure of halibut distribution. The three models yielded similar results indicating the importance of DO and temperature as variables describing structure. The GWR model yielded the best fit of the three when using DO as a predictor variable, indicating that regional variation is a factor. These results suggest that low, but above‐threshold, DO may be contributing to catchability differences in the survey.  相似文献   

10.
ABSTRACT:   This study examined age and growth of Japanese flounder Paralichthys olivaceus off the Pacific coast of northern Japan, and determined whether the growth patterns of male and female fish in northern (40–41°N) and southern (37–38°15'N) waters differ. In total 8095 specimens were collected between January 1999 and December 2005. Zonation consisting of opaque and translucent bands on the otolith was evident. Within each opaque band a thin and clear check (ring mark) was observed in all specimens examined. Monthly change in the frequency of appearance of a ring mark on the outer margin of the otolith indicates that ring marks form between July and August. The von Bertalanffy growth model showed a sexual dimorphism in growth, as females grew faster and reached a larger size than males. The growth patterns obtained by tracking the observed total length for monthly collections showed a rapid increase in total length between August and October. Spatial variation in the growth pattern of male and female fish between northern and southern waters was evident, as southern fish were significantly larger than northern counterparts during 1.25–3.00 years post hatch.  相似文献   

11.
The justification for incorporating environmental effects into fisheries stock assessment models has been investigated and debated for a long time. Recently, a state‐space age‐structured assessment model which includes the stochastic change in the environmental covariate over time and its effect on recruitment was developed for Southern New England‐Mid Atlantic yellowtail flounder (Limanda ferruginea). In this paper, we first investigated the correlations of environmental covariates with Southern New England‐Mid Atlantic yellowtail flounder recruitment deviations. The covariate that was most strongly correlated with the recruitment deviations was then incorporated into the state‐space model and alternative effects on the stock‐recruit relationship were estimated and compared. For the model that performed best as measured by Akaike information criterion, we also compared the estimates and predictions of various population attributes and biological reference points with those from an otherwise identical model without the environmental covariate in the stock‐recruit function. We found that the estimates of population parameters are similar for the two models but the predictions differed substantially. To evaluate which model provided more reliable predictions, we quantitatively compared the prediction skill of the two models by generating two series of retrospective predictions. Comparison of the retrospective prediction pattern suggested that from an average point of view, the environmentally explicit model can provide more accurate near‐term recruitment predictions especially the one year ahead recruitment prediction. However, the accuracy of the near‐term recruitment prediction from the environmentally explicit model was largely determined by the accuracy of the corresponding environment prediction the model provides.  相似文献   

12.
Little is known about the population structure of Alaskan rockfishes, including Pacific ocean perch (POP, Sebastes alutus), and how persistent and variable oceanographic features may influence their structures. Moreover, early life history information is sparse for many species. We used data from 14 microsatellite loci to characterize the genetic structure of young‐of‐the‐year Pacific ocean perch collected during 1998–2003 from the Gulf of Alaska and Bering Sea. Broad‐scale geographic variation in genetic structure of the young‐of‐the‐year (FST = 0.005, P < 10?4) had similarities to that observed in a previous adult study. The overall correlation between genetic and geographic distance (isolation by distance) was nearly identical to that observed in the adults. Fine‐scale geographic divergence was also observed and may be the result of oceanographic circulation features within the Gulf of Alaska. Interannual variation (between cohorts) at locations sampled in more than one year is consistent with variable oceanography and fine‐scale population structure rather than the influence of a sweepstakes effect. The similarities of the young‐of‐the‐year with the adults and the pattern of genetic divergence confirm that dispersal of Pacific ocean perch is limited in all life stages.  相似文献   

13.
Bottom trawling accounts for almost one quarter of global fish landings but may also have significant and unwanted impacts on seabed habitats and biota. Management measures and voluntary industry actions can reduce these impacts, helping to meet sustainability objectives for fisheries, conservation and environmental management. These include changes in gear design and operation of trawls, spatial controls, impact quotas and effort controls. We review nine different measures and actions and use published studies and a simple conceptual model to evaluate and compare their performance. The risks and benefits of these management measures depend on the extent to which the fishery is already achieving management objectives for target stocks and the characteristics of the management system that is already in place. We offer guidance on identifying best practices for trawl‐fisheries management and show that best practices and their likelihood of reducing trawling impacts depend on local, national and regional management objectives and priorities, societal values and resources for implementation. There is no universal best practice, and multiple management measures and industry actions are required to meet sustainability objectives and improve trade‐offs between food production and environmental protection.  相似文献   

14.
北太平洋公海日本鲭资源分布及其渔场环境特征   总被引:1,自引:0,他引:1  
根据2014~2015年两年收集的北太平洋公海围拖网作业的日本鲭(Scomber japonicas,又称鲐鱼)生产月度数据,结合同期卫星遥感反演技术获取的海表温度(SST)、海水叶绿素a(Chl-a)浓度、海流等环境数据,运用渔获量重心法,地统计插值等方法,分析了北太平洋公海鲐鱼的资源分布情况与渔获量重心的时空变化及其与主要环境因子之间的关系。研究表明,鲐鱼渔场季节性差异明显,渔场重心集中分布在39°N~43°N、147°E~154°E范围内。两年渔场重心均呈现先向东北方向移动,自9月开始再向西南方向移动的趋势。GAM模型显示,北太平洋鲐鱼渔场的最适海表温度范围是16~18℃,最适叶绿素a浓度范围是0.3~0.8 mg·m~(-3),空间上集中分布在40°N~41°N、148°E~151°E,海流对鲐鱼渔场形成尤为重要。  相似文献   

15.
Nursery areas for juvenile fishes are often important for determining recruitment in marine populations by providing habitats that can maximize growth and thereby minimize mortality. Pacific ocean perch (POP, Sebastes alutus) have an extended juvenile period where they inhabit rocky nursery habitats. We examined POP nursery areas to link growth potential to recruitment. Juvenile POP were captured from nursery areas in 2004 and 2008, and estimated growth rates ranged from ?0.19 to 0.60 g day?1 based on differences in size between June and August. Predicted growth rates from a bioenergetics model ranged from 0.05 to 0.49 g day?1 and were not significantly different than observed. Substrate preferences and the distribution of their preferred habitats were utilized to predict the extent of juvenile POP nursery habitat in the Gulf of Alaska. Based on densities of fish observed on underwater video transects and the spatial extent of nursery areas, we predicted 278 and 290 million juvenile POP were produced in 2004 and 2008. Growth potential for juvenile POP was reconstructed using the bioenergetics model, spring zooplankton bloom timing and duration and bottom water temperature for 1982–2008. When a single outlying recruitment year in 1986 was removed, growth potential experienced by juvenile POP in nursery areas was significantly correlated to the recruitment time‐series from the stock assessment, explaining ~30% of the variability. This research highlights the potential to predict recruitment using habitat‐based methods and provides a potential mechanism for explaining some of the POP recruitment variability observed for this population.  相似文献   

16.
We explored the seasonal potential fishing grounds of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific using maximum entropy (MaxEnt) models fitted with squid fishery data as response and environmental factors from remotely sensed [sea surface temperature (SST), sea surface height (SSH), eddy kinetic energy (EKE), wind stress curl (WSC) and numerical model‐derived sea surface salinity (SSS)] covariates. The potential squid fishing grounds from January–February (winter) and June–July (summer) 2001–2004 were simulated separately and covered the near‐coast (winter) and offshore (summer) forage areas off the Kuroshio–Oyashio transition and subarctic frontal zones. The oceanographic conditions differed between regions and were regulated by the inherent seasonal variability and prevailing basin dynamics. The seasonal and spatial extents of potential squid fishing grounds were largely explained by SST (7–17°C in the winter and 11–18°C in the summer) and SSS (33.8–34.8 in the winter and 33.7–34.3 in the summer). These ocean properties are water mass tracers and define the boundaries of the North Pacific hydrographic provinces. Mesoscale variability in the upper ocean inferred from SSH and EKE were also influential to squid potential fishing grounds and are presumably linked to the augmented primary productivity from nutrient enhancement and entrainment of passive plankton. WSC, however, has the least model contribution to squid potential fishing habitat relative to the other environmental factors examined. Findings of this work underpin the importance of SST and SSS as robust predictors of the seasonal squid potential fishing grounds in the western and central North Pacific and highlight MaxEnt's potential for operational fishery application.  相似文献   

17.
The Gulf of Beibu, recognized as one of the traditional fishing grounds, is a center of rich biodiversity in the northern South China Sea. Based on the Beibu Gulf ecosystem constructed by the Ecopath and Ecosim model (in the late 1990s), we used Ecospace to evaluate the existing fishery management system and assess the potential of marine protected areas (MPAs) in the Beibu Gulf over a short (5-year), medium (10-year), and long-term (20-year) scenario. The results suggest that the current trawl closure and the midsummer moratorium system used in the Gulf fishery management approach appear to offer minimal benefits for stock recovery because of the high implementation and administrative costs; also, the biomass of valuable groups would decrease drastically with simulation time, and the large predator groups, such as the large demersal and pelagic fishes, would even be reduced to depletion in the long-term (20-year) simulation.Simulations of MPAs indicate that outcomes beneficial to all are possible but not guaranteed. Both ‘no-take’ MPAs, inshore closures (<30-m isobath) and offshore closures (common fishing zone) can drastically reduce fishing effort (between 20% and 30% reduction from 1999 levels), achieving much to avert the collapse of the fishery sector, especially for large-sized, high-value species. The magnitude of the biomass and the catches would obviously increase with simulation time. In a 20-year simulation, the total catches of all fishing gears would be doubled in the inshore closure simulation compared with that of offshore closure simulation with biomass recovery. The results suggest that, for purposes of fishery management in the Gulf, the inshore area within the 30-m isobath should be considered as ‘no-take’ MPAs; this may be an effective management tactic to conserve the ecosystem and to stop the decline in fisheries resources. Considering the complexity of ecosystem-based fishery management, an extension of the current work will incorporate the costs associated with restoration and monitoring efforts as well.  相似文献   

18.
The effects of climate events on the feeding ecology and trophic dynamics of Pacific salmon (Oncorhynchus spp.) in offshore waters of the central Gulf of Alaska were investigated during early summers (1994–2000), based on analyses of stomach contents, and carbon and nitrogen stable isotopes (δ13C and δ15N). Gonatid squids (mainly Berryteuthis anonychus) were the dominant prey of all salmon species except for chum salmon (O. keta). During the 1997 El Niño event and the 1999 La Niña event, squids decreased sharply in the diets of all Pacific salmon except coho salmon (O. kisutch) in the Subarctic Current, and chum salmon diets changed from gelatinous zooplankton (1995–97) to a more diverse array of zooplankton species. A δ13C and δ15N analysis indicated that all salmon species occupied the same branch of the food web in 1999–2000. We hypothesize that high‐seas salmon adapt to climate‐induced changes in their prey resources by switching their diets either within or between trophic levels. To understand the effects of climate change on Pacific salmon in the Gulf of Alaska, biological oceanographic research on B. anonychus and other important prey resources is needed.  相似文献   

19.
The recovery of whale populations from historical depletion may have the potential to noticeably affect Northeast Pacific ecosystems and fisheries. Surplus production models based on whaling catch records were used to reconstruct the historical abundances of five large whale species in the waters surrounding Haida Gwaii, British Columbia. The results suggest that the local abundances of all five species were vastly higher before the onset of modern whaling. A comparison of ecosystem models representing the states of the local marine food web before and after full whale recovery indicates that abundant whales could consume large proportions of the annual production of their principal prey, ranging up to 87% for Pacific herring (Clupea pallasii) and 72% for piscivorous rockfish (Sebastes spp.). Dynamic modelling of the food web effects of whale recovery, including simulations of simultaneous top‐down and bottom‐up forcing and a Monte Carlo sensitivity analysis, revealed noticeable (~6–12%) top‐down effects on Pacific herring biomass owing to increased predation by humpback and fin whales. However, these effects cannot explain the magnitude of recent declines in local herring biomass. The dynamic modelling results also suggest that top‐down effects of whale recovery could result in reduced biomasses of large rockfish as a result of predation by sperm whales, as well as potential cascading effects on many demersal fish groups. These findings have numerous practical implications for ecosystem‐based fisheries management and whale conservation strategies in Northeast Pacific waters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号